

Partial up and down logic

J. Jaspars

Computer Science/Department of Software Technology

CS-R9511 1995

Report CS-R9511 ISSN 0169-118X

CWI P.O. Box 94079 1090 GB Amsterdam The Netherlands

CWI is the National Research Institute for Mathematics and Computer Science. CWI is part of the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of mathematics and computer science and their applications.

SMC is sponsored by the Netherlands Organization for Scientific Research (NWO). CWI is a member of ERCIM, the European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum P.O. Box 94079, 1090 GB Amsterdam (NL) Kruislaan 413, 1098 SJ Amsterdam (NL) Telephone +31 20 592 9333 Telefax +31 20 592 4199

Partial Up and Down Logic

Jan Jaspars

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
jaspars@cwi.nl

Abstract

This paper presents logics for reasoning about extension and reduction of partial information states. This enterprise amounts to non-persistent variations of certain constructive logics, in particular the so-called logic of constructible falsity of [Nelson 1949]. We provide simple semantics, sequential calculi, completeness and decidability proofs.

AMS Subject Classification (1991): 03B20,03B45, 03B50, 03B60, 68T30.

CR Subject Classification (1991): F.4.1, H.2.1, I.2.0, I.2.4.

Keywords and Phrases: knowledge representation, modal and dynamic logic, partiality, constructive logic.

Note: This paper has been accepted for publication in the Notre Dame Journal of Formal Logic. The author was sponsored by CEC-project LRE-62-051 (FraCaS), funded by the European Community.

The most simple logical means for knowledge representation is the semantic concept of partial truth-assignment. Propositions with a definite truth-value reflect the knowledge of a chosen agent. Propositions which are mapped to 1 are the things that the agents knows to be true, while propositions which have value 0 cover the information that the agents knows to be false. Propositions whose truth-values are left underspecified denote the agent's ignorance.

In this paper we develop dynamic extensions over these simple static representations, that is formalisms which provide logical means for reasoning about changing partial information states. We will follow Van Benthem and De Rijke's style of dynamic modal logic [van Benthem 1991] [de Rijke 1992], where such formalisms are defined on the basis of total information states. We will focus on two kinds of changes: enrichment and reduction. These kinds of manipulations of states can easily be defined using a structural extension order \leq which evolves naturally from the definition of partiality. Given the static meaning $[\![\varphi]\!]$ of a proposition φ , i.e. the partial states which support this proposition, the dynamic meaning $[\![\varphi]\!]_{dy}$ is induced by the extension order:

$$\{\langle s,t
angle\mid s\leq t\ \&\ t\in\llbracketarphi
rbracket\}.$$

It represents a relational description of what happens to a state s when it is extended with the information φ . In an analogous way we specify the *negative dynamic* meaning $[\![\varphi]\!]_{dy}^-$ of φ , that is, the ways a situation s can shrink when the information φ has been removed from it:

$$\{\langle s,t\rangle\mid t\leq s\ \&\ t\not\in \llbracket arphi
rbracket\}.$$

These two dynamic denotations are the basic relations for dynamic modal reasoning over

extension and reduction.¹ Such explicit dynamics will be accommodated by operators $[\varphi]_u$ and $[\varphi]_d$ for making universal statements over extensions and reductions, respectively. Their dual existential counterparts will be called $\langle \varphi \rangle_u$ and $\langle \varphi \rangle_d$. A proposition of the form $[\varphi]_u \psi$ says that extending the current state with the information that φ necessarily leads to a state which supports ψ , while $\langle \varphi \rangle_d \psi$ means that it is possible to retract φ from the current state in such a way that ψ holds afterwards.

Dynamic, constructive and non-monotonic logic

The above-mentioned simple dynamic setting originates from Kripke's semantic analysis of intuitionistic logic [Kripke 1965]. Intuitionistic logic can be seen as a dynamic logic of possessing mathematical proofs, and because this kind of information is taken to be persistent, that is proofs cannot be forgotten or retracted, only the extension relation is used for interpreting intensional connectives like implication and negation. In a dynamic modal setting intuitionistic implication $\varphi \to \psi$ can be described as $[\varphi]_u \psi$, while intuitionistic negation of φ boils down to $[\varphi]_u \perp$, where \perp is the absurd or unprovable proposition.

The latter interpretation of negative information has led to discussion among constructivists, and also inspired different constructivistic axiomatizations of mathematical reasoning. One of these alternatives has been proposed in [Nelson 1949].² His logic of constructible falsity treats negative information in the same fashion as positive information by taking refutation as a second mathematical construction. Proofs determine constructible truth, while refutations register constructible falsity. This logic re-installs classical laws like the double negation and de Morgan equivalences in constructive logic.³ Nelson's logic is of particular importance here, because it completely describes the persistent 'upward' part of the logics of this paper. Technically speaking, the logics we consider naturally arise from extending the expressivity of Nelson's logic over its Kripke semantics, which is principally the dynamics over partial states which has been described above.⁴

In [Gabbay 1982] a non-persistent extension of intuitionistic logic has been introduced by means of adding existential expressivity over the extension relation. The reason is to capture the consistency-operator M of the original default logic of [Reiter 1980] in an explicit fashion. The statement $M\varphi$ means that the current state can be extended with the information φ . It can be defined in the dynamic modal setting by $\langle \top \rangle_u \varphi$, where \top is the trivial proposition which is always true (proved). In [Turner 1984] this idea has been incorporated in the setting of partial logic. The kind of Kripke models for Nelson's logic and the up-and-down logics of this paper are also used there.

These non-persistent variations can be seen as subsystems of the 'upward' parts of the upand-down logics of this paper. We will stick to classical definitions of semantic consequence

¹These extension and reduction relations are only a small fragment of the relational wealth which has been employed in [van Benthem 1991]. He uses further relational constructions to interpret more complex dynamic operations, which facilitates definition of minimal variations of the extension and reduction relations. A negative side effect of the richness of Van Benthem's system is its undecidability [de Rijke 1992] [de Rijke 1993].

²Å thorough essay on different treatments of negative information in constructive logic is [Wansing 1993]. ³Of course, without accepting the constructively condemned principle of the excluded middle.

⁴Kripke semantics for Nelson's logic can be found in [Thomason 1969]. Nelson's logic has also been propagated outside the field of mathematical logic. A paper which demonstrates its use in default logic and logic programming is [Pearce 1992].

and validity, and subsequently our systems will behave perfectly monotonic, transitive, commutative, etcetera. More unorthodox non-monotonic entailment relations can be defined within the language of our up-and-down logics. For example, an obvious non-monotonic candidate is the following: ψ follows from the assumption sequence $\varphi_1, \ldots, \varphi_n$ if extending an arbitrary state consecutively with φ_1 through φ_n always leads to a state which verifies ψ . In other words, $[\varphi_1]_u \ldots [\varphi_n]_u \psi$ holds always. Non-monotonicity immediately pops up, because $\langle \top \rangle_u \varphi$ follows from itself, while it does not follow from the extended sequence $\langle \top \rangle_u \varphi, [\varphi]_u \bot$.

In section 1 we give a brief presentation of the semantics of partial logic and corresponding sequential axiomatizations. In 2 we follow the same procedure for their dynamic modal extensions. Finally, in section 3 we prove completeness and decidability for the sequential systems of the first two sections.

1. Partial Logic

In this first section we shortly present a simple setting of partial propositional logics. As partial logics are most often inspired by semantic motivations, we wish to start with some of their basic model-theoretic concepts.

1.1 Partial valuations

DEFINITION 1 A partial valuation V is a partial function which assigns truth-values to a given set of propositional variables \mathbb{P} . In order to distinguish partial functions from total functions we replace the normal functional arrow \longrightarrow by \leadsto . In short, $V: \mathbb{P} \leadsto \{0,1\}$. The collection of all partial valuations is denoted by \mathfrak{P} . The domain of $V \in \mathfrak{P}$, $\mathfrak{Dom}(V)$, is the set of all propositional variables which obtain a truth-value by V:

$$\mathfrak{Dom}(V) := \{ p \in IP \mid V(p) = 1 \text{ or } V(p) = 0 \}.$$

If $\mathfrak{Dom}(V) = \mathbb{P}$ then V is said to be *total*. V' is said to be an *extension* of V whenever V' and V agree on all the propositional variables in the domain of V. We write $V \subseteq V'$ if this relation holds.

$$V \sqsubseteq V' \overset{\mathsf{def}}{\Longleftrightarrow} \ \forall p \in \mathfrak{Dom}(V) : V(p) = V'(p).$$

This last relation is of particular interest. $V \sqsubseteq V'$ says that V' contains at least as much information as V. Given this information order we are able to develop the kind of dynamics which has been mentioned in the introduction.

1.2 Languages with static denotation

There are many different partial logics. Loss of two-valuedness creates a lot of freedom, and subsequently leads to dispute and confusion. Even the basic choices of the interpretation of

⁵Commutativity also fails in an obvious way: \bot follows from $[\varphi]_u \bot, \langle \top \rangle_u \varphi$, while it does not follow necessarily from $\langle \top \rangle_u \varphi, [\varphi]_u \bot$.

⁶Partial valuations forbid the possibility for a proposition to be true and false at the same time. A technical removal of this 'excluded fourth value' boils down to redefining partial valuations V as relations between propositional variables IP and truth-values: $V \subseteq IP \times \{0,1\}$. Such liberalism has been defended for epistemic purposes in [Belnap 1977]. In [Jaspars 1993a] the reader finds some arguments against this position. A technical advantage of going four-valued is that the classical symmetry between negative and positive information in partial logic gets restored. See e.g. [Wagner 1994].

ordinary static connectives have led to divergent opinions. Many conflicting choices, however, are due merely to the underlying motivations of different applications of partial logic. This flexibility has led to many different partial logics.

