STICHTING MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49 AMSTERDAM

ZW 1963-202

Autohomeomorphism groups of

o-dimensional spaces

J. de Groot and R.H. McDowell

Reprinted from

Compositio Mathematica, 15(1963), p 203-209

1963

DE GROOT J. AND MCDOWELL R. H. 1963 COMPOSITIO MATHEMATICA Vol. 15 Fasc. 2, pp. 203-209, 1963

13.20°

AUTOHOMEOMORPHISM GROUPS OF o-DIMENSIONAL SPACES

ВY

J. DE GROOT AND R. H. MCDOWELL

Reprinted from
COMPOSITIO MATHEMATICA
Vol. 15 Fasc. 2, pp. 203-209, 1963

Autohomeomorphism Groups of 0-dimensional Spaces

by

J. de Groot and R. H. McDowell 1)

If T is a topological space, we denote by A(T) the group of all homeomorphisms of T onto itself. In [2], it was shown that given an arbitrary group G, one can find a topological space T such that G and A(T) are isomorphic; in fact, such a T can be found among the compact connected Hausdorff spaces. In general, no such T can be found among the spaces with a base of open—and—closed sets, i.e., the spaces T such that dim T=0. The present paper investigates the following question. What can be said, in general, about A(T) if T is a completely regular Hausdorff space and dim T=0?

If α is any cardinal ≥ 1 , we shall denote by S_{α} the restricted permutation group on α objects; that is, the group of all those permutations which involve only finitely many objects. We will find it convenient to let S_0 denote the group of one element. ΣC_2 will denote the direct sum of \aleph_1 groups of order two. Throughout this paper, "space" will be used to mean "completely regular Hausdorff space". For any 0-dimensional space T, we shall show that A(T) must

- (1) consist of a single element (in which case we say T is "rigid"),
- (2) contain a subgroup S_{α} for some α ,
- or (3) contain a subgroup of the form $S_{\alpha} + \Sigma C_2$. This result is best possible, in the sense that for any cardinal α , we can construct spaces whose autohomeomorphism group is precisely S_{α} or $S_{\alpha} + \Sigma C_2$. We produce examples of arbitrarily high weight,²) but we leave open the problem of constructing *compact* rigid 0-dimensional spaces of arbitrarily high weight.

In particular, if T is dense in itself, A(T) equals the unit

¹⁾ The second author is grateful to the Charles F. Kettering Foundation for its support during the preparation of this paper.

²⁾ The weight of a space is m if there exists an open base of m and not less than m sets.

element or contains a subgroup ΣC_2 . On the other hand, one can construct compact 0-dimensional Hausdorff spaces H, dense in itself, for which A(H) = 1 or A(H) equals the direct sum of continuously many groups of order two (in the last case one takes the Čech-Stone compactification of [2; § 5, example I]).

Some of the results of this paper were announced in [3].

I. A(T) for 0-dimensional Spaces

1.1. LEMMA. Let $\{x_i\}$ and $\{y_i\}$, $i \in N$ (the natural numbers) be sets of distinct isolated points in the space T such that, for every $J \subset N$, $\{x_j\}$ and $\{y_j\}$, $j \in J$, have identical boundaries in T; then T admits of uncountably many distinct autohomeomorphisms of order two.

PROOF. It is easy to see that the map interchanging x_i and y_i for each i in N, and leaving all other points of T fixed, is an autohomeomorphism; the same is clearly true for every subset J of N, and there are uncountably many such subsets.

In what follows, we shall need the following well known (and easily proved) result from group theory.

- 1.2. Proposition. If G is a group in which all elements distinct from the identity have order two, then G can be represented as the direct sum of cyclic groups of order two.
- 1.3. THEOREM. Let T be a 0-dimensional completely regular Hausdorff space, containing α isolated points (α may be 0). Then either $A(T) = S_{\alpha}$, or A(T) contains a subgroup of the form $S_{\alpha} + \Sigma C_{2}$.

PROOF. A(T) clearly contains a subgroup isomorphic to S_{α} , since every one – one onto map moving a finite number of isolated points, and leaving all other points fixed, is a homeomorphism. Thus we need only show that if T admits any autohomeomorphism which does *more* than this, then T contains a subgroup isomorphic to $S_{\alpha} + \Sigma C_2$.

Note first of all that if $\alpha > \aleph_0$, there is no problem, since S_{α} itself contains such a subgroup. So we assume $\alpha \leq \aleph_0$, and we distinguish two cases.

