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Chapter 1

INTRODUCTION

1.1 BACKGROUND

Queueing theory is concerned with the mathematical analysis of the perfor-
mance of systems that offer services for collective use, like telephone exchanges
and computer networks. Due to the finite capacity of such systems queueing
arises in many practical situations when too many users require access to the
same facility at the same time. The mathematical study of queueing
phenomena started with the investigation of telephone call congestion and
delay about the beginning of this century. Later, queueing theory was success-
fully applied in operations research and management science, in particular for
production planning; in the past decades it has become an almost indispens-
able tool for the performance prediction of complex computer communication
systems.

A queueing model is usually described in terms of customers requiring ser-
vice, service facilities providing service, and queues containing customers wait-
ing for service. The present study is devoted to the analysis of queueing
models where customers may repeatedly return to some service facility to
obtain several phases of service before they finally depart from the system.
Such feedback phenomena occur in a wide variety of processes arising in
computer-communication and in production networks.

The basic queueing model representing the occurrence of feedback consists
of a waiting room and a single service facility at which customers arrive
according to a stochastic process; after having obtained a random amount of
service a customer either returns to the queue of waiting customers to await
another service or leaves the system, according to a probabilistic feedback
scheme.

An example that illustrates the feedback phenomenon is found in manufac-
turing processes where quality control inspections are performed after the exe-
cution of an operation on a part or product, see Fig. 1.1. A part that does not
meet the quality standards is sent back for reworking; this may happen several
times until it finally passes the test and proceeds to the next phase of opera-
tion.
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Fig. 1.1 Quality control of parts during a production process.

Another important example of the occurrence of feedback is encountered in
a computer system which operates in a time sharing mode. In Fig. 1.2 a
scheme of such a time sharing system is shown. In a time shared computer
system each job is allocated a small time interval for uninterrupted processing
at the CPU. If the total required processing time of a job exceeds the length
of this interval it is fed back to a system of queues containing waiting jobs;
here the job waits until it is permitted a second turn in the processing facility,
according to a certain scheduling algorithm. This procedure is repeated until
the job has obtained its required processing time and leaves the system.

A
partly served

; : jobs
jobs queueing for
. ; CPU
new jobs processing S
finished jobs

system of queues

Fig. 1.2 Principle of feedback in a time shared computer system.

The introduction of time sharing systems in the early sixties and the need to
determine their performance has led to an extensive study of queueing models
with feedback. On the other hand, theoretical investigations concerning net-
works of queues have also stimulated research on feedback queues. The
research of J.R. Jackson (Jackson [1957,1963]) on queueing networks with
exponential services and independent external Poisson arrival processes
revealed that, under certain assumptions, a queue in such a network in steady
state behaves just like an M/M/s queue in isolation. In the case of so called
feedforward networks where customers never return to a queue they have once
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left, one can indeed prove that the input process to each queue is a Poisson
process. But when feedback is possible the input process is no longer a Pois-
son process - which makes the M/M/s behaviour all the more surprising.
These observations revived the interest in single server queueing models with
feedback of customers, like an M/M/1 queue with constant feedback probabil-
ity. In particular, the stochastic aspects of customer flows in feedback queues
were extensively studied (cf. the survey by Disney and Konig [1985]). Further-
more, the steady state queue length processes in Jackson networks and their
generalizations, the so called BCMP networks (see Baskett et al. [1975]),
appeared to be amenable to a detailed analysis; however, the analysis of other
important characteristics such as the waiting time and sojourn time processes
presented quite some difficulties. Again the case of feedforward Jackson net-
works was relatively simple - as long as each node contains only a single
server; in this case the joint steady state distribution of the successive sojourn
times of a particular customer could explicitly be obtained, cf. Lemoine [1979]
and Walrand and Varaiya [1980]. But it readily became clear that the possibil-
ity of customers overtaking one another introduced considerable analytical
difficulties. Once more the M/M/1 queue with feedback provided the simplest
example to study this ‘overtaking’ phenomenon in isolation.

The aim of the present study is the analysis of sojourn times in single server
queueing models with feedback: we shall derive the joint steady state distribu-
tion of the successive sojourn times of a customer in a feedback queue with a
quite general feedback mechanism. As an important by-product, our study on
feedback queues leads to new insights in the analysis of the well-known and
widely used ‘processor sharing’ model for time sharing systems.

The remainder of this chapter is organized as follows. In Section 1.2 we
shall first describe a basic feedback queueing model and discuss its main pro-
perties. Next, the central feedback model of this study is introduced. Time
sharing systems and models are discussed in Section 1.3. In Section 1.4 we
introduce an interesting variant of the ‘standard’ M/G/1 queueing model, viz.
an M/G/1 queue with a fixed number of additional permanent customers; that
are customers who reside permanently in the system, i.e. they are fed back
after each service. Section 1.5 contains an extensive overview of the literature
related with the models considered in the present study. Section 1.6 is con-
cerned with assumptions about the notations and terminology used in this
thesis. Finally, in Section 1.7 we give an overview of the contents of Chapters
2-5.

1.2 QUEUEING MODELS WITH FEEDBACK

The basic, in literature most frequently encountered, feedback queueing model
is the M/G/1 queue with ‘Bernoulli’ feedback, see Fig. 1.3. The behaviour of
the customers in this model is as follows. New customers, arriving according
to a Poisson process, join the end of the queue. Immediately after his service
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Fig. 1.3 The M/G/1 queue with Bernoulli feedback.

completion a customer returns to the end of the queue with probability p or
leaves the system with probability 1 —p, 0<<p<<1. It is assumed that all service
times are independent, identically distributed, random variables. The custo-
mers in the queue are served according to the ‘head-of-the-line’ discipline.

