

Centrum voor Wiskunde en Informatica Centre for Mathematics and Computer Science

H.A. Lauwerier

A case of a not so strange strange attractor

Department of Applied Mathematics

Report AM-R8406

April

Bibliotheek
Centrum voor Wiskunde en Informatica
Amsterdam

The Centre for Mathematics and Computer Science is a research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer science, and their applications. It is sponsored by the Dutch Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A CASE OF A NOT SO STRANGE STRANGE ATTRACTOR

H.A. LAUWERIER

Centre for Mathematics and Computer Science, Amsterdam

An example is given of an iterative two-dimensional map of the horseshoe type in which everything can be expressed in simple trigonometric functions. The strange attractor is an analytic curve with a fractal dimension.

1980 MATHEMATICS SUBJECT CLASSIFICATION: 58F13, 39A10.

KEY WORDS & PHRASES: iterated maps, strange attractors, fractals.

NOTE: This paper will be submitted for publication elsewhere.

Report AM-R8406

Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1. INTRODUCTION

In this note a simple example is given of an iterative horeseshoe map in which almost everything can be expressed in explicit analytic expressions involving only elementary trigonometry. In this way a nice illustration is obtained of an unstable manifold which is also a strange attractor with a Cantor-like transsection having a simple fractal dimension. In our example a particular transsection yields a set of homoclinic and of heteroclinic points.

The map (cf. fig. 2.1, 2.2) is defined by

(1.1)
$$\begin{cases} x \to bx(1-2y) + y, \\ y \to 4y(1-y), & 0 < b < 1. \end{cases}$$

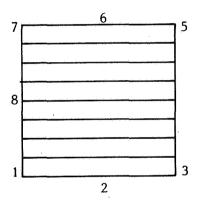


Fig. 2.1

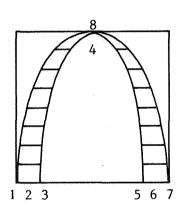


Fig. 2.2

By this map the unit square is mapped into itself as an internal horseshoe. There are two fixed points both hyperbolic, the origin and a fixed point at the level y = 3/4. The lines y = 0 and y = 3/4 are their stable manifolds. We show a.o. that the unstable invariant curve J_0 of the origin is an analytic curve determined by

(1.2)
$$\begin{cases} x = \frac{1}{2} - \frac{1}{2} (\frac{1}{b} - 1) \sum_{k=1}^{\infty} b^{k} \phi_{k}(t), \\ y = \sin^{2}(t/2), \end{cases}$$

where

(1.3)
$$\phi_{k}(t) = \frac{\sin t}{2^{k} \sin(2^{-k}t)}.$$

We note that $|\phi_k| \le 1$ for all k and t. J_0 is like a sine curve folded up an infinite number of times so that it fits inside the unit square. The expression (1.2) can be used to show that J_0 is also a strange attractor. For the unstable manifold J_1 of the second fixed point a similar representation is obtained. However, after addition of their limit sets J_0 and J_1 become identical. It is as if J_1 starts at the "end" of J_0 . Any point of the strange attractor can be obtained from a double-infinite binary expansion of $t/(2\pi)$

(1.4)
$$\frac{t}{2\pi} = \dots b_3 b_2 b_1 b_0 \cdot b_{-1} b_{-2} b_{-3} \dots = n + \theta$$

where n is the integer part and θ the fractional part. Substitution of (1.4) into (1.2) and (1.3) gives at first $y = \sin^2 \pi \theta$ so that a constant θ gives the transsection of J_0 with a horizontal line. The value $\theta = 1/3$ gives a set of heteroclinic points. For constant θ and arbitrary n (or β) we may replace (1.3) by

(1.5)
$$\phi_{\mathbf{k}}(\beta) = \frac{2^{-\mathbf{k}} \sin 2\pi \theta}{\sin((\mathbf{b_{k-1}b_{k-2} ...b_{1}b_{0}b_{-1}b_{-2}...)2\pi)}.$$

Substitution in (1.2) gives for each fraction β a point $x(\beta)$ of the strange attractor. The Lyapunov numbers of T are $\lambda_1 = 2$ and $\lambda_2 = b/2$. From this the Lyapunov dimension of the strange attractor is obtained as

