STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

ZW 1962 - 008

Note on a parametric representation of cyclic polynomials

W. Kuyk

STICHTING MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49 AMSTERDAM

AFDELING ZUIVERE WISKUNDE

Note on a parametric representation of cyclic polynomials

by W. Kuyk

1. Let n be a positive integer; let k be an arbitrary field containing the n-th roots of unity; suppose that the characteristic of k does not divide n. Let $X \left\{ X_1, \ldots, X_n \right\}$ be a set of n algebraically independent elements over k and let C_n denote the cyclic permutation group of X generated by the cycle (X_1, \ldots, X_n) . Let k_C denote the subfield of k(X) that is pointwise fixed under the permutations in C_n . It is known that k_C is purely transcendental over k. In fact, Masuda [1] proves that the set U

$$U : \{ U_i = Y_1 Y_i / Y_{i+1} ; i=1,...,n \}$$

with $Y_i = \sum_{j=1}^n \zeta^{-ij} X_j$

and f a primitive n-th root of unity, forms a pure basis of $k_{\rm C}/k$.

Now, let Y denote the set $\{Y_1,\ldots,Y_n\}$, then we find, using the relations $X_j=n$. $\sum_{i=1}^n j_i y_i$ $(j=1,\ldots,n)$, that k(Y) is identical with k(X), so that Y is an algebraically independent set over k as well. Form the polynomial

$$(X-X_1)...(X-X_n) = X^n + a_1(U_1,...,U_n)X^{n-1} + ... + a_n(U_1,...,U_n), \qquad (1)$$

whose coefficients belong to $k_C = k(U)$. This polynomial can be regarded as a parametric representation of polynomials with Galois group C_n over k in the sense of E. Noether $\begin{bmatrix} 2 \end{bmatrix}$. More precisely stated, (1)

has the following two properties

<u>a</u> substitution of U_i by arbitrary elements $k_i \in k$, transforms (1) into a polynomial in k[X] with Galois group (a subgroup of) C_n .

b If k is infinite and if K/k is an algebraic field extension with Galois group $C \cong C_n$, then there exist infinitely many n-tuples (k_1, \ldots, k_n) $(k_i \in k)$ such that substitution of U_i by k_i transforms (1) into a generating polynomial of K/k.

Remark. The propositions a and b can be derived from some general theorems that I have not yet published, but can also be found directly by writing the X_i as sums of radicals and applying the Kummergeneration of K/k.

The purpose of this report is firstly to show that (1) is already a polynomial in k'(U)[X], where k' is the prime field in k, and secondly to compute the Galois group of (1) with respect to k'(U).

2. As k denotes an arbitrary field containing the n-th roots of unity, the coefficients of (1) must lie in $k'(\zeta)(U)$; so, without loss of generality we may suppose in the following that k is equal to $k'(\zeta)$.

Theorem 1. The parametric representation (1) is a polynomial in $k'(U) \lceil X \rceil$.

Proof. If $\int \varepsilon k'$ then there is nothing to prove. We suppose that $\lfloor k'(\zeta) : k \rfloor > 1$, or that there exist at least one substitution $\int \to \int^{\nu}$, $(\nu,n)=1$, determining an automorphism ε of k/k'. Let H be the Galois group of k/k'. Consider the algebraic field extensions $k'(U) \subset k'(Y) \subset k(X)$. As k'(Y) is purely transcendental over k', and as $k'(Y)(\int) = k(X)$, the Galois group of k(X)/k'(Y) is equal to H. From this it follows that $\varepsilon X_j = X_j$ ($\overline{\nu j} \equiv \nu j \pmod{n}$). Every $\varepsilon \in H$ determines uniquely a permutation of X (leaving X_n invariant), and we easily see that the product of two automorphisms ε and ε in H determines a permutation of X that is the product of the permutations corresponding to ε and ε . In this way H induces a permutation group H_n of the set X that is isomorphic to H, and the automorphisms of k(X)/k'(Y) can be obtained by permuting the set X according to H_n . So X_1, \dots, X_n are the zero of a polynomial with coefficients in k'(Y). This means that the elementary symmetric polynomials

 $s_i = (-1)^i a_i(U_1, ..., U_n)$ (i=1,...,n) in $X_1, ..., X_n$ lie in k'(Y).

The s_i lie also in k(U), so that a_i, s_i \in k'(Y) \cap k(U). But k'(U) \cap k(U) = k'(U) because of the fact that k'(Y) \cap k'(U) = k'(U) and \cap k'(Y). It is obvious that k(X) is equal to k'(Y)(X).

Theorem 2. The Galois group G of the polynomial (1) with respect to k'(U), i.e. the Galois group of the field extension k'(U)(X)/k'(U), is the non-abelian permutation group on X, obtained by taking all the products of the permutations in H_n and C_n . C_n is a normal divisor in G_n , the factor group G/C_m being isomorphic to H.

Proof. As H_n and C_n yield automorphisms of k(X)/k'(Y) and k(X)/k(U) respectively, the products $\mathfrak{GR}(\mathfrak{GE}_n, \pi \mathfrak{E} C_n)$ represent automorphisms of k(X)/k'(U). These \mathfrak{GR} are all different, for

$$\sigma_1 \pi_1 = \sigma_2 \pi_2$$

with σ_1 , $\sigma_2 \in H_n$, π_1 , $\pi_2 \in C_n$, $\sigma_1 \neq \sigma_2$, $\pi_1 \neq \pi_2$, implies $\sigma_2^{-1} \sigma_1 = \pi_2 \pi_1^{-1}$, and this means that H_n and C_n would have an element \neq e in common. This is however impossible, as every $\pi \in C_n$ moves X_n and every $\sigma \in H_n$ leaves X_n invariant.

As $[k(X):k'(U)] = [k(X):k(U)] \cdot [k(U):k'(U)] = \text{order of } C_n$ order of H_n , the set of products $\{\sigma\pi:\sigma\epsilon H_n, \pi\epsilon C_n\}$ forms just all the automorphisms of k(X)/k'(U), and is equal to the group G. As k(X) is normal with respect to k'(X), C_n is a normal divisor in G, with factor group isomorphic to H.

As H_n is not transitive over X, the group G is non-abelian.

- [1] K. Masuda, On a problem of Chevalley, Nagoya Math. Journal, 1955,8.
- [2] E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. Bd.78.