stichting mathematisch centrum

AFDELING ZUIVERE WISKUNDE (DEPARTMENT OF PURE MATHEMATICS)

ZW 115/78

OKTOBER

M. VOORHOEVE

A GENERALIZATION OF DESCARTES' RULE

Preprint

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.0).

A generalization of Descartes' rule*)

bу

M. Voorhoeve

ABSTRACT

Let f(z) be an exponential sum

$$f(z) = \sum_{k=1}^{m} c_k \exp(\alpha_k z), \quad z \in C,$$

where $\alpha_k \in \mathbb{R}$, $c_k \in \mathbb{C}$ (k = 1,...,m). We give upper bounds for the number of zeros of f in horizontal strips in the complex plane. By limit transition, these results are extended to exponential integrals

$$f(z) = \int_{0}^{1} e^{zt} g(t) \mu(dt),$$

where g is a continuous complex-valued function and μ a positive measure on [0,1].

KEY WORDS & PHRASES: Descartes' rule, zeros of functions, exponential polynomials, Laplace transform.

^{*)} This report will be submitted for publication elsewhere.

1. INTRODUCTION

Let f(z) be an exponential sum of the form

(1)
$$f(z) = \sum_{k=1}^{m} c_k \exp(\alpha_k z), \quad z \in \mathbb{C},$$

where c_k , $\alpha_k \in \mathbb{R}$ $(k=1,\ldots,m)$. We assume this sum to be ordered in such a way that $\alpha_1 < \alpha_2 < \ldots < \alpha_n$ and $c_k \neq 0$ $(k=1,\ldots,m)$. Descarte's rule states that the number $N_{\mathbb{R}}(f)$ of zeros of f on the real axis does not exceed the number of sign changes in the sequence $\{c_1,c_2,\ldots,c_m\}$ (see POLYA and SZEGÖ [1], chapter 5, problem 77). In this paper we present a generalization of this rule for complex c_1,\ldots,c_m . We prove

(2)
$$N_{\mathbb{R}}(f) \leq \frac{1}{\pi} \left[\sum_{k=1}^{m-1} \left| \operatorname{Arg}(c_{k+1}/c_k) \right| \right],$$

where $Arg(\zeta) \in (-\pi,\pi]$ is the principal value of the argument of ζ .

We further use this result to derive an estimate for the imaginary parts of the complex zeros of f. We prove for instance that the number $N_{\underline{E}}(f)$ of zeros of f in the strip

$$E = \{z \in C; 0 < Im z < r\}$$

satisfies

(3)
$$\pi N_{E}(f) \leq \sum_{k=1}^{m-1} |Arg(c_{k+1}/c_{k})| + r(\alpha_{m}-\alpha_{1}).$$

By limit transition, analogues of (2) and (3) are given for functions of the form

(4)
$$f(z) = \int_{0}^{1} e^{zt} g(t) \mu(dt),$$

where g(t) is a continuous complex-valued function and μ a positive measure on [0,1], such that f(z) is not identically vanishing. By a simple transformation one can obtain corresponding results for

$$f(z) = \int_{a}^{b} e^{zt} \mu(dt)$$

where $(a,b) \subset \mathbb{R}$ and μ is a complex measure.

The method by which the above results are derived has been developed by the author in [2]. The method is explained in section 2; results from [2] are briefly sketched and some new ideas are inserted. In section 3 we apply this method to exponential sums (1). Finally, in section 4 we treat the exponential integral (4).

2. TOTAL VARIATION OF THE ARGUMENT OF A FUNCTION

Let f(z) be an analytic complex-valued function in an open neighbour-hood 0 of the interval $L = [a,b] \subset \mathbb{R}$. On L, Im(f'/f) is the restriction of an analytic function (see [2], Lemma 1). If $f(a)f(b) \neq 0$ we define

(5)
$$A(a,b;f) = \int_{a}^{b} |Im(f'(t)/f(t))| dt + \pi N_{L}(f),$$

where $N_L(f)$ is the number of zeros of f in L. Here and everywhere else in this paper multiple zeros are counted according to their multiplicities. If arg f(t), the argument of f, is suitably defined, A(a,b;f) appears to be the total variation of arg f(t). Since f is analytic in θ , there is a $\theta > 0$ such that for $0 < \epsilon < \theta$ the functions

$$f_{\epsilon}(x) := f(x+i\epsilon)$$

are analytic on L. The following properties of A(a,b;f) hold.