The basic static language \mathcal{L} which we will use is defined below. The reason why we have chosen \mathcal{L} as our basic static partial equipment will be motivated on semantical grounds later on in this subsection.

DEFINITION 2 Let $I\!\!P$ be a non-empty enumerable set of propositional variables or atoms. The language $\mathcal L$ is the smallest superset of $I\!\!P$ such that

$$\varphi, \psi \in \mathcal{L} \Rightarrow (\neg \varphi), (\varphi \land \psi) \in \mathcal{L} \text{ and } \bot \in \mathcal{L}$$

These connectives are called negation, conjunction and falsum respectively.

We will avoid superfluous use of parentheses, and take binary connectives to dominate over unary connectives. For example $\neg \varphi \land \psi$ means $((\neg \varphi) \land \psi)$ and not $(\neg (\varphi \land \psi))$. Furthermore, we will also use convenient abbreviations, like $\top := \neg \bot \ (verum), \ \varphi \lor \psi := \neg (\neg \varphi \land \neg \psi)$ (disjunction). The letters p,q,r, possibly with additional sub- or superscripts, are used as atoms. Greek lower case letters are used to denote arbitrary formulae, while Greek capitals denote sets of formulae. Throughout the text we will also use sets of formulae in the scope of connectives and operators. Such expressions should be read in the most straightforward distributive manner. For example, $\neg \Gamma = \{\neg \varphi \mid \varphi \in \Gamma\}$ and $\varphi \land \Gamma = \{\varphi \land \psi \mid \psi \in \Gamma\}$.

For a given $V \in \mathfrak{P}$ the members of \mathcal{L} obtain truth-values according the following inductive scheme.

Table 1

$$\begin{array}{|c|c|c|c|c|} \hline V \models p \Leftrightarrow V(p) = 1 & (p \in I\!\!P) & V = p \Leftrightarrow V(p) = 0 & (p \in I\!\!P) \\ \hline V \not\models \bot & V = \bot \\ V \models \neg \varphi \Leftrightarrow V = \varphi & V \models \varphi \\ V \models \varphi \land \psi \Leftrightarrow V \models \varphi \& V \models \psi & V = \varphi \land \psi \Leftrightarrow V = \varphi \text{ or } V = \psi \\ \hline \end{array}$$

Clearly, there are other interpretations of negation and conjunction which are feasible as well. The choices which have been made in Table 1 are called *strong* or *exclusive* negation for \neg and *strong* Kleene for \land . The *weak* Kleene conjunction \triangle gives the same results whenever both conjuncts have a determined truth-value, and is undefined whenever one of the conjuncts is undefined. This entails the same truth conditions, but strengthens the falsity of conjunctions. This weak Kleene conjunction can be defined in terms of \mathcal{L} :

$$\varphi \triangle \psi := \neg (\neg (\varphi \wedge \psi) \wedge \neg (\varphi \wedge \neg \varphi) \wedge \neg (\psi \wedge \neg \psi)).$$

The language \mathcal{L} has no complete expressive power over partial valuations. This means that there are other truth-value functional connectives which cannot be expressed in terms of \mathcal{L} in the way the weak Kleene conjunction above has been defined. A simple example is weak negation \sim , which expresses that its argument is not true. Even when this connective is added to the language some expressive power is still lacking. Complete expressivity is reached

when the 0-ary connective * has been added as well, which is the proposition which is always undefined. The following table adds the truth-values for these additional connectives.⁷

Table 2

$$\begin{array}{|c|c|c|c|}\hline V\models \sim\!\!\varphi \Leftrightarrow V\not\models\varphi & V \models\varphi \\ V\not\models\circledast & V\not\models\circledast \\ \hline \end{array}$$

The connectives in Table 2 have been distinguished from those in Table 1 on purpose. Their separation embodies the difference between partial and three-valued logics. In our view, three-valued logics are logics with three, equally qualified truth-values, while partial logic treats undefinedness as pure non-truth-valuedness. This distinction of determinate truth-values and undefinedness entails two crucial constraints for 'real' partial logics. First, whenever all the parts of some proposition have obtained a truth-value, then the proposition ought to get a truth-value as well, and second, if a proposition contains undefined parts then it may only get a truth-value whenever at least one part has a truth-value. Adherence to these dogmas of partiality leads to abandonment of connectives like \sim , by the latter constraint, and \circledast , by the former requirement. We will not commit ourselves strictly to these principles of partiality, but instead, keep 'non-partial' connectives separated.

DEFINITION 3 The static \mathfrak{P} -denotation $\llbracket \varphi \rrbracket_{\mathfrak{P}}$ of a proposition $\varphi \in \mathcal{L}$ is given by the set of partial valuations which support φ , i.e. $\{V \in \mathfrak{P} \mid V \models \varphi\}$. We say that a set of formulae $\Delta \subseteq \mathcal{L}$ is a \mathfrak{P} -valid consequence of $\Gamma \subseteq \Delta$ whenever all $V \in \mathfrak{P}$ which verify all members of Γ verify at least one of the formulae in Δ . We write

$$\Gamma \models_{\mathfrak{P}} \Delta \ \stackrel{\mathsf{def}}{\Longleftrightarrow} \ \left[igcap_{arphi \in \Gamma} \llbracket arphi
rbracket_{\mathfrak{P}}
ight] \ \subseteq \ \left[igcup_{\psi \in \Delta} \llbracket \psi
rbracket_{\mathfrak{P}}
ight].$$

When an argument in the consequence relation is left blank, then this argument is taken to be the empty set.

Below we will use analogous definitions for other classes of models and languages. A simple replacement of \mathfrak{P} and \mathcal{L} is enough to get the right definitions on the right place.

 $^{^7}$ A proof of this full expressivity of $\mathcal{L}^{\circledast,\sim}$ can be found in [Langholm 1988]. In [van Benthem 1984] the reader finds a functional completeness proof for \mathcal{L}^{\sim} with respect to the class of *closed* and *persistence preserving* connectives. Closedness refers to truth-value determination for the connected proposition whenever its connected parts have all determined truth-values. Persistence preservation of a connective means that persistence of its parts is preserved. A functional completeness proof for $\mathcal{L}^{\circledast}$ with respect to persistence preservation is due to [Blamey 1986]. In [Thijsse 1992] the reader finds an extensive survey on definability in partial logic with additional results for other languages.

⁸Technically, these two claims boil down to closed persistence preservation. By Van Benthem's functional completeness result for \mathcal{L} [van Benthem 1984], the partiality constraints precisely gives us our linguistic means for partial propositional logic.

⁹There is some freedom here. The so-called double barreled consequence definition has also been used, e.g. [Muskens 1989]. This refers to a stricter notion of validity: "all models of Γ verify at least one of Δ and all models which falsify all formulae in Δ falsify at least one element of Γ ". This notion of validity is propagated mainly because it structurally behaves better than our single-barreled definition. The underlying reason is that it restores contraposition. In [Thijsse 1992] the reader finds a classification of different sorts of definitions of valid consequence for partial logics.

OBSERVATION 1 Significant classical validities which are \$\mathfrak{P}\$-invalid are contraposition and the principle of the excluded middle:

The contraposition of the excluded middle, the ex falso principle, is a \mathfrak{P} -validity: $\neg \varphi, \varphi \models_{\mathfrak{P}},^{10}$ which also immediately is a counter-example for contraposition. Many other classical principles are inherited by partial logic, e.g. de Morgan principles, double negation, and the distribution principle for conjunction and disjunction.

1.3 Sequential axiomatizations of partial logics

In this section we give a short presentation of a Gentzen-style sequential axiomatization of \$\mathfrak{P}\$-validity. There are two main reasons to choose this style of deduction. First of all, sequential systems turn out to be very practical when it comes to meta-theory of partial logics, and secondly, they show the logical difference with classical systems very clearly.

DEFINITION 4 In general, we define our sequential format as follows:

$$\frac{\Gamma_1 \vdash \Delta_1 \ldots \Gamma_n \vdash \Delta_n}{\Gamma_{n+1} \vdash \Delta_{n+1}}$$
 (1).

 Γ_i and Δ_i are sets of formulae for all $i \in \{1, \ldots, n+1\}$. The symbol \vdash denotes the derivation relation between these sets of formulae. $\Gamma \vdash \Delta$ is called a *sequent*, Γ is the *assumption set* of this sequent and Δ its *conclusion set*. The fraction notation in (1) must be interpreted as a conditional. The sequents $\Gamma_i \vdash \Delta_i$ with $i \leq n$ are the conditions of the rule in (1), and $\Gamma_{n+1} \vdash \Delta_{n+1}$ is the consequence of this rule. If n=0 then the set of conditions is empty. In this case the rule is said to be *axiomatic*. Because the arguments of the derivation relation are sets, the notations Γ, φ and Γ, Γ' refer to $\Gamma \cup \{\varphi\}$ and $\Gamma \cup \Gamma'$, respectively. Again, empty arguments of sequents refer to the empty set.

A sequential system **S** is a set of such sequential rules. If \mathcal{L}_S is the underlying language, and $\Gamma, \Delta \subseteq \mathcal{L}_S$, then we say that $\Gamma \vdash_S \Delta$ is an **S**-sequent, or Δ is **S**-derivable from Γ , whenever $\Gamma \vdash \Delta$ can be established after a finite number of applications of the rules in **S**.

The arguments of sequents have been chosen to be sets on purpose. It reduces the amount of structural rules. The following table presents the structural rules which are left.

TABLE 3 STRUCTURAL RULES

Take $\varphi = p$. Clearly $[\![p]\!]_{\mathfrak{P}} \cap [\![\neg p]\!]_{\mathfrak{P}} = \emptyset$, while $[\![p]\!]_{\mathfrak{P}} \cup [\![\neg p]\!]_{\mathfrak{P}} \subsetneq \mathfrak{P}$. The valuation with empty domain is not a member of the last set.