It is readily seen that the M/G/1 queue with Bernoulli feedback has a sta-
tionary queue length process which has the same distribution as an equivalent
M/G/1 queue without feedback, i.e. an M/G/1 system in which the service
time distribution of a customer is equal to that of the total service time a cus-
tomer obtains in the feedback model. Indeed, because the feedback probabili-
ties are constant the queue length distribution is independent of the order in
which the customers are served; so we may assume that they are served in one
stretch with a service time equal to the total service time that they would have
if they were served in the original manner.

A much more difficult task is the determination of the distribution of the
total sojourn time of a customer. The problem is caused by the fact that the
total sojourn time of a particular (tagged) customer is the sum of the (partial)
sojourn times during his successive passes through the system, which are
clearly not independent of each other. Moreover, for the analysis of the
sojourn time of a tagged customer one has to take into account that new custo-
mers may arrive during the presence of the tagged customer and reside in the
system during some passes (note that their services contribute to the tagged
customer’s total sojourn time), but leave the system before the tagged custo-
mer. The possibility that customers can overtake each other leads to depen-
dencies which almost invariably makes the determination of the sojourn time
distribution impossible (see e.g. the survey of Boxma and Daduna [1989] on
sojourn times in queueing networks). For the M/G/1 queue with Bernoulli
feedback, however, the sojourn time problem could be solved, see Takacs
[1963]. Takacs obtained a recurrence relation for the (Laplace-Stieltjes
transform and generating function of the) joint distribution of a tagged
customer’s total sojourn time and the number of customers present in the sys-
tem after k services, k =1,2,.... The derivation is based on the observation
that for a tagged customer the joint distribution of the duration of his (i +1)-
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th pass through the system (also called his (i +1)-th sojourn time) and the
number of customers present at the end of his (i +1)-th service is completely
determined by his i-th sojourn time and the number of customers present at
the end of his i-th service, i =1,2,... (i.e. the joint process of successive service
completion epochs and queue length at these epochs is a Markov renewal pro-
cess). In fact, this observation is the basis of the analysis of most of the feed-
back models discussed in the present study.

The feedback model investigated in this thesis is actually a generalization of
the M/M/1 queue with Bernoulli feedback. It is an M/M/1 feedback model
in which the probability that a customer is fed back after service completion
depends on the number of times he has already been served: when a customer
completes his i-th service he departs from the system with probability 1—p (i)
and he recycles with probability p (i), i =1,2,.... Obviously, taking p (i)=p this
model reduces to the M/M/1 queue with Bernoulli feedback. In the sequel a
customer who is visiting the queue for the i-th time will be called a ‘type-i cus-
tomer’, i =1,2,....

It is important to note that the M/M/1 queue with general feedback as
described above belongs to the well-known class of so called ‘product form’
networks (see e.g. Baskett et al. [1975] and Kelly [1979]), i.e. the (stationary)
finite dimensional joint queue length distribution of the different types of cus-
tomers is known and has a product form. It is noted here that due to the gen-
eral feedback mechanism the distribution of the total number of customers in
the system is not the same as the queue length distribution in the standard
M/G/1 queue with service times equal to the total service time in the feedback
queue, as is the case for the M/G/1 queue with Bernoulli feedback.

The main result of the present study of the M/M/1 queue with general feed-
back is a complete description of the joint distribution of the successive
sojourn times of a particular customer.

1.3 TIME SHARING MODELS; ROUND ROBIN AND PROCESSOR SHARING QUEUES

In Section 1.1 we already described the principle of time sharing in computer
systems. Actually, the motivation for the introduction of time sharing comput-
ers has been to provide multiple users simultaneous and (almost) direct access
to a single processor unit. In fact this is achieved by giving small jobs (for
which the users expect small response times) preferential treatment at the
expense of the longer ones (for which the users expect larger response times).
It is desirable that this property is reflected by queueing models of time shared
systems. Accordingly the performance measure most often used for time shar-
ing models is the response time for a job conditional on its required service
time. We shall discuss this performance measure for the time sharing model
described below.

The M/G/1 queue with the so called ‘round robin’ (RR) service discipline is
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the most frequently encountered queueing model for the time shared computer
systems as described in Section 1.1. We have pictured this single queue model
in Fig. 1.4.

reentering customers

-

. I, depa.r-
:;’r‘i?:l‘s‘ N o] —)@ > tures

server

Fig. 1.4 The M/G/1 queue with round robin service.

The customers are served as follows. New customers, arriving according to a
Poisson process, join the end of the queue. The customers in the queue are
served according to the head-of-the-line discipline receiving a (small) fixed
quantum ¢ of service. At the end of his service quantum a customer leaves the
system if his total service requirement is met; if not he returns to the end of
the queue with his remaining service requirement reduced by an amount g.

To overcome the mathematical problems that arise from the analysis of the
RR model with fixed positive quantum size q it is often assumed that g—0 (an
idea originally due to Kleinrock [1967]). RR models under the assumption
q—0 are called processor sharing (PS) models and are of great interest; they
have pleasing mathematical properties and they also accurately model the per-
formance of many real systems.

In queueing literature the PS service discipline is often described as follows:
when there are n=1 customers present in the system then each customer
receives service at a rate which is 1/n times the rate of service that a solitary
customer in the system would receive. It is easily seen that this alternative
description coincides with the original definition of PS as the limiting case of
the RR service discipline.

The M/G/1 PS queue has some very interesting mathematical properties.
First, the mean conditional sojourn time ES’S(x) of a customer with service
demand x=0 is linear in x and depends only on the first moment of the ser-
vice time distribution: (see Kleinrock [1967], Sakata et al. [1971])

X

ESPS(x) = .
o = 2

where p denotes the offered load to the system. This formula shows in which
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way the PS discipline provides preferential treatment to short jobs (customers):
a job half as long as an other will spend on the average half as long in the sys-
tem. The above formula for the mean conditional sojourn time in the M/G/1
PS queue should be compared with the result for the corresponding quantity in
the M/G/1 first-come-first-served (FCFS) queue:

AB;
2A—p)

EsFCFS(x) —

with A and B, denoting the arrival intensity and the second moment of the ser-
vice time distribution, respectively.