LEMMA 1. If $f(a)f(b) \neq 0$ then

$$\lim_{\varepsilon \to 0} A(a,b;f_{\varepsilon}) = A(a,b;f).$$

PROOF. See [2], Lemma 2.

<u>LEMMA 2</u>. Let $f_1(z), f_2(z), \ldots$ be a sequence of complex-valued functions, analytic and uniformly converging to f(z) in 0. If $f(a)f(b) \neq 0$, then

$$\lim_{k\to\infty} A(a,b;f_k) = A(a,b;f).$$

<u>PROOF.</u> Let K be a compact subset of θ , containing an open neighbourhood θ ' of [a,b]. Since f(z) is analytic in θ , the number of zeros of f in K is finite. Hence there is a $\theta > 0$ such that for $0 < \varepsilon < \theta$ the functions $f_{\varepsilon}(x)$ have no zeros on [a,b]. For $0 < \varepsilon < \theta$ the functions $f'_{k}(x+i\varepsilon)$ converge to $f'_{\varepsilon}(x)$ and, since $f_{\varepsilon}(x) \neq 0$, the functions $1/f_{k}(x+i\varepsilon)$ converge to $1/f_{\varepsilon}(x)$ uniformly on [a,b]. Thus for $0 < \varepsilon < \theta$

$$\lim_{k\to\infty} A(a,b;f_k(x+i\epsilon)) = A(a,b;f_{\epsilon}).$$

By letting $\varepsilon \downarrow 0$ and applying Lemma 1, the lemma is proved.

LEMMA 3. Let f, g be analytic in 0. If $f(a)f(b)g(a)g(b) \neq 0$, then

$$A(a,b;fg) \leq A(a,b;f) + A(a,b;g)$$
.

PROOF. Straightforward (see [2], Lemma 3).

For complex $z \neq 0$, we define Arg(z), the principal value of the argument of z, in such a way that $-\pi < Arg \ z \leq \pi$. Observe that the function |Arg(z)| is continuous for all $z \in \mathbb{C}$, $z \neq 0$. We now prove our main theorem.

THEOREM 1. Let f be analytic in 0. If $f(a)f'(a)f(b)f'(b) \neq 0$, then

$$A(a,b;f) \leq A(a,b;f') + \psi(a) - \psi(b)$$

where

(6)
$$\psi(x) = \left| Arg(f'(x)/f(x)) \right|.$$

<u>PROOF.</u> See [2], Theorem 1, but omit the estimate $\psi(b) - \psi(a) \ge -\pi$. The only new element needed is the observation that

$$\lim_{\varepsilon \to 0} \psi(a+i\varepsilon) = \psi(a); \qquad \lim_{\varepsilon \to 0} \psi(b+i\varepsilon) = \psi(b),$$

which follows from $f(a)f(b)f'(a)f'(b) \neq 0$.

3. EXPONENTIAL SUMS

In this section we consider functions

(7)
$$f(z) = \sum_{k=1}^{m} c_k \exp(\alpha_k z),$$

where $\alpha_k \in \mathbb{R}$, $0 \neq c_k \in \mathbb{C}$ (k = 1,...,m). Without loss of generality we will assume in this section that $\alpha_1 < \alpha_2 < \ldots < \alpha_m$. We prove the following result.

THEOREM 2. Let f(z) be given by (7). For all $a,b \in \mathbb{R}$ such that $f(a)f(b) \neq 0$

$$A(a,b;f) \leq \sum_{k=1}^{m-1} |Arg(c_{k+1}/c_k)|.$$

<u>PROOF.</u> The theorem is proved by induction on m. If m = 1 the theorem is trivial, since $A(a,b;c_1 \exp(\alpha_1 x)) = 0$. Suppose that m > 1. By lemma 3, $A(a,b;f(x) \exp(-\alpha_1 x)) = A(a,b;f(x))$. We may thus assume without loss of generality that $\alpha_1 = 0$. Now we can choose arbitrarily large numbers $t \in \mathbb{R}$ such that $f(t)f'(t)f(-t)f'(-t) \neq 0$. By Theorem 1 we have

(8)
$$A(a,b;f) \leq \lim_{t\to\infty} A(-t,t;f) \leq \lim_{t\to\infty} (A(-t,t;f')+\psi(-t)+\psi(t)).$$

Here $\psi(x) = |Arg(f'(x)/f(x)|$, according to (6). Since $\alpha_1 = 0$,

$$f'(x) = \sum_{k=2}^{m} c_k \alpha_k \exp(\alpha_k z)$$
.