The left- and right-hand introduction of connectives are defined in two manners. It may be introduced straight away, the TRUE-introductions, and under the scope of a single negation, the FALSE-rules. This entails four possible introduction rules for every connective. The table below presents the TRUE- and FALSE-rules separately.¹¹

TABLE 4

$$\begin{array}{|c|c|c|c|}\hline & \Gamma, \bot \vdash \Delta & \text{L-TRUE} \ \bot \\ \hline & \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} & \text{L-TRUE} \ \neg \\ \hline & \frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta} & \text{L-TRUE} \ \land & \frac{\Gamma \vdash \varphi, \Delta \ \Gamma' \vdash \psi, \Delta'}{\Gamma, \Gamma' \vdash \varphi \land \psi, \Delta, \Delta'} & \text{R-TRUE} \ \land \\ \hline \end{array}$$

FALSE

The set of rules in Tables 3 and 4 is the system **P**. The only difference with classical propositional logic is the absence of:

$$\frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta} \quad \text{R-TRUE } \neg.$$

This rule, in combination with L-TRUE \neg , establishes contraposition for classical propositional logic. This also means that all FALSE-rules are superfluous in classical logic. They are merely meant as local repairs of the absence of contraposition in partial logics.

OBSERVATION 2 If $\Gamma \vdash_P \Delta$ then there exists finite $\Gamma', \Delta' \subseteq \mathcal{L}$ such that $\Gamma' \vdash_P \Delta'$. This can be proved easily by an induction on the length of **P**-derivations and the finite nature of **P**-derivability. All considered systems in this paper share this finiteness property. We will make use of it without explicit reference.

The following table presents rules for axiomatization of \mathfrak{P} -validity over the corresponding \mathcal{L} -extensions.

¹¹[Fenstad, Langholm & Vespren 1992] propose a slightly more elegant way of dealing with these four different places of introduction. They introduce *quadrants* which are four-placed variants of sequents. There are two additional stacks for explicitly false formulae. This presents a structurally elegant fashion of deduction. Because its style is somewhat unusual and the notation unpractical, we kept to an ordinary sequential style.

Table 5

RULES FOR * AND ~

The systems which contain the \circledast -rules and/or the \sim -rules for the languages $\mathcal{L}^{\circledast}$, \mathcal{L}^{\sim} and $\mathcal{L}^{\circledast,\sim}$ are called \mathbf{P}^{\circledast} , \mathbf{P}^{\sim} and $\mathbf{P}^{\circledast,\sim}$, respectively. The same policy will be maintained for the system \mathbf{ud} in the next section.

THEOREM 1 The system **P** is sound and complete for \mathfrak{P} -validity over the language \mathcal{L} . For all $\Gamma, \Delta \subseteq \mathcal{L}$: $\Gamma \vdash_P \Delta \iff \Gamma \models_{\mathfrak{P}} \Delta$. The same results hold for the extended static derivation systems with weak negation and/or \circledast .

Soundness results are omitted here. They can all be proved by a straightforward induction on the length of derivations. The completeness results are postponed to section 3 where appropriate meta-theoretical equipment will be introduced.

2. Dynamic extensions of partial logic

The extension relation over partial valuations has been given in Definition 1. If $V \sqsubseteq V'$ then V' assigns the same truth-values as V does to all the atoms which appear in the domain of V, but it may have a larger domain than V. Interpreting partial valuations as information states, the extension relation says that V' contains at least as much 'hard' or factual information as V.

2.1 Information models

In this section we will develop dynamic modal logics over the extension relation \sqsubseteq . For this purpose we extend the basic language(s) of the previous section with up- and down-operators: $[\varphi]_u, \langle \varphi \rangle_u, [\varphi]_d, \langle \varphi \rangle_d$. If \mathcal{L}' is some language for partial logic which is closed under the connectives that it employs, then \mathcal{L}'_{ud} will be used to denote the indicated dynamic extension, i.e. the smallest superset of \mathcal{L}' which is closed under the \mathcal{L}' -connectives and the above-mentioned dynamic operators.

The interpretation of the up- and down-operators is analogous to the standard necessity and possibility operators in ordinary modal logic over the relations $[\![\varphi]\!]_{dy}$ and $[\![\varphi]\!]_{dy}^-$ which we have briefly introduced in the preamble of this paper. Possible world models which establish a complete interpretation of this modal framework are so-called information models.

DEFINITION 5 An information model is a triple $M = \langle W, \leq, V \rangle$, such that W is a nonempty set of worlds, or information states, \leq is a pre-order over W, which is called the information relation of M, and V is a monotonic global valuation function, i.e. $V: W \longrightarrow \mathfrak{P}$ is such that for all $w, v \in W$ if $w \leq v$ then also $V(w) \sqsubseteq V(v)$. The class of all information models is denoted by \mathfrak{N} . The up-down extension \mathcal{L}_{ud} of \mathcal{L} obtains an obvious truth-conditional semantics by combining the static semantics of \mathcal{L} with an interpretation of the up- and down-operators over the information relation.

Table 6 Let $M=\langle W,\leq,V\rangle\in\mathfrak{N}$ and $w\in W$:

$$M,w\models p\Leftrightarrow V(w)(p)=1$$
 $M,w\dashv p\Leftrightarrow V(w)(p)=0$

The \mathcal{L} -connectives obtain truth-values according to the decomposition as in Table 1. The additional connectives for the static extensions in the preceding section follow the same decomposition as in Table 2.

$$M, w \models [\varphi]_u \psi \Leftrightarrow \forall v \geq w : M, v \models \varphi \Rightarrow M, v \models \psi$$

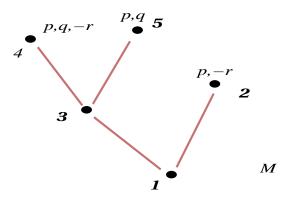
$$M, w \models [\varphi]_u \psi \Leftrightarrow \exists v \geq w : M, v \models \varphi \& M, v \models \psi$$

$$M, w \models [\varphi]_d \psi \Leftrightarrow \forall v \leq w : M, v \not\models \varphi \Rightarrow M, v \models \psi$$

$$M, w \models [\varphi]_d \psi \Leftrightarrow \exists v \leq w : M, v \not\models \varphi \& M, v \models \psi$$

$$M, w \models [\varphi]_d \psi \Leftrightarrow \exists v \leq w : M, v \not\models \varphi \& M, v \models \psi$$

FIGURE 1



Here is a simple information model M. The proposition letters are the atoms which are locally verified. The minus symbol refers to local falsification.

DEFINITION 6 The following sets stipulate different interpretation sets for a given proposition φ .

$$egin{align*} \llbracket arphi
rbracket_{\mathfrak{N}} &= \{ \langle M, w
angle \mid M, w \models arphi \} \ \llbracket arphi
rbracket_{\mathfrak{N}}^{M} &= \{ w ext{ in } M \mid M, w \models arphi \} \ \llbracket arphi
rbracket_{\mathfrak{N}}^{(M,w)} &= \{ u ext{ in } M \mid w \leq u ext{ \& } M, u \models arphi \} \ \llbracket arphi
rbracket_{\mathfrak{N}}^{(M,w),-} &= \{ u ext{ in } M \mid u \leq w ext{ \& } M, u \not\models arphi \} \ \end{align*}$$

The first set represents the global static meaning of φ , while the second represents the local – with respect to $M \in \mathfrak{N}$ – static meaning of φ . The two last sets denote context-sensitive interpretations of φ . The first of them is the contextual – with respect to the information

state w in M – meaning of φ , that is, the extensions of w which verify φ . The second set is the negative contextual meaning of φ with respect to w in M. These contextual interpretations entail the local dynamic relational interpretations by abstracting over the contextual information states:

$$\llbracket arphi
rbracket_{\mathfrak{N},dy}^{oldsymbol{M},(-)} = \{ \langle w,u
angle \mid u \in \llbracket arphi
rbracket_{\mathfrak{N}}^{\langle oldsymbol{M},w
angle,(-)} \}.$$

We define $\langle \varphi \rangle_u$ and $\langle \varphi \rangle_d$ by means of the strong negation: $\neg [\varphi]_u \neg$ and $\neg [\varphi]_d \neg$, respectively. This yields an ordinary poly-modal $\Box \diamondsuit$ -format over the local dynamic relations above.

Every state of information has its factual static information specified by means of a local partial valuation, and the information relation specifies a structural extension relation between the states. This information relation is a subrelation of the extension relation over the local partial valuations, and not identical to it. Information states also contain information in the way they can be extended. Additional dynamic information constrains the set of possible local partial valuations as extensions. The example model in Figure 1 illustrates clearly the context-sensitivity of dynamic interpretation. For example, $M, 3 \models [p]_u q$ while $M, 1 \not\models [p]_u q$, still, their local valuations are the same (empty). Speaking in dynamic terms, p has the same meaning as q in 3. This is certainly not the case in context 1.

An important aspect of formulae is their preservation behavior with respect to the information order. Formulae that are *persistent* are the ones which are maintained in upward direction of the information relation. Anti-persistent information is information which will never be lost when going downwards. Examples of persistent formulae are provided by the complete static language \mathcal{L} , and formulae of the form $[\varphi]_u \psi$ and $\langle \varphi \rangle_d \psi$. Examples of anti-persistent formulae are formulae of the form $[\varphi]_d \psi$ and $\langle \varphi \rangle_u \psi$.

DEFINITION 7 A formula φ is persistent if for all $M \in \mathfrak{N}$ with information relation \leq and w, v in $M: M, w \models \varphi \& w \leq v \implies M, v \models \varphi$. A formula φ is anti-persistent if for all $M \in \mathfrak{N}$ with information relation \leq and w, v in $M: M, w \models \varphi \& v \leq w \implies M, v \models \varphi$.