Another important property of the M/G/1 PS queue is that the (stationary)
queue length distribution is ‘insensitive’ to the character of the service time dis-
tribution, apart from its first moment:

Pr{k customers in the system} = (1—p)p*, k=0,1,....

This insensitivity property also holds for the joint queue length distribution in
networks of PS queues (cf. Baskett et al. [1975], Kelly [1979]).

The usefulness of the PS service discipline for modeling the performance of
computer systems, and its mathematical properties, have strongly contributed
to the extensive use of PS (network) models in present day performance
analysis.

A very difficult mathematical problem for PS models is the determination of
the sojourn time distribution. The difficulties are caused by the same
phenomenon as occurring in the analysis of sojourn times in feedback queues:
the PS service discipline allows customers to overtake each other. A solution
of the sojourn time problem for the M/G/1 PS queue was first obtained by
Yashkov [1983]. However, the derivation of his results is complicated and
does not provide much insight into the behaviour of the main sojourn time
characteristics.

In this thesis we present a new, more transparent method for the derivation
of the (Laplace-Stieltjes transform of the) distribution of the sojourn time in
the M/G/1 PS queue. The idea is to consider the M/G/1 PS queue as a limit-
ing case of the M/M/1 queue with general feedback (see Section 1.2). The PS
model is obtained by letting the feedback probabilities approach one and the
mean service time at each loop approach zero, such that a customer’s total
required mean service time remains constant. Different choices of the feed-
back probabilities lead to different service time distributions in the PS queue.
Application of this limiting procedure to the sojourn time results obtained for
the M/M/1 feedback queue leads to results for the corresponding quantities in
the PS queue.

The method described above exploits well-known product form results for
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the feedback model and gives much insight into the occurrence of many basic
sojourn time properties for the limiting PS model.

Many generalizations and variants of the PS (round robin) service discipline
have been introduced, see e.g. the surveys by Jaiswal [1982] and Yashkov
[1987]. For most of them the sojourn time distribution problem (even for the
simplest M/M/1 case) is still unsolved. For one generalization, called ‘general-
ized processor sharing’ (GPS), we shall present in this thesis some new sojourn
time results. Therefore, the GPS model will be discussed here in some more
detail.

The GPS discipline generalizes the PS discipline as follows: when there are
n=1 customers present in the system then each customer is served with a rate
equal to f(n) with f(*) an (almost) arbitrary positive function. Obviously, for
f(n)=1/n the GPS discipline reduces to the PS discipline (assuming that the
total capacity of the server is normalized to one).

Network models of GPS queues contain many interesting special cases such
as the classical Erlang and Engset systems as well as many new processor shar-
ing systems, see Cohen [1979]. The GPS discipline generalizes known results
for classical networks: it preserves the product form and insensitivity property
of the joint distribution of the queue lengths at the different nodes. At present
most sojourn time results for GPS models are limited to the mean conditional
sojourn time of a customer with given service demand. In general, sojourn
time distributions are still unknown.

In this thesis we propose a new approach to the analysis of GPS queues.
The idea is similar to that for the PS case: we consider the M/G/1 GPS queue
as a limiting case of the M/M/1 queue with general feedback introduced in
Section 1.2 but with state dependent service rates. Different choices of the ser-
vice rates in the feedback model lead to different service rate functions f () in
the GPS queue. We show that (known) results for the M/G/1 GPS queue can
be very easily obtained from the analysis of this (product form) feedback
model with state dependent service rates. (In fact, the analysis of the single
node GPS model can be easily extended to the analysis of networks of GPS
queues). For a special class of GPS disciplines this approach leads to new
results for the sojourn time distribution.

1.4 MODELS WITH PERMANENT CUSTOMERS

An extreme case of a feedback queue is a closed queueing system, i.e. a queue-
ing system with a fixed number of ‘permanent’ customers. Closed queueing
systems model the situation where the number of customers in the system is
constant (once a customer has obtained his required service he is immediately
replaced by another one with the same characteristics). A queue with addi-
tional permanent customers is a system where next to the ordinary customer
stream(s) also permanent customers are processed. An interesting aspect in
such a case is the interference of permanent customers with the other customer
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streams, in particular the influence of the presence of the permanent customers
on the queueing characteristics of the other customers. In the last chapter of
this thesis, Chapter 5, we consider some single queue single server models with
two types of customers: (i) ordinary customers who arrive according to a Pois-
son process, and (ii) a fixed number of permanent customers who immediately
return to the end of the queue after having received a service. See Fig. 1.5 for
the case of an M/G/1 queue with permanent customers. Our main goal is to
present a study of the influence of the presence of additional permanent custo-
mers on queue lengths and sojourn times of the ‘Poisson customers’ for the
standard M/G/1 queue and for the feedback and PS models discussed in the
previous sections.

Poisson depar-
. _— >
arrivals I ¥ = 8 I service tures
— >

S server

additional permanent customers

Fig. 1.5 The M/G/1 queue with additional permanent customers.

The main reason for studying these relatively simple models with permanent
customers is that these models expose - stripped from all non-essential features
- a structure that appears in many representations of computer and communi-
cation networks. For example, consider a telephone exchange to which two
types of jobs are offered: call requests and operator tasks. To guarantee a cer-
tain quality of service to the call requests only a limited number, say K, of
operator tasks (which are assumed to be always available) is allowed to be in
the system at the same time. Obviously, it is important to know in which way
the choice of the control parameter K influences the performance of the system
with respect to the waiting times of the call requests and the throughput of the
operator tasks.