(1.6)
$$1 + \frac{\log 2}{\log 2/b}, \quad 0 < b < 1.$$

Details will be given in the next few sections. In the last section a generalisation is indicated. The general idea is to lift a one-dimensional map $y \rightarrow f(y)$ of which $y \rightarrow 4y(1-y)$ is perhaps the simplest non-trivial case for which there exists a complete parametrisation. According to Poincaré [1] any map

$$(1.7)^{6}$$
 $y_{n+1} = f(y_{n})$

with

$$f(0) = 0, |f'(0)| > 1,$$

for which f(y) is holomorphic, can be parametrised by an analytic function F(z) satisfying the functional equation

(1.8)
$$F(az) = f(F(z)),$$

where a = f'(0), with the initial condition

$$F(0) = 0, F'(0) = 1.$$

If f(y) is a polynomial or an entire function then also F(z) is an entire function. In a similar way as in the special case (1.1) the unstable manifold of the fixed point (0,0) can be parametrised as

(1.9)
$$x = E(t), y = F(t),$$

where E(t) is another analytic function. In section 4 this is worked out a little for the slightly more general logistic map $y \rightarrow ay(1-y)$. We may safely conjecture that for a value of the parameter a for which the logistic map is chaotic the general situation is roughly as in the special case (1.1). A few more details can be found in a previous publication [4].

2. UNSTABLE INVARIANT CURVES

In the map (cf. fig. 1.1, 1.2)

(2.1)
$$\begin{cases} x \to bx(1-2y) + y, \\ y \to 4y(1-y), \end{cases}$$

with $0 < b \le 1$ the vertical line $x = \xi$, $0 \le y \le 1$ is transformed into a parabolic arc

$$y = 1 - \left(\frac{1-2x}{1-2b\xi}\right)^2$$
.

A horizontal line $y = \eta$, $0 \le x \le 1$ is transformed into a similar line at the level $4\eta(1-\eta)$. We observe at once that the lines y = 0 and y = 3/4 are invariant. They can be interpreted as the stable manifolds of the fixed points (0,0) and $(\frac{3}{4+2b},\frac{3}{4})$. By the map (2.1) the unit square becomes a horseshoe which is overlapping itself for $\frac{1}{2} \le b \le 1$.

The case b = 1 is somewhat special and will be considered separately. If 0 < b < 1 we may perform the substitution

(2.2)
$$\begin{cases} 2bx = b - (1-b)u, \\ 2y = 1 - v, \end{cases}$$

which changes (2.1) into

(2.3)
$$\begin{cases} u_{n+1} = b(1+u_n)v_n, \\ v_{n+1} = 2v_n^2 - 1, \end{cases}$$

written as an iterative process. A simple calculation shows that

(2.4)
$$u_{n} = bv_{n-1} + b^{2}v_{n-1}v_{n-2} + b^{3}v_{n-1}v_{n-2}v_{n-3} + \dots + b^{n}v_{n-1}v_{n-2}v_{n-3} + \dots + v_{0}(1+u_{0}).$$

The sequence v_n can be parametrised by

(2.5)
$$v_n = \cos(2^n z)$$
.

We note that

(2.6)
$$v_0 v_1 v_2 \dots v_{m-1} = \frac{2^{-m} \sin(2^m z)}{\sin z}$$
.

Thus (2.4), (2.5) can be written as

(2.7)
$$\begin{cases} u_n = \sum_{k=1}^n \frac{(b/2)^k \sin(2^n z)}{\sin(2^{n-k} z)} + \frac{(b/2)^n \sin(2^n z)}{\sin z} u_0, \\ v_n = \cos(2^n z). \end{cases}$$

We see that for $n \rightarrow \infty$ the effect of the initial value u_0 vanishes

exponentially like $(b/2)^n$. On the other hand v_n is extremely sensitive to small changes in the initial value v_0 .