2.2 Application of information models

Information models have been employed in different fields of pure and applied logic. With respect to the former category these models closely resemble the kind of Kripke structures which are used as models for Heyting's intuitionistic logic [Kripke 1965]. They differ from the information models of the previous subsection only in the global valuation function. In this case the valuation function is taken to be a map from the states to subsets of atoms which is monotonic over the information order. Falsity does not have an intuitionistic status. Nelson [Nelson 1949] extended intuitionistic logic with a constructive notion of falsity. Information models provide a precise semantics for this logic of constructible falsity [Gurevich 1977]. In fact, this logic is a subsystem of the up and down formalism of the previous section. The language consists of $\mathcal L$ with an additional implication \to . The truth of $\varphi \to \psi$ coincides with $[\varphi]_u \varphi$ as in intuitionistic logic, while its falsity has an extensional denotation: $\varphi \land \neg \psi$.

In the field of non-monotonic logic information models have been used in [Turner 1984]. Turner defines an ordinary $\Box \diamondsuit$ modal logic over the information relation on the basis of an

¹²A good survey on Kripke semantics for intuitionistic logic is [Fitting 1969].

extension of \mathcal{L} with these standard modal operators. $\Box \varphi$ is the same as $[\top]_u \varphi$ and $\Diamond \varphi$ is dually defined: $\neg \Box \neg \varphi$.

A slight variation of information models has been employed by [Veltman 1985] as socalled data-semantics for model-theoretic analysis of natural language conditionals. The models which are used there are the same as the information models above with an additional refinability constraint. This constraint says that every information state can be extended with the truth of a proposition φ or its falsity. For a model $M = \langle W, \leq, V \rangle$:

$$\forall s \in W \ \forall \varphi \ \exists t \in W : s \leq t \ ext{and} \ (M, t \models \varphi \ ext{or} \ M, t \models \varphi).$$

Veltman's conditionals $\varphi \leadsto \psi$ obtain the same meaning of $[\varphi]_u \varphi$ both for truth and falsity.

2.3 Axiomatizations for partial up and down logics

The following Tables 7 and 8 present a sequential axiomatization of the partial up and down logics which have been defined in the previous subsection. The system, which is obtained by putting **P** and the rules of the two next tables together, is called **ud**. To begin with we need to register many so-called *persistence rules* and some variations.

TABLE 7 Persistence rules

$$\begin{array}{|c|c|c|c|c|} \hline & \Gamma \vdash p, \Delta & p \in I\!\!P \\ \hline & \Gamma \vdash [\varphi]_u p, \Delta \\ \hline & \Gamma \vdash [\varphi]_u p, \Delta \\ \hline & \Gamma \vdash [\varphi]_u \chi, \Delta \\ \hline & \Gamma \vdash [\varphi]_u [\psi]_u \chi, \Delta \\ \hline & \Gamma \vdash [\varphi]_u [\psi]_u \chi, \Delta \\ \hline & \Gamma \vdash [\varphi]_u [\psi]_u \chi, \Delta \\ \hline & \Gamma \vdash [\varphi]_u [\psi]_u \chi, \Delta \\ \hline & \Gamma \vdash [\varphi]_u [\psi]_u \chi, \Delta \\ \hline & \Gamma \vdash [\varphi]_u [\psi]_u \chi \vdash \Delta \\ \hline & \Gamma \vdash [\varphi]_u [\psi]_u \chi \vdash \Delta \\ \hline & \Gamma \vdash [\varphi]_u [\psi]_u \chi, \Delta \\ \hline & \Gamma \vdash [\varphi]_u [\psi]_u$$

The first two rules record the persistence of literals. This means that literals are preserved when we extend information states. This captures the monotonicity of the global valuation functions over information models. The second pair of rules takes care of persistence for formulae of the form $[\varphi]_u \psi$ and $\langle \varphi \rangle_d \psi$. The third pair of rules are contrapositional formulations of these persistence rules. They need to be installed, because **ud** lacks contraposition just like **P**. The two last pairs arrange the anti-persistence for formulae of the form $\langle \varphi \rangle_u \psi$ and $[\varphi]_d \psi$ in the same manner.

The following table presents the introduction rules for the dynamic modal operators.

Table 8

UP AND DOWN RULES

These rules look pretty entangled, but removing the Γ and Δ 's make them look far more familiar. If we take $\Gamma = \Delta = \emptyset$ in the first pair (TRUE UP) modus ponens and a weak version of the deduction rule (implication introduction) appear. Removing the Γ and Δ 's from the other rules give different permutational completions of these well-known rules.

Example 1

Modi Ponentes

DEDUCTION RULES

$$[\varphi]_u \, \psi, \varphi \vdash_{ud} \psi \qquad [\varphi]_d \, \psi \vdash_{ud} \varphi, \psi$$
$$\varphi, \psi \vdash_{ud} \langle \varphi \rangle_u \, \psi \qquad \psi \vdash_{ud} \langle \varphi \rangle_d \, \psi, \varphi$$

The deduction rules are only valid with an empty assumption set. In general we do not have $\Gamma, \varphi \vdash_{ud} \psi \Rightarrow \Gamma \vdash_{ud} [\varphi]_u \psi$. This only holds when all members of Γ are all persistent in a deductive way, i.e. in terms of ud. If Δ is also ud-anti-persistent, we even have: $\Gamma, \varphi \vdash_{ud} \psi, \Delta \Rightarrow \Gamma \vdash_{ud} [\varphi]_u \psi, \Delta.$

DEFINITION 8 Let $\Gamma \subseteq \mathcal{L}_{ud}$. The ud-persistent part $\mathbf{p}_{ud}\Gamma$ of Γ is the set $\{\varphi \in \Gamma \mid \varphi \vdash_{ud} \Gamma \}$ $[\top]_u \varphi$; the **ud**-anti-persistent part \mathbf{ap}_{ud} of Γ is $\{\varphi \in \Gamma \mid \varphi \vdash_{ud} [\bot]_d \varphi\}$. In other words, for ud-persistent formulae we can derive by means of the ud-rules that they are preserved in upward direction. For ud-anti-persistent we can derive that they are preserve downwards.

EXAMPLE 2

STRENGTHENED DEDUCTION RULES

For all
$$\Gamma \subseteq \mathbf{p}_{ud}\mathcal{L}_{ud}$$
, $\Delta \subseteq \mathbf{ap}_{ud}\mathcal{L}_{ud}$:
$$\Gamma, \varphi \vdash_{ud} \psi, \Delta \Rightarrow \Gamma \vdash_{ud} [\varphi]_u \psi, \Delta \qquad \Gamma, \varphi, \psi \vdash_{ud} \Delta \Rightarrow \Gamma, \langle \varphi \rangle_u \psi \vdash_{ud} \Delta$$

$$\Delta \vdash_{ud} \varphi, \psi, \Gamma \Rightarrow \Delta \vdash_{ud} [\varphi]_d \psi, \Gamma \qquad \Delta, \psi \vdash_{ud} \varphi, \Gamma \Rightarrow \Delta, \langle \varphi \rangle_d \psi \vdash_{ud} \Gamma$$

Note that Δ and Γ have mutually exchanged their sequential position in the last two rules. For getting a complete deduction rule for the down-operators an anti-persistent assumption set and a persistent conclusion set is required. Some other important classes of ud-sequents are given in the following example.

EXAMPLE 3

SIMPLIFICATION OF $\langle \varphi \rangle_u$ AND $[\varphi]_d$

DUALITY PRINCIPLES

$$\langle \varphi \rangle_{u} \psi \equiv_{ud} \langle \psi \rangle_{u} \varphi \equiv_{ud} \langle \top \rangle_{u} (\varphi \wedge \psi)$$
$$[\varphi]_{d} \psi \equiv_{ud} [\psi]_{d} \varphi \equiv_{ud} [\bot]_{d} (\varphi \vee \psi)$$

$$\begin{array}{c|cccc} \langle \top \rangle_u \, [\bot]_d \varphi \vdash_{ud} \varphi & \varphi \vdash_{ud} [\top]_u \, \langle \bot \rangle_d \varphi \\ \\ \langle \bot \rangle_d \, [\top]_u \varphi \vdash_{ud} \varphi & \varphi \vdash_{ud} [\bot]_d \, \langle \top \rangle_u \varphi \end{array}$$

MODALITY REDUCTIONS

$$[\top]_{u} [\varphi]_{u} \psi \equiv_{ud} \langle \bot \rangle_{d} [\varphi]_{u} \psi \equiv_{ud} [\varphi]_{u} \psi$$

$$[\bot]_{d} \langle \varphi \rangle_{u} \psi \equiv_{ud} \langle \top \rangle_{u} \langle \varphi \rangle_{u} \psi \equiv_{ud} \langle \varphi \rangle_{u} \psi$$

$$[\bot]_{d} [\varphi]_{d} \psi \equiv_{ud} \langle \top \rangle_{u} [\varphi]_{d} \psi \equiv_{ud} [\varphi]_{d} \psi$$

$$[\top]_{u} \langle \varphi \rangle_{d} \psi \equiv_{ud} \langle \bot \rangle_{d} \langle \varphi \rangle_{d} \psi \equiv_{ud} \langle \varphi \rangle_{d} \psi$$

The duality principles illustrate the converse interpretation of the up- and down-operators, which are known from temporal logic. The modality reductions rephrase the persistence and anti-persistence briefly.

THEOREM 2 The system **ud** is sound and complete for \mathfrak{N} -validity over the language \mathcal{L}_{ud} : for all $\Gamma, \Delta \subseteq \mathcal{L}_{ud}$: $\Gamma \vdash_{ud} \Delta \iff \Gamma \models_{\mathfrak{N}} \Delta$. These results also hold for the extended up and down systems $\mathbf{ud}^{\circledast}$, \mathbf{ud}^{\sim} and $\mathbf{ud}^{\circledast,\sim}$.