Another reason for studying models with permanent customers is that there
are several interesting relations with other important queueing models. For
example, the M/G/1 queue with one additional permanent customer behaves
exactly like a vacation queue, a queueing model where the server interrupts the
service to a customer stream at certain epochs to take a vacation. Other
related models are discussed in Chapter 5.
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1.5 REVIEW OF RELATED LITERATURE

In this section we discuss some literature related to this study and indicate the
place of the study within the literature. We restrict ourself mainly to literature
concerning single server models where the (external) arrival process is a Pois-
son process. Work on multi resource systems (networks) and finite source
models is not discussed.

1.5.1 Feedback queues

A pioneering study on feedback systems is Takacs [1963]. He considered the
M/G/1 FCFS queue with Bernoulli feedback. His main result is a recurrence
relation for the Laplace-Stieltjes transform (LST) and generating function of
the joint distribution of a customer’s total sojourn time and the number of cus-
tomers present in the system after k services, k =1,2,.... The key observation
leading to this result is that for a tagged customer the joint process of succes-
sive service completion epochs and queue length at these epochs is a Markov
renewal process, see Section 1.2. In fact, this observation is the basis of the
analysis in most of the feedback studies discussed below.

Disney [1981], Disney et al. [1984] and Doshi and Kaufman [1988] have also
studied queue length and sojourn time distributions in the M/G/1 Bernoulli
feedback queue in some detail. In particular Doshi and Kaufman derive the
LST of the joint distribution of the sojourn times of a customer on his succes-
sive passes through the system. Disney et al. [1980] is mainly concerned with a
fundamental study of several traffic flow processes in the system and queue
length distributions at different embedded stochastic epochs, see also Disney
and Konig [1985]. They show for the M/M/1 queue with Bernoulli feedback
that the input process (the successive epochs at which a customer (re)enters the
queue) and the output process (the successive service completion epochs) are
Markov renewal processes; for general service times the output process is also
Markov renewal. It is shown that for positive feedback probabilities these
processes are never renewal. Disney and Konig [1985] also present an over-
view of literature concerned with the analysis of Bernoulli feedback models.

Fontana and Diaz Berzosa [1984,1985] extend some results obtained for the
M/G/1 model with Bernoulli feedback to a more general feedback model with
non preemptive priorities. However, one should take care in applying their
results because some of them do not agree with those in Disney et al. [1980]
(e.g. Fontana and Diaz Berzosa [1984,1985] erroneously conclude that for the
M/G/1 Bernoulli feedback queue the queue length distribution at output and
arbitrary epochs are equal; Disney et al. [1980] prove that this does not hold).

Simon [1984] analyzes an M/G/1 feedback queue with multiple customer
types and preemptive and non preemptive priority levels that may change after
a service completion; the customers are fed back a fixed number of times. The
main result of his paper is the derivation of a set of linear equations for the
mean sojourn time of each visit.

The feedback model studied by Lam and Shankar [1981] is basically the
same as the M/M/1 queue with general feedback analyzed in the present
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study. They consider the model as a time sharing model with exponentially
distributed service quanta. Lam and Shankar derive the total sojourn time dis-
tribution. This distribution is a special case of our result for the joint distribu-
tion of the sojourn times of a customer on his successive cycles. Nelson [1987]
also considers queues with general feedback, but with varying service times, to
study the effect that assigning increasing service times to customers has on
mean sojourn times.

Ali and Neuts [1984] consider an M/G/1 Bernoulli feedback queue with a
waiting room and a service room. Newly arriving customers and customers
who have been fed back join the waiting room. Whenever the service room
becomes empty all customers from the waiting room, together with a random
number of overhead customers, are transferred to it. Al and Neuts determine
the stationary distribution of queue lengths at various embedded random
epochs and the distribution of a customer’s waiting time until his first service.

Hunter [1989] considers single server queues with state dependent feedback
and finite waiting room. In particular, he studies an appropriately constructed
Markov renewal process which describes the behaviour of the system starting
at the arrival of a tagged customer; the sojourn time of the tagged customer
relates to a first passage time in this process. For some special cases (e.g. the
M/M/1/2 queue with Bernoulli feedback) this approach leads to the deriva-
tion of explicit expressions for the LST of the distribution of the total sojourn
time. Mean sojourn times are obtained for the M/M/1/N (N =1) queue with
Bernoulli feedback. Hunter also gives a brief survey of the literature on
sojourn times in feedback models.

1.5.2 Time sharing and processor sharing queues

The first queueing model for a time shared computer system was presented by
Kleinrock [1964). He studied a single queue single server system under the
round robin discipline as a discrete time Markovian model. Since then until
the early seventies many papers on (variants of) this model have been pub-
lished, see e.g. Schrage [1967], Kleinrock [1967], Coffman and Kleinrock
[1968], Adiri and Avi-Itzhak [1969A,1969B], Sakata et al. [1971], Adiri [1972]
and Muntz [1972]. All these papers are concerned with the derivation of mean
queue lengths and sojourn times apart from Muntz [1972]. Muntz derives the
queue length and sojourn time distribution for an M/M/1 queue under the
RR discipline with fixed quantum size and overhead due to switching between
customers. An extensive discussion on time sharing systems and models, with
many references, is given by Kleinrock [1976, Chapter 4] and Jaiswal [1982].