(1) There is an autohomeomorphism φ on T which moves a non-isolated point p. Then we can find an open – and – closed set U containing p such that $U \cap \varphi(U) = \phi$. If U has no countable base, we can find more than \aleph_0 distinct open- and -closed subsets $K \subset U$, and interchanging K and $\varphi(K)$ gives us an autohomeo-

morphism of order two. If U has a countable base, let $D = \{x_i\}$ be the set of all isolated points in U. If D is finite, then $M = (U \setminus D) \cup \varphi(U \setminus D)$ is open-and-closed, dense in itself, separable, metrizable and 0-dimensional, and is therefore homeomorphic to a dense-in-itself subset of the Cantor set. Since M is not rigid, A(M) (and hence A(T)) contains a subgroup of the form $\mathcal{L} C_2$, by [2; p. 90, (i)]. If D is infinite and closed, let $\{x_i\}$ be any enumeration of D; then $\{x_i\}$ and $\{\varphi(x_i)\}$ satisfy the hypotheses of Lemma 1.1; if D is not closed, it has a limit point q and a subsequence $\{y_i\}$ converging to q. In that case, $\{y_{2i-1}\}$ and $\{y_{2i}\}$ satisfy the hypotheses of 1.1.

(2) No autohomeomorphism moves a non-isolated point. Let φ be a homeomorphism moving an infinite set of isolated points $\{y_i\}$. If we can find a set of isolated points $\{x_i\}$ such that $\{x_i\} \cap \{\varphi x_i\} = \emptyset$, then $\{x_i\}$ and $\{\varphi x_i\}$ clearly satisfy the hypotheses of 1.1. But such a set $\{x_i\}$ is easily found, for if there is a $y \in \{y_i\}$ with infinite orbit, let $x_i = \varphi^{2i}y$; if each y_i has finite orbit, form $\{x_i\}$ by choosing one point from each of the orbits determined by y_i .

It follows that A(T) contains a group isomorphic to ΣC_2 ; from the construction, it is easily seen that by dividing the isolated points into two disjoint infinite sets if necessary, one can find a subgroup isomorphic to $S_{\alpha} + \Sigma C_2$.

It should be pointed out that in only one case in the proof of 1.3 do we fail to find *continuously* many distinct autohomeomorphisms of order two. We could replace $\sum C_2$ in the statement of the theorem by the direct sum of continuously many groups of order two if we could prove the following: if U and V are 0-dimensional, disjoint homeomorphic spaces having no countable base, and $X = U \cup V$, then A(X) contains c elements of order two.

II. Rigid Spaces

In this section, we extend the methods of [2] to produce rigid 0-dimensional spaces of arbitrary (infinite) weight. We shall require some ideas in the theory of uniform spaces; the reader is referred to [1] and [4] for a development of these ideas.

First, we extend a metric space theorem to uniform spaces in a routine manner.

- 2.1. Definition. An intersection of **m** open sets will be called a $G_{\mathbf{m}\delta}$ -set; a $G_{\mathbf{n}_0\delta}$ -set will be called, as usual, a G_{δ} -set.
 - 2.2. Theorem. Let X be a completely regular Hausdorff space

of weight m, complete in a uniformity \mathcal{D} generated by a set D of m pseudometrics. Then every continuous map f from a subset H of X into X can be extended continuously to a map \tilde{f} from a $G_{m\delta}$ -set $G \supset H$ into X.

PROOF. For each $d \in \mathcal{D}$, and each $x \in \overline{H}$, let $\omega_d(x)$ be the oscillation of f at x with respect to d. Let

$$G_d = \{x \in \overline{H} : \omega_d(x) = 0\}.$$

 G_d is evidently a G_{δ} -set. Let

$$G = \bigcap_{d \in \mathscr{D}} G_d;$$

then $G \supset H$ is a $G_{\mathbf{m}\delta}$ -set.

Now f can be extended continuously over G. For let $\{h_{\alpha}\}$ be any net in H converging to a point $x \in G$. Then, in the uniformity generated by \mathscr{D} , $\{f(h_{\alpha})\}$ is a Cauchy net, by the definition of G. Hence $\{f(x_{\alpha})\}$ converges to some point $p \in X$; set $\tilde{f}(x) = p$. \tilde{f} is evidently continuous at x.

Now, using 2.2, we extend some of the results in [2].