Proof. Soundness of the **ud**-system is omitted. The completeness is postponed to the next section.

3. Completeness and Decidability

In this section the completeness proof for **ud** is presented. We follow the Henkin procedure on the basis of so-called *saturated sets*. This concept is a generalization of maximally consistent sets¹³ which are used for this purpose in standard modal logic [Hughes & Cresswell 1984]. A decidability proof of **ud** can be obtained by means of a fairly simple filtration technique.

3.1 Saturated sets

DEFINITION 9 Let **S** be a certain sequential derivation system, and let \mathcal{L}_S be its language. **S** is consistent iff $\emptyset \not\vdash_S \emptyset$. A set of formulae $\Gamma \subseteq \mathcal{L}_S$ is said to be **S**-consistent, whenever $\Gamma \not\vdash_S \emptyset$. A set of formulae $\Gamma \subseteq \mathcal{L}_S$ is said to be **S**-saturated whenever for all $\Delta \subseteq \mathcal{L}_S$:

$$\Gamma \vdash_S \Delta \Rightarrow \Delta \cap \Gamma \neq \emptyset$$
.

The collection of all S-saturated sets will be denoted by \mathfrak{Sat}_S in the sequel of the text. $\Lambda \subseteq \mathcal{L}_S$ is an S-saturator of a set $\Gamma \subseteq \mathcal{L}_S$ whenever for all $\Delta \subseteq \mathcal{L}_S$:

$$\Gamma \vdash_S \Delta \Rightarrow \Delta \cap \Lambda \neq \emptyset$$
.

We will call Γ an **S**-saturant of Λ . We abbreviate this relation between Γ and Λ by $\Gamma \subseteq \Lambda$.

¹³A maximally consistent set is a consistent set which cannot be extended without losing its consistency.

The following proposition shows that if negation may be shifted according to L- and R-TRUE \neg saturation and maximal consistency most often coincide.

PROPOSITION 1 For every system S which contains the START, the L-MON rule and the L- and R-TRUE ¬ all S-saturated sets are maximally S-consistent.

Proof. Let **S** be a system which contains the above-mentioned rules. Both $\varphi, \neg \varphi \vdash_S (1)$ and $\vdash_S \varphi, \neg \varphi$ (2). Let $\Gamma, \Delta \in \mathfrak{Sat}_S$ with $\Gamma \subsetneq \Delta$, which says that there exists $\varphi \in \mathcal{L}_S$ such that $\varphi \not\in \Gamma$ (3) and $\varphi \in \Delta$ (4). Because $\Gamma \in \mathfrak{Sat}_S$, (2) and (3), we have $\neg \varphi \in \Gamma$, and so, $\neg \varphi \in \Delta$. This conclusion, in combination with (4) and (1), yields $\Delta \vdash_S \emptyset$, which contradicts $\Delta \in \mathfrak{Sat}_S$.

This proposition proves that for classical propositional logic the two notions are equal. In partial logic they are obviously different. Maximal consistency implies saturation, but not the other way around.

The notion of saturated sets has been introduced in the field of intuitionistic logic [Aczel 1968] [Thomason 1968].¹⁴ In these papers saturated sets are defined by three independent properties which we obtain by substitution of 0, 1 and 2 for the cardinality of Δ in the definition of saturation above. Such definitions work perfectly when the underlying language contains a disjunction which captures the multiplicity of the right-hand arguments of the sequents.

OBSERVATION 3 Let S be a sequential derivation system with language \mathcal{L}_S which contains a disjunction \vee such that for all $\Gamma, \Delta \subseteq \mathcal{L}_S$ and $\varphi, \psi \in \mathcal{L}_S$: $\Gamma \vdash_S \varphi, \psi, \Delta \iff \Gamma \vdash_S \varphi \vee \psi, \Delta$. A set of formulae is S-saturated iff

```
\begin{split} \Gamma \not \vdash \emptyset, \\ \Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma, \\ \Gamma \vdash \varphi \lor \psi \Rightarrow \varphi \in \Gamma \text{ or } \psi \in \Gamma. \end{split}
```

The first two properties immediately follow from the definition of saturation. The first has been defined as consistency. Sets which obey the second property are called *theories*. The last properties is often called saturation, but we have chosen this name for the sequential definition, which captures all the three properties and which also applies to longer conclusion arguments of sequents. This is very useful when we deal with a disjunction-free language.

The definition of a saturator is particularly important for proving completeness for partial intensional logics like \mathbf{ud} . We will prove that for every system which contains the structural rules of \mathbf{P} the relation $\Gamma \subseteq_S \Lambda$ is the same as the existence of an \mathbf{S} -saturated set between Γ and Λ . The relevance of this result is that saturators entail an upper bound for searching saturated sets, which is often required in proving completeness in the Henkin tradition for partial intensional logics. Usually one looks for 'states' which contain certain information but which may not be too specified. Many completeness results for partial modal logics can easily be obtained by proving saturation relations of this kind [Jaspars 1994].

¹⁴Intuitionistic logic only has a restricted version of R-TRUE \neg . It may be applied only with an empty conclusion set: $\Gamma, \varphi \vdash \emptyset \Longrightarrow \Gamma \vdash \neg \varphi$. This restricted version keeps saturation and maximal consistency apart as well.

LEMMA 1 Let **S** be a sequential derivation system which contains the CUT rule. If $\Gamma \subseteq_S \Lambda$ and $\Gamma \vdash_S \Delta$ for a finite set $\Delta \subseteq \mathcal{L}_S$, then there exists $\delta \in \Delta$ such that $\Gamma \cup \{\delta\} \subseteq_S \Lambda$.

Proof. Let $\Gamma \unlhd_S \Lambda$ and $\Gamma \vdash_S \Delta$ with Δ finite, and suppose that $\Gamma \cup \{\delta\} \not \supseteq_S \Lambda$ for all $\delta \in \Delta$. This means that for all $\delta \in \Delta$ there exists $\Sigma_\delta \subseteq \mathcal{L}_S$ such that

$$\Gamma, \delta \vdash_S \Sigma_{\delta} \text{ and } \Sigma_{\delta} \cap \Lambda = \emptyset.$$

Let $\Sigma := \bigcup_{\delta \in \Delta} \Sigma_{\delta}$. R-Mon yields $\Gamma, \delta \vdash_S \Sigma$ for all $\delta \in \Delta$. Applying cut to this last S-sequent and the assumption $\Gamma \vdash_S \Delta$ yields $\Gamma \vdash_S \Delta - \delta, \Sigma$. Repetition of cut-application for all δ 's completely eliminates Δ from the last S-sequent. In short, $\Gamma \vdash_S \Sigma$. Because $\Gamma \unlhd_S \Lambda$ we conclude $\Sigma \cap \Lambda \neq \emptyset$. This contradicts that $\Sigma_{\delta} \cap \Lambda = \emptyset$ for all $\delta \in \Delta$.

This lemma shows that saturants can be extended in such a way that they remain saturants of the same saturator. In fact, a saturant can always be saturated in this way. The following lemma which formulates this result is called the *bounded saturation lemma*.

LEMMA 2 Suppose **S** is a sequential derivation system containing the structural rules START, L-MON, R-MON and CUT. If $\Lambda \subseteq \mathcal{L}_S$ is an **S**-saturator of $\Gamma \subseteq \mathcal{L}_S$, then Λ contains an **S**-saturated set Γ^* such that $\Gamma \subseteq \Gamma^*$.

Proof. Let $\Gamma \subseteq S$ Λ and let $\{\varphi_i\}_{i \in \mathbb{N}}$ be an enumeration of Λ . We define the following sequence of subsets of \mathcal{L}_S

$$egin{aligned} \Gamma_0 &:= \Gamma \ \Gamma_{n+1} &:= \left\{egin{array}{ll} \Gamma_n \cup \{arphi_n\} & ext{if} & \Gamma_n \cup \{arphi_n\} \ ext{} \subseteq_S \Lambda \ \Gamma_n & ext{otherwise}. \end{array}
ight. \end{aligned}$$

Furthermore we take $\Gamma^* \subseteq \mathcal{L}_S$ to be the limit of this sequence:

$$\Gamma^* := \bigcup_{n \in I\!\!N} \Gamma_n$$
.

 $\Gamma \subseteq \Gamma^* \subseteq \Lambda$ is immediately clear from the definition of Γ^* above. Another direct consequence of the construction above is $\Gamma_n \subseteq S$ Λ for all $n \in \mathbb{N}$. What is left to show is $\Gamma^* \in \mathfrak{Sat}_S$.

Suppose $\Gamma^* \vdash_S \Delta$. We need to prove $\Gamma^* \cap \Delta \neq \emptyset$. The assumption set can be reduced to a finite sequence $\gamma_1, \ldots, \gamma_m$ in Γ^* such that $\gamma_1, \ldots, \gamma_m \vdash_S \Delta$ (see Observation 2). Because every member of Γ^* is a member of some Γ_i , this means that there exists Γ_k such that $\{\gamma_1, \ldots, \gamma_m\} \subseteq \Gamma_k$. This implies $\Gamma_k \vdash_S \Delta$ by L-Mon. Since $\Gamma_k \trianglelefteq_S \Lambda$, we also have $\Delta \cap \Lambda \neq \emptyset$. Because $\Delta \subseteq \mathcal{L}_S$ has been picked arbitrarily as an S-conclusion set of Γ^* we have $\Gamma^* \trianglelefteq_S \Lambda$. This conclusion, combined with Lemma 1, guarantees the existence of a formula $\delta \in \Delta$ such that

$$\Gamma^* \cup \{\delta\} \leq_S \Lambda$$
.