Hence

$$\lim_{t\to\infty} \psi(t) = \lim_{t\to\infty} \left| \operatorname{Arg} \left(\frac{c_m \alpha_m}{c_m e^{\alpha_m t}} (1 + \theta_1(t)) \right) \right|$$

where $\theta_1(t)$ and $\theta_2(t)$ tend to zero if $t \to \infty$. So $\lim_{t \to \infty} \psi(t) = 0$. Similarly

$$\lim_{t\to\infty} \psi(-t) = \lim_{t\to\infty} \left| \operatorname{Arg} \left(\frac{c_2^{\alpha_2} e^{-\alpha_2 t}}{c_1^{(1+\theta_4(t))}} \right) \right| = \left| \operatorname{Arg} (c_2/c_1) \right|.$$

So (8) becomes

(9)
$$A(a,b;f) \leq \lim_{t\to\infty} A(-t,t;f') + \left| Arg(c_2/c_1) \right|.$$

By the induction hypothesis we have

(10)
$$A(-t,t;f') \leq \sum_{k=2}^{m-1} |Arg(\alpha_{k+1}^{c} c_{k+1}^{c} / \alpha_{k}^{c} c_{k}^{c})| = \sum_{k=2}^{m-1} |Arg(c_{k+1}^{c} / c_{k}^{c})|,$$

since the exponential sum f' has only m-1 terms. On inserting (10) in (9)

the desired result is obtained.

Since π N_{IR}(f) $\leq \lim_{t\to\infty}$ A(-t,t;f), Theorem 2 yields (2). This shows that Theorem 2 is a pure generalization of Descartes' rule. The next result combines Theorem 2 with a method of WILDER [3].

THEOREM 3. Let f(z) be given by (7). The number $N_{\underline{F}}(f)$ of zeros of f in the strip

$$E = \{z \in C; r \leq Im z \leq s\}$$

satisfies

$$|2\pi N_{E}(f) - (s-r)(\alpha_{m} - \alpha_{1})| \leq \sum_{k=1}^{m-1} \left| \left(\frac{c_{k+1} \exp(ir\alpha_{k+1})}{c_{k} \exp(ir\alpha_{k})} \right) \right| + \left| Arg\left(\frac{c_{k+1} \exp(is\alpha_{k+1})}{c_{k} \exp(is\alpha_{k})} \right) \right|.$$

PROOF. Choose a number ϵ with 0 < ϵ < 1. There is a T > 0 such that

$$f(x+iy) = c_{m} \exp(\alpha_{m}(x+iy))(1+\theta_{1}(x,y))$$

$$f(-x+iy) = c_{1} \exp(\alpha_{1}(-x+iy))(1+\theta_{2}(x,y))$$

$$f'(x+iy) = c_{m}\alpha_{m} \exp(\alpha_{m}(x+iy))(1+\theta_{3}(x,y))$$

$$f'(-x+iy) = c_{1}\alpha_{1} \exp(\alpha_{1}(-x+iy))(1+\theta_{4}(x,y)),$$

where $|\theta_i(x,y)| < \epsilon$ for $r \le y \le s$ and $x \ge T$ (i = 1,...,4). Since $\epsilon < 1$, we find by Rouché's theorem that all zeros of f in E lie in the smaller set

$$E_1 = \{z \in \mathbb{C}; r \leq \text{Im } z \leq s, |\text{Re } z| \leq T\}.$$