For $n \to \infty$ the expression (2.7) becomes meaningless but if at the same time the parameter z is rescaled by writing $z = 2^{-n}t$ we obtain in the limit

(2.8)
$$\begin{cases} u(t) = \sum_{k=1}^{\infty} \frac{(b/2)^k \sin t}{\sin(2^{-k}t)}, \\ v(t) = \cos t, \end{cases}$$

which can be interpreted as a parametrisation of the unstable manifold J_0 . The iteration (2.3) shows that the effect of a single iteration of points on J_0 is equivalent to doubling the parameter t

$$(2.9) t \rightarrow 2t.$$

In fact, for v = cost the second relation of (2.3) becomes the well-known duplication formula $cos 2t = 2 cos^2 t - 1$.

In terms of the original variables x,y (2.8) may be written as

(2.10)
$$\begin{cases} 2x = 1 - (1/b-1) \sum_{k=1}^{\infty} \phi_k(t)b^k, \\ 2y = 1 - \cos t, \end{cases}$$

where

(2.11)
$$\phi_{k}(t) = \frac{\sin t}{2^{k} \sin(2^{-k}t)} = \cos \frac{t}{2} \cos \frac{t}{2^{2}} \dots \cos \frac{t}{2^{k}}.$$

It may be of interest to determine the shape of J_0 near the origin by developing x and y into powers of t. Writing (2.10) shortly as

(2.12)
$$x = E(t), y = F(t),$$

it is obvious that

(2.13)
$$F(t) = \frac{1}{2}(1-\cos t) = \frac{1}{4}t^2 - \frac{1}{48}t^4 + \dots$$

The expansion of E(t) can be derived from the identity

(2.14)
$$E(2t) = bE(t)(1-2F(t)) + F(t)$$
,

which follows at once from (2.1) and (2.9). In the special case b = 1/3 we find

(2.15)
$$E(t) = \frac{3}{44} t^2 - \frac{17}{16 \times 11 \times 47} t^4 + \dots$$

Any branch of J_0 can be represented in the form $x = \phi(y)$ by substituting $t = 2 \arcsin \sqrt{y}$ in the power series x = E(t) with a corresponding meaning of the multivalued function arcsin.

In the special case b = 1/3 we find for the initial branch

(2.16)
$$x = \frac{3}{11} y + \frac{30}{11 \times 47} y^2 + \dots$$

The turning points of J_0 are obtained for the parameter value $t_n = 2^n \pi$, $n = 1, 2, 3, \ldots$ They give

(2.17)
$$x_n = (1 - \frac{b}{2}) b^{n-1}, y_n = 0.$$

These are all points of J_0 on y=0. In fact, for $t=2m\pi$ where m is an odd natural number we have always $\phi_1=-1$ and $\phi_2=\phi_3=\ldots=0$ so that for all those parameters values we obtain the same point $x_1=1-\frac{b}{2}$. If $t=2m\pi$ where m is an even number we obtain iterates (2.17) of x_1 . This shows that each point (2.17) is a turning point of an infinity of folds of the unstable manifold. They are points of homoclinic tangency of J_0 with the stable manifold y=0. There is also an infinity of heteroclinic points as the intersections of J_0 with the stable manifold y=3/4 of the second fixed point. On the invariant line y=3/4 the iterative map reduces to a linear recurrent relation

(2.18)
$$x_{n+1} = -\frac{b}{2}x_n + \frac{3}{4}$$

It has the particular solution 3/(4+2b) so its general solution is

(2.19)
$$x_n = \frac{3}{4+2b} + C(-\frac{1}{8})^n$$
.

This shows already that the successive loops of J_0 come arbitrarily close to the second fixed point. The heteroclinic points are all given by the

parameter values $t = \pm \frac{2\pi}{3} + 2m\pi$.

The unstable manifold $\mathbf{J}_{\mathbf{l}}$ of the second fixed point can be parametrised in a similar way.

The fixed point is $(\frac{3}{4+2b}, \frac{3}{4})$ and it has the multipliers -b/2 and -2. Instead of (2.5) we take the parametrisation

(2.20)
$$v_n = \cos(\frac{2\pi}{3} + (-2)^n z).$$

We note that

(2.21)
$$v_0 v_1 v_2 \dots v_{m-1} = \frac{(-2)^{-m} \sin(\frac{2\pi}{3} + (-2)^m z)}{\sin(\frac{2\pi}{3} + z)}$$
.

