STICHTING MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49 AMSTERDAM

AFDELING TOEGEPASTE WISKUNDE

Technical Note TN 23

A note on the effect of a return surge

bу

H.A. Lauwerier

april 1962

The object of this note is to show the effect of a "return surge" on the elevation of the North Sea by means of a mathematical model. The geometry of the model is determined by the rectangle 0 < x < a, 0 < y < b, where x=0, x=a, y=0 represent coasts and y=b the open end at the ocean. The depth h is given by the exponential function

(1)
$$h = h_0 e^{i\theta y}$$
.

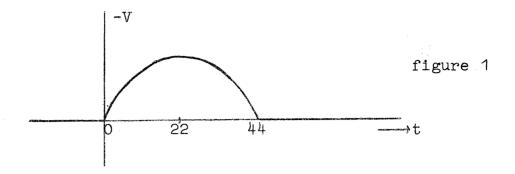
The numerical values are a=400 km, b=800 km, $h_0=33 \text{ m}$, h(b)=158 m.

The hydrodynamical equations are

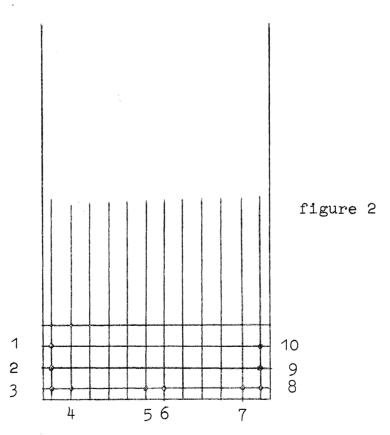
(2)
$$\begin{cases} \left(\frac{\partial}{\partial t} + \lambda\right)u - \Omega v + gh \frac{\partial \hat{J}}{\partial x} = U \\ \left(\frac{\partial}{\partial t} + \lambda\right)v + \Omega u + gh \frac{\partial \hat{J}}{\partial y} = V \\ \frac{\partial \hat{J}}{\partial t} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \end{cases}$$

with the boundary conditions

(3)
$$\begin{cases} u=0 & \text{for } x=0, x=a \\ v=0 & \text{for } y=0 \\ f=0 & \text{for } y=b \end{cases},$$

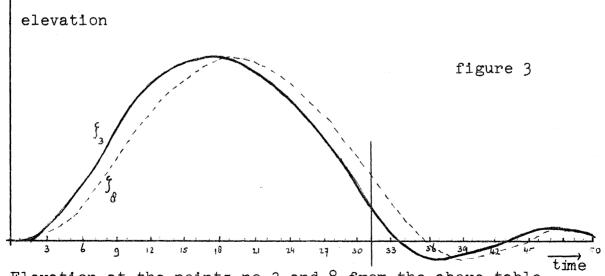

and with the initial condition

(4)
$$u=v=\int_{0}^{\infty} =0$$
 for t=0.


The numerical values of the coefficients of friction and rotation are $\lambda=0.09$ hr⁻¹, $\Omega=0.44$ hr⁻¹. A numerical calculation has been carried out by means of a difference scheme for the particular windfield

(5)
$$\begin{cases} V = \begin{cases} -\sin\frac{\pi ct}{10a} & \text{for } 0 \le t \le \frac{10a}{c} \\ 0 & \text{for } t > \frac{10a}{c} \end{cases}$$

where c denotes the mean velocity of free waves, numerically c=91 km/hr. This windfield represents a uniform "Northern" wind varying sinusoidally with a duration of 44 hr (see fig.1).



Computations have been carried out for a grid with a basic mesh of $\delta=a/24$, i.e. with squares of 16×16 km. The elevations were calculated at all points $x=(2m+1)\delta$, $y=(2n+1)\delta$ with m=0,1,...,11, n=0,1,...,23. The following table gives the elevations at the points indicated by small circles in figure 2 at intervals of 2τ or 3τ where $\tau=\frac{a}{\pi c}=1.4$ hour . The elevations are given in centimeters.

