STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49

2e BOERHAAVESTRAAT 49
AMSTERDAM

ZW 1953 - 001

On Mersenne numbers and Poulet numbers

H.J.A. Duparc

1953

On Mersenne numbers and Poulet numbers

H.J.A. Duparc.

Definition. A Mersenne number is a number $m = 2^{p} - 1$, where p is prime. Definition. A Mersenne prime is a number $m = 2^{p} - 1$, which is prime.

Obviously every Mersenne prime is a Mersenne number.

Definition. A Poulet number (or pseudo prime) is a composite number m which satisfies $2^{m-1} \equiv 1 \pmod{m}$.

Definition. A super-Poulet number is a composite number all divisors of which are either prime or Poulet numbers.

Obviously every non prime divisor of a super-Poulet number is a super-Poulet number.

Theorem 1. Every Mersenne number is either a Poulet number or a prime. Proof. Let $m = 2^{p}$ 1 be a composite Mersenne number. Since p is prime we have

$$p | 2^{p-1} - 1 | 2^p - 2 = m - 1,$$

hence

$$m = 2^{p} - 1 | 2^{m-1} - 1.$$

Theorem 2. Every composite Mersenne number is a super-Poulet number. Proof. Let $m = 2^{\frac{r}{l}} - 1$ be a composite Mersenne number and let m_1 be an arbitrary divisor of m. We prove $2^{m_1-1} \equiv 1 \pmod{m_1}$.

We now prove this last relation by induction. We found in theorem 1 that $2^{m-1} \equiv 1 \pmod{m}$ and may assume this property proved for every divisor r of m with $n > m_1$, i.e. $2^{n-1} \equiv 1 \pmod{n}$. Now let m_2 be a divisor of m such that $\frac{m_2}{m_1} = q$ is prime. Since $q \mid m = 2^p - 1$, and since $p \mid p \mid m = 2^p - 1$, hence $p \mid m = 2^p - 1$, hence

hence $2^{m_1-1} \equiv 1 \pmod{m_1}$, which proves the theorem.

Theorem 3. If m is prime or pseudo prime, then $M = 2^m - 1$ is prime or pseudo prime.

Proof. From $2^{m-1} \equiv 1 \pmod{m}$ it follows

$$M = 2^{m}-1 \mid 2^{2^{m}-1}-1-1 \mid 2^{2^{m}-2}-1 = 2^{M-1}-1,$$

which proves the assertion.

Corollary. From this theorem it follows for primes m that every Mersenne number $M = 2^{m} - 1$ is either prime or pseudo prime.

Further it is not true that if m is a super-Poulet number also $\mathbb{M}=2^m-1$ is a super-Poulet number. If we take $m=2^{11}-1=2047=23.89$, then from theorem 2 it follows that m is a super-Poulet number. However $\mathbb{M}=2^{2047}-1$ is not a super-Poulet number for consider the number $d=47(2^{89}-1)$, then $d(2^{23}-1)(2^{89}-1)$, so d divides \mathbb{M} , but $d(2^{39}-1)$, since $2^{89}-1 \neq 247(2^{89}-1)-1-1$, for

$$47(2^{89}-1)-1 = 46 \not\equiv 0 \pmod{89}$$
.

We now prove the following

Theorem 4. Consider the sequence

$$m_h = 2^{m_{h-1}} - 1$$
 $(h = 1, 2, ...),$

where m_0 is prime. Then two cases are possible:

- 1°. There exists a positive integer k such that m_{k-1} is prime, m_k is no prime. Then all m_h with $0 \le h \le k-1$ are prime and all m_h with $h \ge k$ are pseudo prime.
- 2° . No such integer k can be found. Then all elements of the sequence are prime.
- <u>Proof.</u> 1°. Suppose that for a positive integer k we have \mathbf{m}_{k-1} prime, \mathbf{m}_k not prime. Then obviously \mathbf{m}_h is prime if $0 \le h \le k-1$. Since \mathbf{m}_k is not prime, by theorem 2 the number \mathbf{m}_k is a pseudo prime and by theorem 3 all \mathbf{m}_h with $h \ge k$ are prime or pseudo prime. Since \mathbf{m}_k is composite obviously all \mathbf{m}_h with $h \ge k$ are composite, hence all \mathbf{m}_h with $h \ge k$ are pseudo primes.
- 2° . If no integer k can be found for which m_k is composite, all elemen of the sequence are prime.

Remark. I do not know whether a prime m_0 can be found for which case 2^0 holds.

The case 1° occurs for instance for $m_{\circ} = 11$; then k = 1, for $2^{11}-1 = 23.89$ is composite. Hence by the theorem 4 we find Theorem 5. There are infinitely many Poulet numbers.

Finally by the remark to theorem 3 we see that if m_h is a super-Poulet number, the number m_{h+1} is not necessarily so, for if $m_0=11$, then m_1 is a super-Poulet number, but m_2 is not.