To simplify the mathematical analysis of RR models Kleinrock [1967] pro-
posed to study the case that the size of the service quanta shrinks to zero, thus
obtaining the processor sharing discipline. In particular the derivation of queue
length distributions and mean (conditional) sojourn times appeared to be much
easier for the PS model than for the corresponding RR system with positive
service quanta. Kleinrock [1967] showed that for the M/M/1 PS queue the
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mean conditional sojourn time is linear in the required service time (cf. the for-
mula in Section 1.3). Sakata et al. [1971] obtained the same result for the case
of general service times by letting in their RR model the quantum size tend to
zero. O’Donovan [1974] and Asare and Foster [1983] derived the mean condi-
tional sojourn time directly from the behaviour of the M/G/1 PS queue. A
very recent paper on this subject is Foley and Klutke [1989]. Foley and
Klutke show that the (non stationary) queue length process starting at the
arrival of a tagged customer is stochastically strictly increasing during the pres-
ence of the tagged customer, which makes it quite surprising that the mean
conditional sojourn time is a linear function of the required service time.
Their approach, based on introducing different time scales for different
processes, provides insight into this somewhat paradoxical property. In this
thesis we shall give an explanation of it which is based on our ‘feedback
approach’ to PS queues.

The derivation of the insensitivity property of the distribution of the queue
length in the M/G/1 PS queue (given in Section 1.3) is originally due to
Sakata et al. [1969]. In fact, they obtain their result as a special case of the
queue length distribution in a multi server processor sharing model.

In contrast to the derivation of queue length distributions it appeared to be
much more difficult to derive sojourn time distributions for PS queues.
Coffman et al. [1970] obtained the distribution of the conditional sojourn time
for the M/M/1 PS queue; for general service times it remained an unsolved
problem until the early eighties. The LST of the distribution of the condi-
tional sojourn time for the M/G/1 PS queue was obtained by Yashkov [1983],
Ott [1984] and Schassberger [1984]. The approaches used by Yashkov and Ott
are quite similar. The essence is a decomposition of the sojourn time of a
(tagged) customer as the sum of ‘time delays’ which are induced by the custo-
mers present in the system at the arrival of the tagged customer (and by the
tagged customer himself); these time delays include the influence of customers
who arrive during the sojourn time of the tagged customer. It is shown that
the time delays can be interpreted as lifetimes of some terminating branching
process. The dynamics of the time delays is described by some integro-
differential equations derived by using ideas from branching theory.
Schassberger [1984] obtained his result by means of the analysis of a discrete
time queue under a slight variation of the standard RR discipline in which a
newly arriving customer immediately receives a quantum of service and only
then joins the tail of the queue. Using known sojourn time results for this RR
model (obtained in Schassberger [1981]) and letting the quantum size shrink to
zero he finds results for the corresponding sojourn times in the M/G/1 PS
queue. Schassberger [1984] also gives the theoretical background of the weak
convergence of the sojourn time distribution for the discrete time RR model to
the distribution of the sojourn time in the PS queue.

The analysis of the sojourn time distribution in the M/G/1 PS queue pro-
posed in this thesis is in some sense similar to the method used by
Schassberger [1984]. We first analyze a kind of RR (feedback) queue with
exponentially distributed service quanta and then take appropriate limits such
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that the behaviour of the system approaches that of the M/G/1 PS queue.
The advantage of this method is that it exploits well-known product form
results for the feedback model which give much insight into the behaviour of
the sojourn time in the limiting PS model. The proof that the distribution of
the sojourn time in the feedback model converges weakly to that in the PS
model has been given recently by Resing et al. [1989].

From the results obtained by Yashkov [1983], Ott [1984] and Schassberger
[1984] expressions for the second and higher moments of the sojourn time dis-
tribution can be derived. The resulting formulas are very complex and their
(numerical) evaluation requires quite some effort. As far as we know no atten-
tion has been paid in the processor sharing literature to the derivation of
approximations or asymptotic formulas which are useful for practical evalua-
tion, apart from a paper by Yashkov [1986]. He derived some asymptotic esti-
mates for the conditional sojourn time variance for customers with very small
or very large service demands. In this thesis simple approximations for the
second moment of the sojourn time in the M/G/1 PS queue are presented.
The derivations of these approximations are mainly based on new asymptotic
results (e.g. heavy traffic and an extension of Yashkov’s results) and on exact
expressions for specific service time distributions.

A fundamental study of the generalized processor sharing service discipline
is given by Cohen [1979]. Cohen studies the class of GPS disciplines in a very
general model of closed and open networks with multiple customer types. This
model contains as special cases the classical Erlang and Engset systems, the
multi server M/G/s PS queue as well as many new PS systems. He obtains
generalizations of known results for classical networks such as the product
form and insensitivity property of the joint distribution of the queue lengths at
the nodes and the mean conditional sojourn time of a customer with given ser-
vice demand; sojourn time distributions are not studied.

In the present study it is shown that most of Cohen’s GPS results can be
obtained by using an approach similar to the one used for the analysis of the
PS case, see the discussion at the end of Section 1.3. In addition, we shall
derive the LST of the distribution of the sojourn time in the M/G/1 GPS
queue for a special class of GPS disciplines.

Next to the GPS discipline there exist many other generalizations and vari-
ants of the PS discipline. For an overview of the various models and a discus-
sion of the results we refer to the surveys by Jaiswal [1982] and Yashkov
[1987]. Recently some studies on two interesting variants of the M/G/1 PS
queue appeared, which are not covered by Jaiswal [1982] and Yashkov [1987].
Avi-Itzhak and Halfin [1988] consider an M/M/1 PS queue with a limited
number (r) of service positions and preemption when there are at least r custo-
mers in the system upon the arrival of a new customer. (The case without
preemption is treated in Avi-Itzhak and Halfin [1989A]). They present
methods for calculating the LST and the moments of the (conditional) sojourn
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time distribution; it is shown that for r—oo the results coincide with the
results obtained by Coffman et al. [1970]. In Rege and Sengupta [1989] a
‘gated” M/M/1 PS queue is studied. In this model a gate controlling the
access to the service facility opens when the server becomes idle, admitting at
most m=>1 waiting customers, and then closes again. Here, the case m =1
corresponds to the M/M/1 FCFS queue. (Avi-Itzhak and Halfin [1989B] con-
sider the case m = co for general service times). The authors derive the LST of
the waiting time distribution, the LST of the distribution of the time in service
conditional on the required amount of service and the mean conditional
sojourn time. Both PS variants can be used for modeling the performance of
certain multiprogrammed (time shared) computer systems in which the degree
of multiprogramming is limited to some maximum due to the constraints of
finite memory.