Denote by δE_1 the (positively oriented) boundary of E_1 . Under the assumption that there are no zeros of f on the boundary of E and thus on δE_1 , we have

$$2\pi N_{E}(f) = 2\pi N_{E_{1}}(f) = -i \int_{\delta E_{1}} \left(\frac{f'(z)}{f(z)}\right) dz = Im \left(\int_{\delta E_{1}} \frac{f'(z)}{f(z)} dz\right) =$$

$$= Im \int_{-T}^{T} \left(\frac{f'(x+ir)}{f(x+ir)} - \frac{f'(x+is)}{f(x+is)}\right) dx + Re \left(\int_{r}^{s} \left(\frac{f'(T+iy)}{f(T+iy)} - \frac{f'(-T+iy)}{f(-T+iy)}\right) dy\right).$$

By (12)

$$\operatorname{Re}\left(\int_{\mathbf{r}}^{\mathbf{s}} \frac{\mathbf{f'}(\mathbf{T} + i\mathbf{y})}{\mathbf{f}(\mathbf{T} + i\mathbf{y})} d\mathbf{y}\right) = \operatorname{Re}\left(\int_{\mathbf{r}}^{\mathbf{s}} \alpha_{\mathbf{m}} \left(\frac{1 + \theta_{1}(\mathbf{T}, \mathbf{y})}{1 + \theta_{2}(\mathbf{T}, \mathbf{y})}\right) d\mathbf{y}\right) = (\mathbf{s} - \mathbf{r})\alpha_{\mathbf{m}}(1 + \theta_{5}),$$

where $|\theta_5| \le \frac{1+\epsilon}{1-\epsilon} - 1 = \frac{2\epsilon}{1-\epsilon}$. Similarly

$$\operatorname{Re}\left(\int_{r}^{s} \frac{f'(-T+iy)}{f(-T+iy)} dy\right) = (s-r)\alpha_{1}(1+\theta_{6}),$$

where $|\theta_6| \le 2\varepsilon/(1-\varepsilon)$. So we find after some simple estimations

(13)
$$|2\pi N_{E}(f)-(s-r)(\alpha_{m}-\alpha_{1})| \leq A(-T,T;f(x+ir))+A(-T,T;f(x+is))+\theta_{7},$$

where $|\theta_7| \le 4\epsilon/(1-\epsilon)$. Now

$$f(x+ir) = \sum_{k=1}^{m} c_k \exp(ir\alpha_k) \exp(\alpha_k x)$$

$$f(x+is) = \sum_{k=1}^{m} c_k \exp(is\alpha_k) \exp(\alpha_k x)$$

and a straigthforward application of Theorem 2 transforms (13) into

$$|2\pi N_{E}(f) - (s-r)(\alpha_{m} - \alpha_{1})| \leq$$

$$\leq \sum_{k=1}^{m-1} \left| Arg\left(\frac{c_{k+1} exp(ir\alpha_{k+1})}{c_{k+1} exp(ir\alpha_{k+1})}\right) \right| + \sum_{k=1}^{m-1} \left| Arg\left(\frac{c_{k+1} exp(is\alpha_{k+1})}{c_{k+1} exp(is\alpha_{k+1})}\right) \right| + \theta_{7}.$$

Letting $\epsilon \downarrow 0$ the theorem is proved under the assumption that no zeros of f lie on the boundary of E. We now drop this assumption. There is a t > 0 such that for 0 < ρ < t the strips

$$E(\rho) := \{z \in \mathbb{C}; r-\rho \leq Im \ z \leq s+\rho\}$$

have no zeros on their boundaries. We thus find that $N_E(f) = N_{E(\rho)}(f)$ for $0 < \rho < t$, whereas

$$\begin{split} & \left| 2\pi N_{E(\rho)}(f) - (s-r+2\rho)(\alpha_m^{-\alpha} \alpha_1) \right| \leq \\ & \leq \left| \sum_{k=1}^{m-1} \left| \text{Arg} \left(\frac{c_{k+1}^{-1} \exp(i(r-\rho)\alpha_{k+1})}{c_k^{-1} \exp(i(r-\rho)\alpha_k)} \right) \right| + \left| \text{Arg} \left(\frac{c_{k+1}^{-1} \exp(i(s+\rho)\alpha_{k+1})}{c_k^{-1} \exp(i(s+\rho)\alpha_k)} \right) \right|. \end{split}$$

By letting $\rho \downarrow 0$ and observing that in the above inequality both terms are continuous functions of ρ the theorem is proved completely.