 $[\]frac{1^{5}\Gamma_{n}\subseteq\Gamma_{n+1} \text{ for all } n\in I\!\!N. \text{ Let } \gamma_{i}\in\Gamma_{n_{i}} \text{ for all } i=1,\ldots,m, \text{ and take } k=\max_{i=1\ldots m}n_{i}. \text{ This ensure } \gamma_{i}\in\Gamma_{k} \text{ for all } i=1,\ldots,m.$

This result also ensures that $\Gamma_n \cup \{\delta\} \subseteq_S \Lambda$ for all $n \in \mathbb{N}$. This establishes the desired result: $\Gamma_n \cup \{\delta\} \subseteq_S \Lambda$ for all $n \in \mathbb{N}$. Because $\Gamma_l \cup \{\varphi_l\} \subseteq_S \Lambda$, we know that $\delta \in \Gamma_{l+1}$ by the inductive definition of the sequence $\{\Gamma_n\}_{n \in \mathbb{N}}$. We conclude $\delta \in \Gamma^*$, and so $\Gamma^* \cap \Delta \neq \emptyset$. This establishes the desired result: $\Gamma^* \in \mathfrak{Sat}_S$.

OBSERVATION 4 In fact this lemma is equivalent (given the **P**-structural rules) with the socalled saturation lemma or generalized Lindenbaum-lemma. This result says that if $\Gamma \not\vdash_S \Delta$ then there exists a $\Sigma \in \mathfrak{Sat}_S$ such that $\Gamma \subseteq \Sigma$ and $\Delta \cap \Sigma = \emptyset$.¹⁷ Note that whenever **S** contains the rule L-MON then $\Gamma \unlhd_S \Lambda \iff \Gamma \not\vdash_S \mathcal{L}_S \setminus \Lambda$. So, if **S** contains the structural rules of **P** and **ud**, then the bounded saturation lemma is the same as the saturation lemma by means of this equivalence.¹⁸

The equivalence of the normal saturation lemma with the bounded version may give the impression that Lemma 2 is superfluous here. Technically speaking it is, but its upper bound formulation has made completeness proofs for partial modal logics far more transparent.¹⁹ As said earlier, due to the bounded formulation, many completeness proofs of partial modal systems come down to the establishment of one or more saturation equations.

Moreover, the proof of Lemma 2 is a generalization of the standard proof of Lindenbaum's lemma, which says that every consistent set has a maximally consistent extension. This result would immediately follow when $\Lambda = \mathcal{L}_S$ is chosen in the proof of Lemma 2. Many proofs of the ordinary saturation lemma have a somewhat deviant nature (e.g. [Troelstra & van Dalen 1990]).²⁰

3.2 The completeness of partial logics

The completeness proofs of **P** and its extensions is fairly easy. Take \mathfrak{Sat}_P , and associate to every $\Sigma \in \mathfrak{Sat}_P$ a partial valuation function V_{Σ} which is defined by its content:

$$V_{\Sigma}(p) = \left\{egin{array}{ll} 1 & ext{iff } p \in \Sigma \ \ 0 & ext{iff }
eg p \in \Sigma \end{array}
ight.$$

This definition together with the individual derivation rules ensure that $V_{\Sigma} \models \varphi$ iff $\varphi \in \Sigma$ for all $\Sigma \in \mathfrak{Sat}_P$ and $\varphi \in \mathcal{L}$ (1). This can be proved by a straightforward induction, and can be extended for the extended systems in the same fashion. If $\Gamma \not\vdash_P \Delta$ then there exists $\Theta \in \mathfrak{Sat}_P$ such that $\Gamma \subseteq \Theta$ and $\Delta \cap \Theta = \emptyset$. According to (1) above, this means that $V_{\Theta} \models \varphi$ and $V_{\Theta} \not\models \psi$ for all $\varphi \in \Gamma$ and $\psi \in \Delta$, and therefore, $\Gamma \not\models_{\mathfrak{P}} \Delta$.

¹⁶ All subsets of **S**-saturants are **S**-saturants by the L-MON rule. Dually, by R-MON, all supersets of **S**-saturators are at least **S**-saturators of the same saturants. Formally, $\Sigma' \subseteq \Sigma$, $\Theta \subseteq \Theta'$, $\Sigma \subseteq S$, $\Theta \Rightarrow \Sigma' \subseteq S$, Θ' .

¹⁷Most often this result is formulated for singleton Δ 's [Aczel 1968]. The sequential variant can be found in [Thijsse 1992].

¹⁸Elias Thijsse has pointed this out to me.

¹⁹Completeness proofs for partial modal logic with incomplete static expressivity has turned out to be pretty troublesome [Thijsse 1992]. Also normal form techniques used long intransparent proofs [Jaspars 1993b].

²⁰The proof of Lemma 2 and the formulation are linguistically independent. Due to our sequential setting and the general definition of saturation, it can be used for many logics with poor expressivity, and does not rely on the presence of certain connectives like the disjunction.

3.3 The completeness of ud

The canonical model for the system **ud**, which we need to run the Henkin procedure, is given by the following definition.

DEFINITION 10 The ud-canonical model is the triple $M_{ud} = \langle \mathfrak{Sat}_{ud}, \ll_{ud}, V_{ud} \rangle$ where for all $\Gamma, \Delta \in \mathfrak{Sat}_{ud}$ and $p \in \mathbb{P}$:

$$\Gamma \ll_{ud} \Delta \iff \mathbf{p}_{ud} \Gamma \subseteq \Delta \ \& \ \mathbf{ap}_{ud} \Delta \subseteq \Gamma, ext{ and}$$
 $V_{ud}(\Gamma)(p) = \left\{egin{array}{l} 1 & ext{iff } p \in \Gamma \ 0 & ext{iff }
eg p \in \Gamma \end{array}
ight.$

Recall that $\mathbf{p}_{ud}\Gamma = \{ \varphi \in \Gamma \mid \varphi \vdash_{ud} [\top]_u \varphi \}$ and $\mathbf{ap}_{ud}\Delta = \{ \varphi \in \Delta \mid \varphi \vdash_{ud} [\bot]_d \varphi \}$ (see definition 8).

OBSERVATION 5 We leave it to the reader to show that $M_{ud} \in \mathfrak{N}$, i.e. V_{ud} is monotonic over \ll_{ud} and \ll_{ud} is a pre-order.

We give the so-called *truth-lemma* of **ud** first. This lemma almost establishes the desired result.

LEMMA 3 M_{ud} , $\Gamma \models \varphi \Leftrightarrow \varphi \in \Gamma$ and M_{ud} , $\Gamma \models \varphi \Leftrightarrow \neg \varphi \in \Gamma$ for all $\Gamma \in \mathfrak{Sat}_{ud}$, $\varphi \in \mathcal{L}_{ud}$.

Proof. By induction on the construction of \mathcal{L}_{ud} -formulae. We skip the basic step and the proofs of the static connectives. For the dynamic modal operators there are four cases which are nearly immediately obtainable from the definition of \ll_{ud} . These four 'easy' cases are:

- (i) $[\varphi]_u \psi \in \Gamma \Rightarrow M_{ud}, \Gamma \models [\varphi]_u \psi$,
- (ii) $M_{ud}, \Gamma = [\varphi]_u \psi \Rightarrow \neg [\varphi]_u \psi \in \Gamma$,
- (iii) $[\varphi]_d \psi \in \Gamma \Rightarrow M_{ud}, \Gamma \models [\varphi]_d \psi$,
- (iv) $M_{ud}, \Gamma = [\varphi]_d \psi \Rightarrow \neg [\varphi]_d \psi \in \Gamma.$

We will demonstrate the first and the last step. The two others are left to the reader.

$$[\varphi]_u \psi \in \Gamma \implies ([\varphi]_u \psi \vdash_{ud} [\top]_u [\varphi]_u \psi, \text{ Example 3: Modality reductions})$$

$$\forall \Delta \gg_{ud} \Gamma : [\varphi]_u \psi \in \Delta \implies (\varphi, [\varphi]_u \psi \vdash_{ud} \psi, \text{ Example 1: Modi ponentes})$$

$$\forall \Delta \gg_{ud} \Gamma : \varphi \in \Delta \Rightarrow \psi \in \Delta \implies \text{(induction hypothesis)}$$

$$\forall \Delta \gg_{ud} \Gamma : M_{ud}, \Delta \models \varphi \Rightarrow M_{ud}, \Delta \models \psi \implies M_{ud}, \Gamma \models [\varphi]_u \psi.$$

$$\neg [\varphi]_d \psi \notin \Gamma \implies (\neg [\varphi]_d \psi \vdash_{ud} [\top]_u \neg [\varphi]_d \psi, \text{ Example 3: Modality reductions})$$

$$\forall \Delta \ll_{ud} \Gamma : \neg [\varphi]_d \psi \not\in \Delta \implies (\varphi \vdash_{ud} \neg [\varphi]_d \psi, \neg \psi, \text{ Example 1: modi ponentes})$$

$$\forall \Delta \ll_{ud} \Gamma : \varphi \not\in \Delta \Rightarrow \neg \psi \not\in \Delta \implies \text{(induction hypothesis)}$$

$$\forall \Delta \ll_{ud} \Gamma : M_{ud} \not\models \varphi \Rightarrow M_{ud} \not= \psi \implies M_{ud}, \Gamma \not= [\varphi]_d \psi.$$