1.6 ASSUMPTIONS AND NOTATIONS

Throughout this study we assume that all the systems considered are stable (in
statistical equilibrium), i.e. we assume that all involved stochastic processes
(e.g. the queue length process and the sojourn time process) are stationary.
For the systems studied in this thesis necessary and sufficient conditions for
stability are well-known or else can be easily obtained from existing results for
related models. So, when we refer to the ‘sojourn time of an arbitrary custo-
mer’ then we mean an independent copy of the sojourn time of the nth (newly)
arriving customer, for some n=>1. Similarly, the ‘queue length at an arbitrary
epoch’ refers to an independent copy of the queue length at some time .

Throughout, random variables representing service times are indicated by
bold printed Greek letters tau (7); all other random variables are indicated by
capitals also printed in bold type. Sections, formulas, theorems, figures, etc.
are referred to by a numeral indicating the chapter in which they originally
occur followed by their number within that chapter.

1.7 OVERVIEW OF THE CONTENTS OF THE NEXT CHAPTERS
Chapter 2 is concerned with a fundamental analysis of sojourn times in the
M/M/1 queue with general feedback. We first derive, in the form of Laplace-
Stieltjes transforms and generating functions, a recursive expression for the
joint steady state distribution of the successive sojourn times and the number
of customers present in the system at each service completion of a tagged cus-
tomer who has been fed back k times, k =0,1,.... Using this result it is shown
that the successive sojourn times have the same marginal distribution, which is
negative exponential. We also derive some other sojourn time characteristics,
such as the distribution and the variance of the total sojourn time after k ser-
vices and the correlation coefficient of the i-th and the j-th sojourn time of a
tagged customer, i <j. In particular, we prove the intuitively appealing
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properties that the latter quantity is positive and that it decreases if j —i
grows. It is shown that for some interesting special choices of the feedback
probabilities (e.g. Bernoulli feedback) the general expressions reduce to simple,
explicit formulas. Chapter 2 concludes with the analysis of an M/G/1 queue
with general feedback where the service time of a customer at each service
depends on the number of times that he has been fed back. The results for
this model are restricted to mean queue lengths and sojourn times. For the
special case of deterministic feedback (i.e. each customer is fed back a fixed
number of times) and all mean service times equal it is shown that from the
second visit on the successive mean sojourn times of a tagged customer are all
equal.

In Chapter 3 the sojourn times in the M/G/1 PS queue are analyzed by tak-
ing appropriate limits in the M/M/1 queue with general feedback. We first
formulate the limiting procedure and then show how this procedure can be
applied to the sojourn time formulas for the M/M/1 feedback model obtained
in Chapter 2. It appears that some well-known results for the M/G/1 PS
queue (e.g. the mean conditional sojourn time) follow immediately from the
product form properties of the joint queue length distribution in the feedback
model. Next to the mean sojourn time we also derive the variance of the
sojourn time and the (LST of the) sojourn time distribution. In particular, a
new asymptotic result for the variance of the conditional sojourn time for cus-
tomers with a very small service demand is obtained. Subsequently it is
pointed out how the analysis of the M/G/1 PS queue can be extended to the
analysis of the M/G/1 queue with generalized processor sharing by applying a
similar limiting procedure to the M/M/1 queue with general feedback and
state dependent service rates. Using known product form results for the latter
model we present a new, simple, derivation of the queue length distribution
and mean conditional sojourn time in the M/G/1 GPS queue. The last sec-
tion of Chapter 3 is devoted to the analysis of sojourn times in the M/G/1 PS
queue with Bernoulli feedback. From the results for the M/M/1 queue with
general feedback obtained in Chapter 2 and application of the limiting pro-
cedure we derive new results for the correlation coefficients of the successive
sojourn times of a tagged customer in the PS feedback model.

In Chapter 4 we develop some simple approximation formulas for the
second moment of the conditional and unconditional sojourn time in the
M/G/1 PS queue. The main reason for the development of these approxima-
tions is that the exact expressions can in general only be evaluated numerically
and require perfect information about the service time distribution (which is
almost never available in practical situations). The approximations depend on
the service time distribution only through its first and second moment. They
are mainly based on new asymptotic results (e.g. heavy traffic) and on simple
exact expressions for some specific service time distributions. The many
numerical examples show that these simple two-moment approximations are
sufficiently accurate for many practical purposes. A refinement of the approxi-
mations is obtained by taking the third moment of the service time distribution
into account.
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As mentioned before, Chapter 5 is concerned with the study of some queue-
ing models with additional permanent customers. First a detailed study of the
basic model, the M/G/1 queue with permanent customers, is presented. The
analysis is largely based on a decomposition of the queue length as a sum of
independent random variables; the distributions of these random variables are
obtained from known results for a related M/G/1 model with vacations. We
derive queue length and sojourn time distributions for the Poisson customers
and the permanent customers and we obtain simple explicit expressions for
their first moments. Next, the M/M/1 queue with general feedback and addi-
tional permanent customers is studied. We obtain the rather remarkable result
that for the case with k=1 additional permanent customers the sojourn time
distribution is the (K +1)-fold convolution of the sojourn time distribution in
the original system (i.e. without permanent customers). Application of the lim-
iting procedure as described in Chapter 3 leads to a similar result for the
M/G/1 PS queue with additional permanent customers.