The following lemma is useful for the evaluation of (11).

LEMMA 4. For complex $y,z \neq 0$ we have

$$|\operatorname{Arg}(yz)| \le |\operatorname{Arg}(y)| + |\operatorname{Arg}(z)| \le 2\pi - |\operatorname{Arg}(y/z)|.$$

PROOF. Since $Arg(\zeta) \in (-\pi,\pi]$, we have either

$$Arg(yz) = Arg(y) + Arg(z)$$

or

$$|Arg(y) + Arg(z)| > \pi$$
.

In both cases we trivially have

$$|Arg(yz)| \le |Arg(y)| + |Arg(z)|$$
.

The following relations are easily checked

$$|Arg(-\zeta)| = \pi - |Arg(\zeta)|; |Arg(1/\zeta)| = |Arg(\zeta)|.$$

Hence

$$|Arg(y)| + |Arg(z)| = 2\pi - (|Arg(-y)| + |Arg(-1/z)|) \le 2\pi - |Arg(y/z)|$$
.

From Theorem 3 we now derive

COROLLARY 1. Let f and E be as in Theorem 3. If r < 0 < s, then

$$\pi N_{E}(f) \leq \sum_{k=1}^{m} |Arg(c_{k+1}/c_{k})| + (s-r)(\alpha_{m}-\alpha_{1}).$$

PROOF. We have by Lemma 4

$$\begin{split} &\left|\operatorname{Arg}\!\left(\frac{c_{k+1} \exp\left(\operatorname{ir}\alpha_{k+1}\right)}{c_{k} \exp\left(\operatorname{ir}\alpha_{k}\right)}\right)\right| \leq \left|\operatorname{Arg}\!\left(\frac{c_{k+1}}{c_{k}}\right)\right| + \left|\operatorname{Arg}\!\left(\exp\left(\operatorname{ir}\left(\alpha_{k+1} - \alpha_{k}\right)\right)\right)\right| \leq \\ &\leq \left|\operatorname{Arg}\!\left(\frac{c_{k+1}}{c_{k}}\right)\right| + \left|r\right|\left(\alpha_{k+1} - \alpha_{k}\right) = \left|\operatorname{Arg}\!\left(\frac{c_{k+1}}{c_{k}}\right)\right| - r\left(\alpha_{k+1} - \alpha_{k}\right). \end{split}$$

By inserting these and similar estimates in (11) the corollary follows.

COROLLARY 2. Let f, E be as in Theorem 3. Then

$$|2\pi N_{E}(f)-(s-r)(\alpha_{m}-\alpha_{1})| \leq 2\pi(m-1)-\sum_{k=1}^{m-1} |Arg(exp(i(s-r)(\alpha_{k+1}-\alpha_{k})))|$$
.

PROOF. By Lemma 4

$$\left| \operatorname{Arg} \left(\frac{c_{k+1} \exp(ir\alpha_{k+1})}{c_k \exp(ir\alpha_k)} \right) \right| + \left| \operatorname{Arg} \left(\frac{c_{k+1} \exp(is\alpha_{k+1})}{c_k \exp(is\alpha_k)} \right) \right| \le 2\pi - \left| \operatorname{Arg} \left(\exp(i(s-r)(\alpha_{k+1} - \alpha_k)) \right) \right|$$

giving the desired inequality by insertion in (11).

COROLLARY 3. Let f, E be as in Theorem 3. If $(s-r)(\alpha_{k+1}-\alpha_k) < \pi$ for $k=1,\ldots,m-1$, then

$$N_{E}(f) \leq m-1$$
.