The completing converse results of these four 'easy' cases are consequences of the following sequential statements, in combination with the bounded saturation lemma (Lemma 2). In

these saturation equations $\Gamma \cup \{\varphi\}$ and $\Gamma \setminus \{\varphi\}$ are abbreviated by $\Gamma + \varphi$ and $\Gamma - \varphi$ respectively. Furthermore, the non-ud-persistent part, $\mathcal{L}_{ud} \setminus \mathbf{p}_{ud} \mathcal{L}_{ud}$ and the non-ud-anti-persistent part, $\mathcal{L}_{ud} \setminus \mathbf{ap}_{ud} \mathcal{L}_{ud}$ of \mathcal{L}_{ud} are abbreviated by NP and NAP, respectively.

$$(v) \quad [\varphi]_u \psi \not\in \Gamma \quad \Rightarrow \quad \mathbf{p}_{ud} \Gamma + \varphi \trianglelefteq_{ud} \Gamma \cup \mathtt{NAP} - \psi$$

$$(\mathit{vi}) \quad
eg [arphi]_u \psi \in \Gamma \quad \Rightarrow \quad \mathbf{p}_{ud} \Gamma + arphi +
eg \psi ext{ } extstyle extstyle d } \Gamma \cup \mathtt{NAP}$$

$$(vii) \quad [\varphi]_d \psi \not\in \Gamma \quad \Rightarrow \quad \mathbf{ap}_{ud} \Gamma \trianglelefteq_{ud} \Gamma \cup \mathtt{NP} - \varphi - \psi$$

$$(\mathit{viii}) \quad
eg[arphi]_d \psi \in \Gamma \quad \Rightarrow \quad \mathbf{ap}_{ud} \Gamma +
eg \psi \leq_{ud} \Gamma \cup \mathtt{NP} - arphi$$

These saturation relations may seem complicated statements. The following simple derivations explain why they lead to immediate success. For the sake of brevity we only prove that the claims (v) and (viii) give us the desired results: $(v) \Rightarrow M_{ud}, \Gamma \not\models [\varphi]_u \psi$ and $(viii) \Rightarrow M_{ud}, \Gamma \models [\varphi]_d \psi$.

$$\begin{array}{ll} (v) & \Longrightarrow & \exists \Delta \in \mathfrak{Sat}_{ud} : \mathbf{p}_{ud}\Gamma \subseteq \Delta \subseteq \Gamma \cup \mathtt{NAP} \ \& \ \varphi \in \Delta \ \& \ \psi \not \in \Delta \\ & \Longrightarrow & \Gamma \ll_{ud} \Delta \ \& \ M_{ud}, \Delta \models \varphi \ \& \ M_{ud}, \Delta \not \models \psi \\ & \Longrightarrow & M_{ud}, \Gamma \not \models [\varphi]_u \psi. \end{array}$$

The first step consists of the application of the bounded saturation lemma to (v). $\Gamma \ll_{ud} \Delta$ follows from the consequence and the simple observation that $\mathbf{ap}_{ud}(\Gamma \cup \text{NAP}) = \mathbf{ap}_{ud}\Gamma \subseteq \Gamma$, and therefore $\mathbf{ap}_{ud}\Delta \subseteq \Gamma$. The last step is due to application of the induction hypothesis.

$$\begin{array}{ll} (\emph{viii}) & \Longrightarrow & \exists \Delta \in \mathfrak{Sat}_{ud} : \mathbf{ap}_{ud} \Gamma \subseteq \Delta \subseteq \Gamma \cup \mathtt{NP} \ \& \ \varphi \not\in \Delta \ \& \ \neg \psi \in \Delta \\ & \Longrightarrow & \Delta \ll_{ud} \Gamma \ \& \ M_{ud}, \Delta \not\models \varphi \ \& \ M_{ud}, \Delta \rightrightarrows \psi \\ & \Longrightarrow & M_{ud}, \Gamma \rightrightarrows [\varphi]_d \psi. \end{array}$$

The first step is an application of the bounded saturation lemma again. The result implies $\Delta \ll_{ud} \Gamma$ because $\mathbf{p}_{ud}(\Gamma \cup \mathtt{NP}) = \mathbf{p}_{ud}\Gamma \subseteq \Gamma$, and so $\mathbf{p}_{ud}\Delta \subseteq \Gamma$. Again, the last step follows from the induction hypothesis. The proofs of $(vi) \Rightarrow M_{ud}, \Gamma \models [\varphi]_u \psi$ and $(vii) \Rightarrow M_{ud}, \Gamma \not\models [\varphi]_d \psi$ are left to the reader.

What is left to show is the validity of the claims (v) - (viii). We only prove the first and the last claim. The other two can be reproduced through mere analogy.

Suppose $[\varphi]_u \psi \not\in \Gamma$.

Let $\Sigma \subseteq \mathcal{L}_{ud}$ such that $\mathbf{p}_{ud}\Gamma, \varphi \vdash_{ud} \Sigma$. We need to prove that

(a)
$$\Sigma \cap (\Gamma \cup \text{NAP} - \psi) \neq \emptyset$$
.

If $\Sigma \cap (\text{NAP} - \psi) \neq \emptyset$, then we are done. So, suppose $\Sigma \cap (\text{NAP} - \psi) = \emptyset$, which is the same as $\Sigma \subseteq \mathbf{ap}_{ud}\mathcal{L}_{ud} + \psi$. In other words, *all* non- ψ -elements of Σ are **ud**-anti-persistent, i.e. $\mathbf{ap}_{ud}(\Sigma - \psi) = \Sigma - \psi$. This yields the following minimal derivation:

1.
$$\mathbf{p}_{ud}\Gamma, \varphi \vdash_{ud} \Sigma - \psi, \psi$$
 R-MON

2.
$$\Gamma \vdash_{ud} \Sigma - \psi, [\varphi]_u \psi$$
 Example 2, $\mathbf{p}_{ud} \Gamma \subseteq \Gamma \& \text{L-Mon}$

Because $\Gamma \in \mathfrak{Sat}_{ud}$, the last **ud**-sequent above, and the assumption $[\varphi]_u \psi \notin \Gamma$ entail $(\Sigma - \psi) \cap \Gamma \neq \emptyset$, and therefore also $\Sigma \cap (\Gamma \cup \text{NAP} - \psi) \neq \emptyset$ (a).

Suppose $\neg [\varphi]_d \psi \in \Gamma$.

Let $\Sigma \subseteq \mathcal{L}_{ud}$ with $\mathbf{ap}_{ud}\Gamma + \neg \psi \vdash_{ud} \Sigma$. We need to prove that

(b)
$$\Sigma \cap (\Gamma \cup NP - \varphi) \neq \emptyset$$
.

If $\Sigma \cap (NP - \varphi) \neq \emptyset$, then we immediately have our desired result. So, let $\Sigma \subseteq \mathbf{p}_{ud}\mathcal{L}_{ud} + \varphi$. This means that $\mathbf{p}_{ud}(\Sigma - \varphi) = \Sigma - \varphi$. The following derivation settles this complementary case.

- 1. $\mathbf{ap}_{ud}\Gamma, \neg \psi \vdash_{ud} \Sigma \varphi, \varphi$ R-Mon
- $2.\quad \Gamma, \neg[\varphi]_d\,\psi \vdash_{ud} \Sigma \varphi \qquad \quad \text{Example 2, } \mathbf{ap}_{ud}\Gamma \subseteq \Gamma, \text{ L-Mon \& } \mathbf{p}_{ud}(\Sigma \varphi) = \Sigma \varphi$
- 3. $\Gamma \vdash_{ud} \Sigma \varphi$ $\neg [\varphi]_d \psi \in \Gamma$

Because $\Gamma \in \mathfrak{Sat}_{ud}$, we conclude $\Sigma \cap (\Gamma - \varphi) \neq \emptyset$, which also establishes (b).

These derivations settle (v) and (viii).

With this result we have almost completed the completeness proof for ud. Suppose that $\Gamma \not\models_{ud} \Delta$. According to the saturation Lemma 4, there exists $\Sigma \in \mathfrak{Sat}_{ud}$ such that $\Gamma \subseteq \Sigma$ and $\Delta \cap \Sigma = \emptyset$. According to the truth lemma above, this yields $M_{ud}, \Sigma \models \varphi$ and $M_{ud}, \Sigma \not\models \psi$ for all $\varphi \in \Gamma$ and $\psi \in \Delta$. Because $M_{ud} \in \mathfrak{N}$, this shows that $\Gamma \not\models_{\mathfrak{N}} \Delta$.

Completeness for the systems $\mathbf{ud}^{\circledast}$, \mathbf{ud}^{\sim} and $\mathbf{ud}^{\circledast,\sim}$ can be proved in precisely the same manner. The induction steps for the additional connectives in the corresponding truth lemmas are straightforward.

3.4 Decidability

Decidability for finite ud-sequents can be established by a finite variation of the equipment of the previous sections.

DEFINITION 11 Let $\Phi \subseteq \mathcal{L}_S$. An S- Φ -saturated set is a set $\Gamma \subseteq \Phi$ such that for all $\Delta \subseteq \Phi$: $\Gamma \vdash_S \Delta \implies \Gamma \cap \Delta \neq \emptyset$. The collection of S- Φ -saturated sets is abbreviated by \mathfrak{Sat}_S^{Φ} . Λ is called a S- Φ -saturator of $\Gamma \subseteq \Phi$ iff $\Gamma \vdash \Delta \implies \Lambda \cap \Delta \neq \emptyset$ for all $\Delta \subseteq \Phi$. This relation is abbreviated by $\Gamma \leq \frac{\Phi}{S} \Lambda$.

LEMMA 4 Let $\Phi, \Lambda \subseteq \mathcal{L}_S$, and $\Gamma \subseteq \Phi$. If $\Gamma \trianglelefteq_S^{\Phi} \Lambda$ then there exists $\Gamma^* \in \mathfrak{Sat}_S^{\Phi}$ such that $\Gamma \subseteq \Gamma^* \subseteq \Lambda$.