Most results presented in this thesis are new except from that concerning the
distribution of the sojourn time in the M/G/1 PS queue; actually the analysis
of PS queues as presented in this study is new and our approach provides
much more insight into the main sojourn time and queue length characteristics
than previous methods.

The results of Chapter 2 are based on Van den Berg et al. [1989] and Van
den Berg and Boxma [1989A]. The first three sections of Chapter 3 are mainly
based on Van den Berg and Boxma [1989B]. Chapter 4 is based on Van den
Berg [1989]. Chapter 5 is based on Van den Berg [1990].
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Chapter 2

THE M/M/1 QUEUE WITH GENERAL FEEDBACK

2.1 INTRODUCTION

In this chapter we consider an M/M/1 queue with a very general feedback
mechanism. When a newly arriving customer, to be called a type-1 customer,
has received his service, he departs from the system with probability 1—p(1)
and is fed back to the end of the queue with probability p(1); in the latter case
he becomes a type-2 customer. When he has received his i-th service, he leaves
with probability 1—p (i) and he recycles with probability p (i), in the latter case
becoming a type-(i +1) customer. The service times of each customer at all
visits are independent, identically, negative exponentially distributed random
variables. The resulting queueing model has the property that the joint queue-
length distribution of type-i customers, i =1,2,..., is of product-form type.
This property will be exploited to analyze the sojourn time process. In partic-
ular, we present a complete description of the joint distribution of the sojourn
times of a customer on his successive cycles.

In the queueing literature, research on feedback queues has been mainly res-
tricted to single server queues with Bernoulli feedback (see Takacs [1963], Dis-
ney [1981], Disney et al. [1984] and Doshi and Kaufman [1988]). The Ber-
noulli feedback mechanism is a special case of the one in the present study:
take p (i) = p in the general model. Lam and Shankar [1981] have studied a
feedback model with basically the same feedback procedure as described
above; they derive the total sojourn time distribution. This distribution comes
out as a special case of our result for the joint distribution of a customer’s suc-
cessive sojourn times.

The organization of this chapter is as follows. In Section 2.2 the model is
described in detail and some preliminary results are given. Section 2.3 con-
tains our main result. We derive a formula for (the transform of) the joint dis-
tribution of the successive sojourn times of a tagged customer in the system
and the numbers of customers of the various types present at his successive
departure epochs. In Section 2.4 it is shown that the sojourn times in all indi-
vidual cycles are identically, negative exponentially, distributed. Also, the
correlation between the sojourn times of the j-th and k-th cycle of the tagged
customer is calculated; furthermore, the distribution of the total sojourn time
is derived. In Section 2.5 two special feedback mechanisms are studied:
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Bernoulli feedback (Subsection 2.5.1) and deterministic feedback (Subsection
2.5.2). Finally, in Section 2.6 a similar model with generally distributed service
times at each visit is considered. We derive a set of linear equations from
which the mean sojourn time per visit can be calculated. Sections 2.2 through
2.5 are based on Van den Berg and Boxma [1989A]; Section 2.6 is based on
Van den Berg et al. [1989].

2.2 MODEL DESCRIPTION

We consider a single server queueing system with infinite waiting room, see
Fig. 2.1. Customers arrive at the system according to a Poisson process with
intensity A>0. After having received a service, a customer may either leave
the system or be fed back. When a customer has completed his i-th service, he
departs from the system with probability 1—p(i) and is fed back with proba-
bility p(i). Fed back customers return instantaneously, joining the end of the
queue. A customer who is visiting the queue for the i-th time will be called a
type-i customer. To avoid the problems that occur in dealing with an infinite
number of different customer types, it is assumed that after a certain number
of services the feedback probabilities of a customer remain constant. Thus
p(@) =p(N):=p, i=N,N+1,.. for some N=1. The service discipline is
first-come-first-served (FCFS).

A

p@)

T—pG)

- . fD
- \_/

Fig. 2.1 The M/M/1 queue with general feedback.

It is assumed that the successive service times of a customer are independent,
negative exponentially distributed, random variables, with mean B. These ser-
vice times are also independent of the service times of other customers.
Introduce

q0):=1, 2.1)
i—1
q@):= I p(), i=1,.,N—1,
j=0
o m-—1
gN):= X II p() = g —Dp(N—-1)/(1—p),
m=N j=0

with
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p(0):= 1

Note that Ag(i) is the arrival rate of type-i customers, i =1,..,N. The total
offered load to the queue per unit of time, denoted by p, is given by

b =830, 22)

i=1

For stability it is required that p<<1.
We are interested in the following steady-state quantities:

- X;: number of type-i customers in the system at an arbitrary epoch,
i=1,..,N;

- X{: number of type-i customers in the system at the j-th service completion
of a customer, i =1,...,.N, j=12,..;

- X{®: number of type-i customers in the system at the arrival of a new custo-
mer, i =1,...,N;

- §;: tlmle 2required for the j-th pass through the system (j-th sojourn time),
]= yhageney

k
- S®: total sojourn time after k services: S®) = 3'S;, k=1,2....
=i

It is important to note that the system described above can be considered as
a queueing network consisting of one queue with N types of customers. Type-i
customers are fed back with probability p (i) after service, and then change
into type-(i +1) customers, i =1,..,N —1. Type-N customers are fed back
with probability p after service, and do not change their type. Because the ser-
vice times are assumed to be independent exponentially distributed, the joint
distribution of the number of type-i customers in the system at an arbitrary
epoch, i=1,2,..,N, is of product-form type, see Baskett et al. [1975]. It is
found that, for x,,...,xy = 0,1,...,