- 2.3. DEFINITION. If X is a topological space, and f a map from a subset of X into X, then f is called a *continuous displacement* of order M if f is continuous, and is a displacement of order M. A continuous displacement of order C will be called, as usual, a continuous displacement $[2; \S 2]$.
- 2.4. THEOREM. Let X be a completely regular Hausdorff space of weight \mathbf{m} , complete in a uniformity \mathscr{D} generated by \mathbf{m} pseudometrics, and let $|X| = 2^{\mathbf{m}} = \mathbf{M}$. Further, let $\{K_{\beta}\}$ be any family of \mathbf{M} subsets of X, each of cardinal \mathbf{M} . Then there is a family $\{F_{\gamma}\}$ of $2^{\mathbf{M}}$ subsets of X such that
 - (1) For $\gamma \neq \gamma'$, $|F_{\gamma} \backslash F_{\gamma'}| = \mathbf{M}$.
- (2) No F_{γ} admits of any continuous displacement of order M onto itself or any other $F_{\gamma'}$.
 - (3) For every β , γ , $|F_{\gamma} \cap K_{\beta}| = \mathbf{M}$, and $|(X \setminus F_{\gamma}) \cap K_{\beta}| = \mathbf{M}$.

Proof. There exist only \mathbf{M} $G_{\mathbf{m}\delta}$ -sets in X, and a fixed subset of X admits at most \mathbf{M} continuous maps into X, and therefore at most \mathbf{M} continuous displacements of order \mathbf{M} . Let f_{β} be a continuous displacement of order \mathbf{M} whose domain is a $G_{\mathbf{m}\delta}$ -set. The family $\{f_{\beta}\}$ of all such mappings has cardinal at most \mathbf{M} . This family is non-empty (otherwise the theorem is trivial), so by counting a given displacement \mathbf{M} times if necessary, we may assume that $|\{f_{\beta}\}| = \mathbf{M}$.

Now we apply [2; Lemma 1], with X = N, M = m, and $\{f_{\beta}\}$. We obtain a family $\{F_{\gamma}\}$ of 2^{M} subsets of X satisfying (1) and (3). Suppose (2) is false, and there is a continuous displacement of order M, φ , from F_{γ} onto $F_{\gamma'}$. This φ can be extended (Theorem 2.4) to a continuous map $\tilde{\varphi}$ of a $G_{m\delta}$ -set $G_{\gamma} \supset F$ into X, so $\tilde{\varphi} = f_{\beta}$ for some β . Hence, by [2; Lemma 1, (2.3)], for every pair γ , γ' , $f_{\beta}F_{\gamma}\backslash F_{\gamma'} \neq \phi$, and so, since $\varphi = f_{\beta}$ on F_{γ} , $\varphi F_{\gamma}\backslash F_{\gamma'} \neq \phi$, i.e., φ maps F_{γ} onto no member of $\{F_{\gamma}\}$.

2.5. Lemma. Let P be a space in which every open set has cardinal at least M. If $\varphi: P \to P$ is non-trivial, and is either locally topologically into P or continuous onto P, then φ is a displacement of order M.

PROOF. The proof is word for word the proof of [2; Lemma 2], with "N" replaced by "M", and "continuous displacement" replaced by "continuous displacement of order M".

2.6. THEOREM. Let X be a locally compact Hausdorff space of weight m, complete in a uniformity generated by m pseudometrics, such that every open set in X has 2^m points. Let K be the set of all compact subsets of X whose cardinal is 2^m . Then the sets $\{F_\gamma\}$ constructed in Theorem 2.4 are such that no $\{F_\gamma\}$ can be mapped topologically into or continuously onto itself or any other F_{γ} .

PROOF. Each open set in each F_{γ} will have 2^{m} points. By Lemma 2.5 and (1), Theorem 2.4, any non-trivial φ satisfying either condition of the theorem is a continuous displacement of order M. But this contradicts (2), Theorem 2.4.

2.7. Example. Theorem 2.6 enables us to construct many examples of rigid 0-dimensional spaces of arbitrary weight. For instance, let

$$X = \prod_{\alpha \in A} X_{\alpha}$$

where $|A| = \mathbf{m}$, and, for each α , X_{α} is a discrete space of cardinal two. Then X has weight \mathbf{m} , X is compact, and hence complete in any uniformity, so X is complete in a uniformity generated by \mathbf{m} pseudometrics. Further, every open set in X contains $2^{\mathbf{m}}$ points. Now, applying Theorem 2.6, we get a collection of $2^{2^{\mathbf{m}}}$ sets $\{F_{\alpha}\}$, each of weight \mathbf{m} and dimension 0, such that F_{γ} is rigid for each γ , and the F_{γ} are topologically distinct.

2.8. Problem. The rigid spaces constructed in the preceding example are proper dense subsets of a compact space, hence they

are not themselves compact. We have not been able to construct examples of compact, rigid 0-dimensional spaces of arbitrarily high weight; such spaces would be of interest in the study of Boolean rings (see, for example, [2; § 8.1]).