Proof. This proof runs completely in the same fashion as Lemma 2. An appropriate reformulation of Lemma 1 is needed. Furthermore, the sequence φ_i in the proof of lemma 2 should be taken from $\Lambda \cap \Phi$ (note that $\Gamma \trianglelefteq_S^{\Phi} \Lambda \Rightarrow \Gamma \trianglelefteq_S^{\Phi} \Lambda \cap \Phi$).

In order to prove the decidabity of \mathbf{ud} we construct a finite counter-model for a given finite non- \mathbf{ud} -sequent: $\Pi \not\vdash_{ud} \Xi$. Let Σ be the set of subformulae of $\Pi \cup \Xi$ and their negations. Clearly, Σ is a finite set. Consider the model $M_{ud}^{\Sigma} = \langle \mathfrak{Sat}_{ud}^{\Sigma} \ll_{ud}^{\Sigma}, V_{ud}^{\Sigma} \rangle$ with \ll_{ud}^{Σ} and V_{ud}^{Σ} defined in the same way as \ll_{ud} and V_{ud} but then restricted to $\mathfrak{Sat}_{ud}^{\Sigma}$. This construction yields a restricted version of the truth lemma for \mathbf{ud} with respect to M_{ud}^{Σ} :

$$M, \Gamma \models \varphi \iff \varphi \in \Gamma \& M, \Gamma \models \varphi \iff \neg \varphi \in \Gamma$$

for all Π - and Ξ -subformulae φ and $\Gamma \in \mathfrak{Sat}^\Sigma_{ud}$. This result can be proved just like Lemma 3. Because M^Σ_{ud} is finite and of fixed size, this immediately establishes the desired decidability results.

4. Conclusions and reflections

THEOREM 3 ud is decidable for finite sequents.

This technique also applies to the systems $\mathbf{ud}^{\circledast}$, \mathbf{ud}^{\sim} and $\mathbf{ud}^{\circledast,\sim}$. No further filtration techniques have to be used there.

The given filtration technique yields exponential time upper bounds for deciding udvalidity. However, by making use of established complexity results and known embedding results, a much more refined result can be given. [Statman 1979] shows that validity for intuitionistic propositional logic is PSPACE-complete. This result immediately settles PSPACE-hardness for ud-validity, because intuitionistic propositional logic is a fragment of ud. Furthermore, by the polynomial time translation of ud into temporal S4 given in [Jaspars 1994], and the PSPACE-completeness result for this logic of [Spaan 1993], we obtain PSPACE-completeness for ud.

4. Conclusions and reflections

Information models have been employed as Kripke structures to define dynamic modal logics for reasoning about extension and reduction of partial states. The bounded version of the saturation lemma has been particularly helpful in establishing a completeness and decidability result for the underlying calculus **ud**.

Of course, our main technical concern has been to guide the congregation of partial and dynamic modal logic. With respect to the dynamic modal logics of Van Benthem and De Rijke, the relational part of our formalism is restricted. The inevitable consequence of this poverty is that minimal extensions and reductions do not appear in our formalism. Such minimal dynamic denotations can semantically be specified in the following manner.

$$\begin{array}{lll} \llbracket \varphi \rrbracket_{\mathfrak{N},dy}^{M,*} &=& \{ \langle s,t \rangle \in \llbracket \varphi \rrbracket_{\mathfrak{N},dy}^{M} \mid s \leq u \ \& \ u \in \llbracket \varphi \rrbracket_{\mathfrak{N}}^{M} \ \& \ u \leq t \Longrightarrow t \leq u \} \\ \\ \llbracket \varphi \rrbracket_{\mathfrak{N},dy}^{M,-,*} &=& \{ \langle s,t \rangle \in \llbracket \varphi \rrbracket_{\mathfrak{N},dy}^{M,-} \mid u \leq s \ \& \ u \not\in \llbracket \varphi \rrbracket_{\mathfrak{N}}^{M} \ \& \ t \leq u \Longrightarrow u \leq t \} \end{array}$$

A future research challenge is to develop adequate sequential calculi for an extension of the up and down calculus of this paper with additional modal operators over the relations above. Keeping the undecidability of Van Benthem and De Rijke's formalism in mind, one should be aware of the possible technical dangers of such an enterprise.

Acknowledgements. Many thanks to Johan van Benthem who helped me with the presentation of lemma 2. Furthermore, I like to express my gratitude to Maarten de Rijke, Jan van Eijck and the anonymous referee for helpful comments. Also thanks to Bill Rounds who told me about the complexity result in [Statman 1979].

REFERENCES

- P. Aczel [1968], "Saturated intuitionistic theories," in Contributions to Mathematical Logic, H. Schmidt, K. Schütte & H. Thiele, eds., North Holland, Amsterdam, 1-11.
- N.D. Belnap [1977], "A useful four-valued logic," in Modern Uses of Multiple Valued Logic, G. Epstein & M. Dunn, eds., Reidel, Dordrecht, 8-37.

That is \mathfrak{N} -validity for finite subsets of \mathcal{L}_{nd} , or **ud**-derivability for such finite sets (by theorem 2).

4. Conclusions and reflections

J.F.A.K. van Benthem [1984], A Manual of Intensional Logic, CSLI Lecture Notes #1, Stanford University, Stanford.

- J.F.A.K. van Benthem [1991], "Logic and the Flow of Information," Institute for Logic, Language and Computation (ILLC), ILLC Prepublication Series LP-91-10, Amsterdam.
- S. Blamey [1986], "Partial Logic," in Handbook of Philosophical Logic, vol. III, D. Gabbay & F. Guenthner, eds., Reidel, Dordrecht, 1-70.
- J.E. Fenstad, T. Langholm & E. Vespren [1992], "Representations and interpretations," in Computational Linguistics and Formal Semantics, M. Rosner & R. Johnson, eds., Studies in Natural Language Processing, Cambridge University Press, Cambridge, 31-95.
- M.C. Fitting [1969], Intuitionistic Logic Model Theory and Forcing, Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam.
- D.M. Gabbay [1982], "Intuitionistic basis for non-monotonic logic," in *Proceedings of The 6th Conference on Automated Deduction*, Lecture Notes in Computer Science #138, Springer Verlag, Heidelberg, 260-273.
- Y. Gurevich [1977], "Intuitionistic logic with strong negation," Studia Logica 36, 49-59.
- G.E. Hughes & M.J. Cresswell [1984], A Companion to Modal Logic, Methuen, New York.
- J.O.M. Jaspars [1993a], "Logical omniscience and inconsistent belief," in *Diamonds and Defaults*, M. de Rijke, ed., Synthese Library #229, Kluwer Academic Publishers, Dordrecht, 129-146.
- J.O.M. Jaspars [1993b], "Normal forms in partial modal logic," in Proceedings of the XXXVIII Banach Center Semester on Algebraic Methods in Logic and Their Computer Science Applications, C. Rauszer, ed., Polish Academy of Sciences, Warsaw, 37-50.
- J.O.M. Jaspars [1994], "Calculi for Constructive Communication: A Study of the Dynamics of Partial States," Ph-D. Thesis, Amsterdam – Tilburg, ILLC Dissertation Series 1994-4 and ITK Dissertation Series 1994-1.
- S.A. Kripke [1965], "Semantical analysis of intuitionistic logic I," in Formal Systems and Recursive Functions, J. Crossley & M. Dummett, eds., North Holland, Amsterdam, 92-130.
- T. Langholm [1988], Partiality, Truth and Persistence, CSLI Lecture Notes #15, Stanford University, Stanford.
- R.A. Muskens [1989], "Meaning and Partiality," University of Amsterdam, PhD. -thesis.
- D. Nelson [1949], "Constructible falsity," Journal of Symbolic Logic 14, 16-26.
- D. Pearce [1992], "Default logic and constructive logic," in Proceedings of the Tenth European Conference on Artificial Intelligence (ECAI'92), B. Neumann, ed., Wiley, 309-313.
- R. Reiter [1980], "A logic for default reasoning," Artificial Intelligence Journal 13, 81-132.
- M. de Rijke [1992], "A System of Dynamic Modal Logic," Stanford University, CSLI Research Notes 92-170, Stanford, Appears also in Journal of Philosophical Logic.
- M. de Rijke [1993], "Extending Modal Logic," Institute for Logic, Language and Computation (ILLC), PhD.-thesis, ILLC-dissertation series 93-4, Amsterdam.

4. Conclusions and reflections 22

E. Spaan [1993], "The complexity of propositional tense logics," in *Diamonds and Defaults*, M. de Rijke, ed., Synthese Library #229, Kluwer Academic Publishers, Dordrecht, 287-307.

- R. Statman [1979], "Intuitionistic propositional logic is polynomial-space complete," Theoretical Computer Science 9, 67-72.
- E.G.C. Thijsse [1992], Partial Logic and Knowledge Representation, Eburon, Delft, PhD-Thesis, Tilburg University.
- R.H. Thomason [1968], "On the strong semantical completeness of the intuitionistic predicate logic," Journal of Symbolic Logic 33:1, 1-7.
- R.H. Thomason [1969], "A semantical study of constructible falsity," Zeitschrift für Mathematischen Logik und Grundlagen der Mathematik 15, 247-257.
- A.S. Troelstra & D. van Dalen [1990], Constructivism in Mathematics vol. I, Studies in Logic and The Foundations of Mathematics #121, North Holland, Amsterdam.
- R. Turner [1984], Logics for Artificial Intelligence, Ellis Horwood, Chicester.
- F. Veltman [1985], "Logics for Conditionals," University of Amsterdam, Ph.-D. thesis, Amsterdam.
- G. Wagner [1994], Vivid Logic, Lecture Notes in Artificial Intelligence #764, Springer Verlag, Heidelberg.
- H. Wansing [1993], The Logic of Information Structures, Lecture Notes in Artificial Intelligence #619, Springer Verlag, Heidelberg.