<u>PROOF</u>. By Corollary 2 and the fact that $Arg(exp(i(s-r)(\alpha_{k+1}-\alpha_k))) = (s-r)(\alpha_{k+1}-\alpha_k)$ we find

$$|2\pi N_{E}(f)-(s-r)(\alpha_{m}-\alpha_{1})| \leq 2\pi (m-1)-\sum_{k=1}^{m-1}(s-r)(\alpha_{k+1}-\alpha_{k}).$$

Hence,

$$2 N_{E}(f)-(s-r)(\alpha_{m}-\alpha_{1}) \le 2\pi(m-1)-(s-r)(\alpha_{m}-\alpha_{1}).$$

4. EXPONENTIAL INTEGRALS

Let g be a not identically vanishing continuous complex function on the interval I=[0,1] and let μ be a positive measure on I. We consider not identically vanishing functions of the form

(15)
$$f(z) = \int_{0}^{1} e^{zt} g'(t) \mu(dt).$$

Let $P = \{x_0, x_1, \dots, x_n\}$ with $0 = x_0 < x_1 < \dots < x_n = 1$ be a partition of I and put $I_k := [x_{k-1}, x_k)$ for $k = 1, \dots, n-1$; $I_n := [x_{n-1}, x_n]$. We now construct the exponential sums

(16)
$$F_{p}(z) = \sum_{k=1}^{n} e^{x_{k}z} g(x_{k})\mu(I_{k})$$

and observe that

$$\begin{split} \left| \mathbf{F}_{\mathbf{P}}(\mathbf{z}) - \mathbf{f}(\mathbf{z}) \right| &= \left| \sum_{k=1}^{n} \int_{\mathbf{I}_{k}} (e^{\mathbf{x}_{k}^{\mathbf{Z}}} \mathbf{g}(\mathbf{x}_{k}) - e^{\mathbf{t}\mathbf{z}} \mathbf{g}(\mathbf{t})) \mu(\mathbf{d}\mathbf{t}) \right| \leq \\ &\leq \mu(\mathbf{I}) \max_{k=1,\dots,n} \max_{\mathbf{t} \in \mathbf{I}_{k}} \left| e^{\mathbf{x}_{k}^{\mathbf{Z}}} \mathbf{g}(\mathbf{x}_{k}) - e^{\mathbf{t}\mathbf{z}} \mathbf{g}(\mathbf{t}) \right|. \end{split}$$

Since g(t)e^{zt} is uniformly continuous on I, the following lemma is immediately proved by letting $\max_k |x_k^{-x}_{k-1}| \to 0$.

<u>LEMMA 5</u>. Let $D \subset \mathbb{C}$ be bounded. Then there is a sequence P_1, P_2, \ldots of partitions of I such that $\lim_{k \to \infty} (F_{p_k}(z)) = f(z)$ uniformly for $z \in D$.

We thus have by Lemma 2 that if $(a,b) \subset \mathbb{R}$ such that $f(a)f(b) \neq 0$

$$A(a,b;f) \leq \sup_{P} A(a,b;F_{P}).$$

Let the sequence y_1, \ldots, y_m be derived from x_1, \ldots, x_n by deleting those x_k for which $g(x_k)\mu(I_k) = 0$. Then by Theorem 2 if P is chosen such that $\{y_1, \ldots, y_m\} \neq \emptyset$,

$$A(a,b;F_{p}) \leq \sum_{k=1}^{m-1} |Arg(g(y_{k+1})/g(y_{k}))|.$$

Now define

$$A^*(g) = \sup_{P} \sum_{k=1}^{m-1} |Arg(g(y_{k+1})/g(y_k))|,$$

the supremum being taken over all partitions P. If arg(g), the argument of g, is defined as a right-continuous function, left continuous whenever $g(x) \neq 0$ and such that $\lim_{\epsilon \downarrow 0} |arg(g(x+\epsilon)) - arg(g(x-\epsilon))| \leq \pi$ whenever g(x) = 0, then $A^*(g)$ is the total variation of arg(g(x)) on [0,1].

As an immediate consequence of Lemma 2, Theorem 2 and Lemma 5 we have the following theorem

THEOREM 4. Let f(z) be given by (15). For all $a < b \in \mathbb{R}$ such that $f(a)f(b) \neq 0$

$$A(a,b;f) \leq A^*(g)$$
.

PROOF. Straigthforward.

COROLLARY 4. The number $N_{\mathbb{R}}(f)$ of real zeros of f satisfies

$$N_{TR}(f) \leq \frac{1}{\pi} A^*(g)$$
.

In order to estimate the number of zeros of f in a horizontal strip, we derive the following lemma, somewhat similar to Lemma 2.