III. Spaces whose Autohomeomorphism Groups are S_{α} or $S_{\alpha} + \Sigma C_{2}$.

If α is finite, the discrete space of cardinal α has S_{α} as its autohomeomorphism group. This is not the case for α infinite, of course. In Example 3.1, however, we produce for each infinite α a space having α isolated points whose autohomeomorphism group is precisely S_{α} . In Example 3.2, we find spaces whose autohomeomorphism group is the direct sum of S_{α} and the sum of continuously many groups of order two; this group is then isomorphic to $S + \Sigma C_2$ if we assume the continuum hypothesis. In this connection one should recall the remark following the proof of Theorem 1.3; it is conceivable that \aleph_1 can be replaced by \mathbf{c} throughout this paper.

In both 3.1 and 3.2, the spaces S_p which play a part in the construction can evidently be chosen to have arbitrarily high weight, hence the same is true for our examples.

- 3.1. Example. Let P be a discrete space of cardinal α , and let βP be its (0-dimensional) Čech-Stone compactification. With each $p \in P$, we associate a 0-dimensional space S_p such that
- (1) for each $p \in P$, S_p is rigid and dense-in-itself, and (2) if p and q are distinct elements of P, then no non-empty open subset of S_p is homeomorphic to an open subset of S_q .

Such a collection $\{S_p\}$ can be constructed by using Example 2.7, as follows: with each $p \in P$, we associate a cardinal α_p such that if $p \neq q$, $2^{\alpha_p} \neq 2^{\alpha_q}$. Taking $\alpha_p = \mathbf{m}$ in 2.1, we obtain a rigid space which we can denote by S_p such that each open subset of S_p contains 2^{α_p} points. The collection $\{S_p\}$, $p \in P$ evidently satisfies (1) and (2).

Now let

$$X = \bigcup_{p \in P} S_p \cup \beta P.$$

We topologize X by prescribing a base for the open sets, consisting of

- (i) the sets $\{p\}$, $p \in P$,
- (ii) the open-and-closed sets in S_p for each $p \in P$,
- (iii) the sets

$$U \cup \bigcup_{p \in U} S_p$$

where U is open-and-closed in P.

The space X so defined is evidently a 0-dimensional completely regular Hausdorff space. The topology on each S_p as a subspace of X is the same as its original topology.

Every mapping of X onto X which permutes a finite number of the (isolated) points of P and leaves all other points of X fixed, is clearly a homeomorphism. These are the only autohomeomorphisms of X. For if an autohomeomorphism φ leaves each $p \in P$ pointwise fixed, then the points of βP are fixed, so

$$\bigcup_{p \in P} S_p$$

must be mapped topologically on itself. But from (1) and (2), this space is rigid, so φ is the identity map. On the other hand, if φ displaces an infinite subset D of P, then φ must move some point of $\beta P \setminus P$ (since the closures of D and $\varphi(D)$ in βP are non-empty and disjoint), hence there is a $p \in P$ such that $S_p \cap \varphi S_p = \phi$. But $\varphi S_p \cap \beta P = \phi$, since no open set in S_p contains an isolated point. It follows that $\varphi S_p \cap S_p$, $\neq \phi$ for some $p \neq p'$, contradicting (2).

3.2. Example. For each α , we construct a space T_{α} such that $A(T_{\alpha})$ is precisely $S_{\alpha} + \Sigma C_2$ (assuming the continuum hypothesis). Let M be a 0-dimensional subset of the real numbers such that A(M) is the direct sum of continuously many groups of order two [2; § 5, Example I], and let X be the space constructed in Example 3.1, so that $A(X) = S_{\alpha}$. Let $T_{\alpha} = X \cup M$. If φ is any autohomeomorphism of T, then $x \in M$ if and only if $\varphi(x) \in M$, since $x \in M$ if and only if the least cardinal of a base at x is \aleph_0 . It follows that $A(T_{\alpha}) = A(X) + A(M) = S_{\alpha} + \Sigma C_2$.

REFERENCES

- L. GILLMAN and M. JERISON
- [1] "Rings of Continuous Functions", New York 1960.
- J. DE GROOT
- [2] Groups represented by homeomorphism groups I, Math. Annalen 138, pp. 80—102 (1959).
- J. DE GROOT
- [8] On the homeomorphism group of a compact Hausdorff space, Amer. Math. Soc. Notices 7 (1960), p. 70, Nr 564—264.
- J. L. KELLEY
- [4] "General Topology", New York 1955.

(Oblatum 10-9-62).