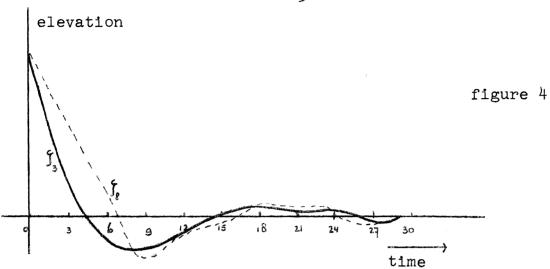
Situation of points nos $1, \ldots, 10$.

point no	1	2	3	4	5	6	7	8	9	10
21	14	19	26	24	22	22	20	19	10	3
4 c	82	92	107	102	79	75	63	61	42	25
6τ	182	200	224	215	172	160	125	121	93	68
9 =	337	367	404	394	353	342	305	301	256	214
12 7	469	510	556	547	509	498	464	463	410	362
15 =	532	577	627	622	605	601	586	587	531	478
18 ट	544	592	642	639	634	632	628	631	578	529
210	499	541	585	586	597	600	611	615	570	528
24 5	418	454	489	493	514	519	537	541	508	477
275	298	322	345	352	385	393	421	425	406	389
30 -	156	168	177	186	225	235	267	271	269	266
33 ²	4	6	5	15	59	71	107	109	117	124
36 T	- 50	- 53	- 57	-52	- 38	- 33	- 15	-14	- 6	1
38 -	-47	-49	- 53	- 51	-52	-53	- 57	-60	- 53	-47
40 T	-31	-34	- 36	- 35	- 36	- 37	-44	-47	-44	-42
42 T	- 7	- 9	-11	-11	- 19	-21	-28	-31	- 28	-27
44 =	8	8	8	8	2	0	-10	- 12	-11	-11
46 -	9	8	8	8	11	11	10	9	9	8
48 7	12	12	12	12	11	11	13	12	13	14
50°	7	8	9	9	11	12	11	11	11	12

Elevation at the points no 3 and 8 from the above table

Similar calculations have been carried out for the windfield

(6)
$$\begin{cases} U = 0 \\ V = \begin{cases} -1 & \text{for } t < 0 \\ 0 & \text{for } t > 0 \end{cases}.$$


This windfield represents a uniform and constant "Northern" wind which stops suddenly at t=0.

At that time the sea is in its equilibrium position

(7)
$$u=v=0$$
, $gh_0 f = \frac{e^{-\beta y}-e^{-\beta b}}{\beta}$.

The following table shows that the subsequent motion has the appearance of a strongly damped oscillation.

point no time	1	2	3	4	5	6	7	8	9	10
0	510	555	603	603	603	603	603	603	556	511
3 T	167	184	192	210	312	339	383	387	391	396
6 T	-44	-47	-52	-45	16	45	142	150	165	178
9T	-112	-112	-113	-107	-84	-82	- 105	-120	-108	- 94
12 τ	- 63	-80	- 90	- 89	-108	- 113	- 99	- 95	- 83	-72
15 🕏	- 8	- 5	- 1	5	9	1	-26	-30	-40	- 45
18 t	30	27	29	23	4	1	14	16	17	22
217	9	11	12	14	23	22	21	21	21	20
24 c	11	15	17	17	15	18	19	19	22	24
27 T	- 14	-10	- 5	- 4	1	- 1	-13	- 14	-12	- 8
30 -	- 3	- 1	1	1	- 1	0	9	10	8	7
	1		Š	1				1	l	

Elevation at the points 3 and 8 from the above table.

These two cases indicate that any disturbance of the elevation is damped out very rapidly.

Considering figure 3 first, we see that after the wind has stopped the elevation has a negative extremum which is about 10% of the previous maximum.

If all signs are inverted we obtain the following conclusion.

A uniform sinusoidal "Southern" wind of the type (5) brings about a low water followed by a high water (return surge) the intensity of which is of the order of 10% of the previous low tide.

Considering next figure 4 we arrive at a similar conclusion:

If a uniform and constant "Southern" wind blows sufficiently long as to bring the sea in its equilibrium position and then suddenly stops, then after an interval of 12 to 15 hours a return surge develops, the intensity of which is of the order of 20% of the previous minimum.

Finally an illustrative numerical example will be given. For a uniform "Southern" wind of the type (5) with a maximum of 30 m/sec a return surge of about 0.33 m. is obtained after an initial low water of about -3.40 m. For a uniform and constant "Southern" wind of 30 m/sec a return surge of about

0.60 m. is obtained after an initial low water of about -3.20 m.

References

- Van Dantzig D and H.A. Lauwerier, General considerations concerning the hydrodynamical problem of the motion of the North Sea. The North Sea Problem I. Proc.Kon.Ned.Ak.v.Wetensch. A 63, 170-180 (1960).
- Lauwerier H.A., Influence of a stationary windfield upon a bay with an exponentially increasing depth.

 The North Sea Problem III, Proc.Kon.Ned.Ak.v.
 Wetensch. A 63, 279-290 (1960).
- Lauwerier H.A., Non-stationary wind-effects in a rectangular bay. Numerical Part. The North Sea Problem VII. Proc.Kon.Ned.Ak.v.Wetensch. A 64, 418-431 (1961).