Eventually we obtain the result

(2.22)
$$\begin{cases} x = \frac{1}{2} - \frac{1}{2} (\frac{1}{b} - 1) \sum_{k=1}^{\infty} \psi_{k}(t) (b/2)^{k}, \\ y = \sin^{2} (\frac{\pi}{3} + \frac{t}{2}), \end{cases}$$

where

(2.23)
$$\psi_{k}(t) = \frac{\sin(\frac{2\pi}{3} + t)}{(-2)^{k}\sin(\frac{2\pi}{3} + \frac{t}{(-2)^{k}})}.$$

Again $|\psi_k(t)| \le 1$. For t = 0 we obtain the fixed point $x = \frac{3}{4+2b}$, y = 3/4. In this case we have two branches corresponding to t > 0 and to t < 0.

In the special case b=1 the substitution (2.2) cannot be used. However, a simple observation shows that $x=\frac{1}{2}$ is an invariant line. The unstable manifold J_0 is described here by

(2.24)
$$\begin{cases} x = \frac{1}{2}(1 - \frac{\sin t}{t}), \\ y = \frac{1}{2}(1 - \cos t). \end{cases}$$

This shows that the line $x = \frac{1}{2}$, $0 \le y \le 1$ is the corresponding attractor, no longer strange.

3. THE STRANGE ATTRACTORS

In the preceding section we have seen that for 0 < b < 1 the unstable manifold J_0 of (0,0) is determined by

(3.1)
$$\begin{cases} x = \frac{1}{2} - \frac{1}{2} (\frac{1}{b} - 1) \sum_{k=1}^{\infty} \phi_k(t) b^k, \\ y = \sin^2 t/2, \end{cases}$$

where $\phi_k(t)$ is given by (2.10). The limit set, i.e. the strange attractor, is obtained by taking sequences $t_n \to \infty$ for $n \to \infty$. Let us consider the intersection of the strange attractor with a horizontal line. This means that we take subsequences from

(3.2)
$$t = (n+\theta) 2\pi, \quad 0 < \theta < 1.$$

Let

$$\theta = b_{-1}b_{-2}b_{-3}b_{-4}...,$$

be the binary expansion of θ . We also introduce the real number β with a similar expansion

(3.4)
$$\beta = .b_0b_1b_2b_3 ..., 0 < \beta < 1.$$

We use β to define a subsequence of n-values

$$(3.5) b_0, b_1b_0, b_2b_1b_0 \dots,$$

again in binary notation.

Assuming for a while that this sequence never stops we obtain a limit point of J in the form

(3.6)
$$\begin{cases} x = \frac{1}{2} - \frac{1}{2} (\frac{1}{b} - 1) \sum_{k=1}^{\infty} \frac{(b/2)^k \sin 2\pi \theta}{\sin((b_{k-1}b_{k-2} \cdots b_0 b_{-1}b_{-2} \cdots) 2\pi)}, \\ y = \sin^2 \pi \theta. \end{cases}$$

The effect of the binary unit b_m upon the position of the corresponding element of the strange attractor is of the order b^m . This shows that also finite sequences correspond to points of the strange attractor since every rational β is approximated by an irrational β . This means that all points of the unstable manifold J_0 are accumulation points of the strange attractor and that in fact the closure of the invariant curve J_0 is the

strange attractor.

Clearly the intersection points determined by (3.6) for fixed θ and all β (0 $\leq \beta < 1$) form an uncountable perfect set. The dimension of the strange attractor can be determined through the intermediary of the Lyapunov numbers of T. The special form of the Jacobian of T shows that the first Lyapunov number λ_1 is that of the one-dimensional map $y \to 4y(1-y)$ which is 2. In a similar way the second Lyapunov number equals $\lambda_2 = b/2$. The corresponding Lyapunov exponents are

(3.7)
$$\sigma_1 = \log 2, \quad \sigma_2 = \log b/2.$$

Thus the strange attractor has the Lyapunov dimension (cf. Farmer et al [2])

(3.8)
$$d_{L} = 1 + \frac{\log 2}{\log 2/b}.$$

It is a safe conjecture that also the Hausdorff dimension and the capacity have the same fractal value.