<u>LEMMA 6</u>. Let f_1, f_2, \ldots be a sequence of analytic complex-valued functions uniformly converging to f in a compact set $K \subset C$. If f has no zeros on the boundary of K, then there is an N > 0 such that for k > N the functions f and f_k have the same number of zeros in K.

<u>PROOF.</u> Denote the boundary of K by δK . There is an $\epsilon > 0$ such that $|f(z)| > \epsilon$ for $z \in \delta K$. There is an N > 0 such that for k > N and $z \in \delta K$

$$|f_k(z)-f(z)| < \varepsilon.$$

So by Rouché's theorem, $f_k(z)$ and f(z) have the same number of zeros in K.

We now derive the following theorem

THEOREM 5. Let f(z) be given by (15) and let $r,s \in \mathbb{R}$ such that r < 0 < s. Then the number $N_{E}(f)$ of zeros of f in the strip

$$E = \{z \in C; r \leq Im z \leq s\}$$

satisfies

$$\pi N_{E}(f) \leq A^{*}(g) + s-r.$$

 $\underline{\underline{PROOF}}$. Suppose that f has no zeros on the boundary of E. Choose T > 0 such that f has no zeros on the boundary of E₁, where

$$E_1 = \{z \in C; r \leq Im z \leq s; |Re(z)| \leq T\}.$$

By Lemma's 5 and 6

$$N_{E_1}(f) = \lim_{k \to \infty} N_{E_1}(F_{P_k}).$$

By Corollary 1, since $y_m - y_1 \le 1$ for all partitions P

$$N_{E_1}(F_{P_k}) \le N_{E}(F_{P_k}) \le A^*(g) + s-r.$$

By letting T $\rightarrow \infty$ the theorem follows. If f has zeros on the boundary of E, there is a $\delta_1 > 0$ such that for $0 < \delta < \delta_1$ f has no zeros on the boundary of E $_{\delta}$, where

$$E_{\delta} = \{z \in \mathbb{C}; r-\delta \leq Im z \leq s+\delta\}.$$

Now
$$N_E(f) \le N_{E_{\delta}}(f) \le A^*(g) + s-r+2\delta$$
.

By letting $\delta \downarrow 0$ the theorem is proved completely.

5. REMARKS

1. Let a,b \in C, Γ the rectilinear segment running from a to b, μ a positive measure and g a complex-valued continuous functions on Γ . If

$$f(z) = \int_{\Gamma} g(\zeta)e^{z\zeta}\mu(d\zeta),$$

then

$$f(z) = e^{az} \int_{0}^{1} g(a+(b-a)t)e^{(b-a)tz} \mu^{*}(dt) = e^{az}h((b-a)z).$$

Here μ^* is a positive measure on [0,1] derived from μ . We can apply the results of section 4 to h and so derive corresponding results for f.

2. The representation (15) is not unique; if h is a positive μ -measurable function on [0,1],

$$\int_{0}^{1} e^{zt} g(t) \mu(dt) = \int_{0}^{1} e^{zt} (g(t)/h(t)) \mu^{*}(dt),$$

where μ^* , defined by $\mu^*([\alpha,\beta]) = \int_{\alpha}^{\beta} h(t)\mu(dt)$, is again a positive measure. We can thus somewhat alleviate the condition that g is continuous, by letting $h \to \infty$ at the points of discontinuity of g, h continuous everywhere else.

3. The method in this paper is not limited to exponential sums and integrals; for instance Dirichlet series

$$\sum_{k=1}^{\infty} c_k \exp(-\lambda_k x)$$

and infinite integrals

$$\int_{0}^{\infty} g(t) e^{-zt} dt$$

can be represented as limits of exponential sums. Proceeding as in section 4, analogues of Theorem 4 can be derived for these functions. Compare PÓLYA & SZEGÖ [1], Chapter 5, section 1, especially problems 78 and 80.

6. REFERENCES

- 1. G. PÓLYA and G. SZEGÖ, Aufgaben und Lehrsätze ans der Analysis II, Springer Verlag, Berlin, 1971.
- 2. M. VOORHOEVE, On the oscillation of exponential polynomials, Math. Z. $\underline{151}$, (1976), 277-294.
- 3. C.E. WILDER, Expansion problems of ordinary linear differential equations, Trans. Amer. Math. Soc. 18 (1917), 415-442.