4. GENERALISATIONS

If the special map $y \to 4y(1-y)$ is replaced by the general logistic map $y \to ay(1-y)$ where $3 < a \le 4$ we have the same overall picture provided the case is chaotic. According to Poincaré [1] the iterative sequence y_n can be parametrised as

$$(4.1) y_n = F(a^n z)$$

where F(z) is an entire analytic function satisfying the functional equation

(4.2)
$$F(az) = aF(z)(1-F(z))$$

with

$$(4.3) F(0) = 0, F'(0) = 1.$$

It can be shown that F(z) is entire when a > 1 and that its exponential

order is log2/loga [3], [4]. The only elementary cases are

$$a = 4$$
 $F(z) = sin^2 \sqrt{z}$,
 $a = 2$ $F(z) = \frac{1}{2}(1-e^{-2z})$.

Explicitly

(4.4)
$$F(z) = z - \frac{z^2}{a-1} + \frac{2z^3}{(a-1)(a^2-1)} - \dots$$

Repeated use of (4.2) and (4.4) enables us to compute F(z) for arbitrary large values of z. Here we are interested only in the behaviour of F(t) for positive real values of t. F(t) looks like the infinite iteration of the map $y \to ay(1-y)$ on a suitable horizontal scale. For $t \to \infty$ the function F(t) is almost periodic with

Proceeding as in section 2 we consider the map

$$\begin{cases} x \rightarrow bx(1-2y) + y, \\ y \rightarrow ay(1-y). \end{cases}$$

A parametrisation of the unstable manifold J_0 of the origin can be obtained in the form (2.11) where F(t) is the entire Poincaré function defined by (4.2),(4.3). The action of T along J_0 is now

$$(4.7)$$
 t \rightarrow at.

This gives for E(t) a similar functional equation as (2.13)

(4.8)
$$E(at) = bE(t)(1-2F(t)) + F(t)$$
.

Again repeated use of this relation and a few terms of the power series expansion of E(t) makes it possible to compute points of the unstable manifold even for very large values of t.

In a slightly different approach we may also derive an expansion of the kind (2.9) or (2.22).

In terms of u and v defined by (2.2) the map is written as

(4.9)
$$\begin{cases} u \to b(1+u)v, \\ v \to \frac{1}{2}av^2 - (\frac{1}{2}a-1). \end{cases}$$

For v we now use the parametrisation

(4.10)
$$v = G(t) \stackrel{\text{def}}{=} 1 - 2F(\frac{1}{a}t^{\frac{\log a}{\log 2}}),$$

which makes G(t) almost periodic within the interval 1 - a/2, $1 - a^2/2 + a^3/8$ and for which a single iteration is equivalent to t \div 2t. Writing

(4.11)
$$u = \sum_{k=1}^{\infty} \phi_k(t)b^k,$$

we obtain for $\phi_k(t)$ the duplication rule

(4.12)
$$\phi_k(2t) = \phi_{k-1}(t)G(t), \quad \phi_0(t) = 1,$$

so that

(4.13)
$$\phi_k(t) = G(\frac{t}{2})G(\frac{t}{2^2})...G(\frac{t}{2^k}).$$

As a check we observe that for a = 4

(4.14)
$$F(t) = \sin^2 \sqrt{t}$$
, $G(t) = \cos t$

so that indeed (4.13) coincides with (2.10).

Similar interesting maps may be derived from the scheme

(4.15)
$$T \begin{cases} x \rightarrow b(1+x)f(y) \\ y \rightarrow g(y) \end{cases}$$

where 0 < b < 1, $|f(y)| \le 1$, $|g(y)| \le 1$ for which the origin is a hyperbolic fixed point with an analytic invariant unstable curve J.

(4.16)
$$\begin{cases} x = \sum_{k=1}^{\infty} b^{k} \phi_{k}(t), \\ y = P(t). \end{cases}$$

The restriction of T to J_0 is required to be

$$(4.17)$$
 t \rightarrow 2t.

The simplest assumption is that P(t) is periodic with period 1. We should also have

(4.18)
$$P(2t) = g(P(t))$$

and

(4.19)
$$\phi_k(2t) = b\phi_{k-1}(t)f(P(t))$$

with
$$\phi_0(t) \equiv 1$$
.

5. ILLUSTRATIONS

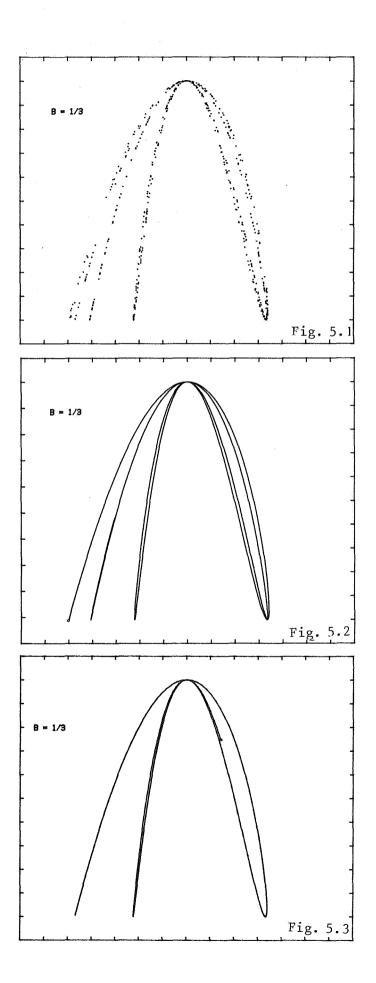
In fig. 5.1 a plot is given of the map T with b = 1/3 in the scale -0.2, 1.2, -0.1, 1.1. Shown is an orbit of some 500 points attracted by the strange attractor.

In fig. 5.2 the first few arcs of the unstable manifold ${\bf J}_0$ of the map of the previous illustration are shown.

In fig. 5.3 the first few arcs of the unstable manifold J_1 with t > 0 are shown for the same case. In table 5.4 the first 64 heteroclinic points are given as the intersections of J_0 and y = 3/4 for b = 1/4.

REFERENCES

- [1] POINCARÉ, H. (1980), Sur une classe nouvelle de transcendantes uniformes, J. de Math. Ser. 4, 6, 313-365.
- [2] FARMER, J.D., E. OTT & J.A. YORKE (1983), The dimension of chaotic attractors, Physica 7D, 153-180.
- [3] LAUWERIER, H.A. (1983), The parametrisation of the unstable invariant manifold for a class of horseshoe maps, Rep. Amsterdam Math. Centre TW 237/83.
- [4] LAUWERIER, H.A. (1982), Entire functions for the logistic map I. Rep. Amsterdam Math. Centre TW 228/82.



1	.258864297		33	.260272426
2	.717641963		34	.716939586
3	.660294755		35	.660645617
4	.356406456	**	36	.356125347
5	.349949820		37	.350162016
6	.667463156		38	.667285254
7	.705449193		39	.705593699
8	.282106671		40	.281974013
9	.281319458		41	.281434437
10	.706256273		42	.706147964
11	.666567106		43	.666665111
12	.350924597		44	.350830555
13	.355147590		45	.355235531
14	.661818851		46	.661733197
15	.714736666		47	.714819028
16	.264581113		48	.264499821
17	.264483316		49	.264563531
18	.714835068		50	.714754873
19	.661717966		51	.661799181
20	.355250410		52	.355168120
21	.350816288		53	.350902016
22	.666679112		54	.666590919
23	.706134425		55	.706229434
24	.281447777		56	.281348174
25	.281961015		57	.282073139
26	.705606551		58	.705485876
27	.667272644		59	.667417760
28	.350164528		60	.350001465
29	.356112990		61	.356334738
30	.660657917		62	.660384080
31	.716927361		63	.717464421
32	.260284632		64	.259218446

Table 5.4. Heteroclinic points; fixed point at 2/3 for b=1/4