P(xl,...,xN):= Pr{X,=x1,...,XN=xN} = (23)
e+ - ) N .
(1-p) PR [IABgG)™ .

i=1

It is convenient to have at our disposal the generating function of the joint
queue length distribution. We have, for |z;|<1,i=1,...,N,
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E{z) ...z;‘f}: § ﬁll' "'Zl)f'"P(xl:"',xN)z (2.4)

x, =0 xy=0

1— S _L o A ; o -
=9 3 3 3 T 0a)" =

m=0 x,
X t..txy=m

N
1- Ekﬁq (0)z;

i=1

1-p 3 lﬁv‘.xﬂq(oz,] =1

m=0 (=1

The distribution of the total number of customers in the system coincides with
the queue length distribution in an ordinary M/M/1 model:

+..+ 1=
E{" %) = 1—_:;, |z| <1,

ie.
PriX,+ - +Xy =/} = (1—p)p/, j=0,1,.... 2.5)

We shall use these results in the next section.

2.3 MAIN RESULTS

In this section we present, in the form of Laplace-Stieltjes transforms and gen-
erating functions, an expression for the joint steady-state distribution of the
successive sojourn times S;, j=1,...,k, and the number of type-i customers,
X{, i=1,..,N, present at the j-th service completion of a customer who is fed
back at least kK —1 times, k =1,2,... .

Let us follow a tagged customer from the moment he arrives as a type-1 cus-
tomer until he completes his k-th service. Obviously, the k successive sojourn
times of the tagged customer depend on the number of customers of each type
present in the system upon his arrival, the behaviour of these customers and
the behaviour of subsequent arrivals. The PASTA property (Wolff [1982])
implies the equality of the joint queue length distribution at the epoch of a
new arrival and at an arbitrary epoch:

Pr{X$°)=x1, wy ,Xﬂ?)=xN} = P(X1y..-5XN)y X1,---,Xy=0,1,.... (2.6)
Hence, for Re w; =0, |z,~,j|<l, i=1,.,N, j=0,..,k,

_”lsl k Xf’ x:) x(lk) x‘:) ==
E{e” @S-t s')(zl,o “c-zNo) (@1 T 2INE))} = 2.7
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0 o0
> e 3 Py .- %y X
x,=0 xy=0

(@S +..+ Sk X? x(:’ x(l‘) X‘:) — o
E{e”@ST-FaSGHy - av0) - (20k - 2 |XP=xp, L XD =xy).

The conditional expectation in the RHS of (2.7) can be evaluated by using the
following property, which is easily seen to hold: (X{ ™V, --- X{*D), which
determines the distribution of S;;;, is oonditionall_?/ independent of
{(XY)9 = ’x%))’ _} :09-"9i —11 Sla S ’Sl'} given {(XY sy T axy))’ Si+l}a
i=1,..,k—1, ie. the joint process of successive service completion epochs
and queue length vector at these service completion epochs is a Markov
renewal process (cf. Cinlar [1975, Ch. 10]). The calculations, which are very
lengthy, are omitted here; they can be found in Appendix 2.1 at the end of
this chapter. There it is shown that

—(@S +..+0,S,) X Xy xP x5 _ _
E{e L M )(21,0 S ZN'0) @k o znw) | XP=x, L XP =2y )

N
= H Aﬁ(]: w’Z) H (Zi, O_fl:,(i’ “’az))x" (28)
j=1 i=1
with w:=(w1, o % & ,(a)k), Z::((Zl’o, i @ ’ZN,0)9 e E 7(zl,k9 & W ’zN,k))’ and
AX(Lw,2) 1= [1+B{we +M1 =z )7 29

AV Q,0,2) 1= [1+B{wg -1 A=Az 14 14X (Lw,2)p (D22 +1—p (DT,

AY(,0,2) 1= [14+B{wg—i 41 FA—AZ 1 - 11 4R — L, 2R —2,0,2) - - -
[AX 20,20 AX (1,0,2)[p (i = Dzix +1—p (i — 1)
PU—2zi 14,1 +1—p( —lp( —3)zi—gpx—2+1—p@i—3)]---]
PMzap—iv2t1—p(MBI™Y, =3,k

fll,0,2) := AR (k,0,2)AY (k —1,0,2)] - - - [A¥ 2,0,2)[A} (1,0,2) (2.10)
[ple+i—Dz 4ix+1—pk +i—Dlpk +i —zg 4imr -1+
1—p(k +i—2)p(k +i—3)zg 4262 +1—pk +i—3)] ]
pMzig1+1—p@), i=1,..,N.
Here we have defined
2, ;:=2nj, I=N+1..N+k.
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REMARK 2.1
From the calculations in Appendix 2.1 it is seen that the factor (z; of} (i, ,2))"
in the RHS of (2.8) is due to the contribution to {(X{’, ... ,XW), j=0,...k;
Si, . ..,S} induced by the x; type-i customers present in the system upon the
first arrival of the tagged customer, i =1,...,N; the factor H’f= AY (,w,z) is

due to the contribution induced by the tagged customer hinfself. These con-
tributions are all independent, cf. (2.8).

Substituting (2.8) and (2.3) into (2.7) and evaluating the summations (use (2.4))
we obtain our main result:

THEOREM 2.1

—@S +..+a,S8), XP Xy Xy XV —
Efe @S +..+ s"(Zl,o ceezy) @kt ZN®)) = (2.11)

k
(1-p) [T4X(, w,2)

L=l Re 0;=0, |z;|<1, i=1,.,N, j=0,..k

N ’
1-A8 > )z, o fi (i, 0,2)

i=1

COROLLARY 2.1
The Laplace-Stieltjes transform of the joint distribution of the first k successive
sojourn times of a customer, who is fed back at least k —1 times, is given by

(1-p) T14Y .
E{e_(0|s|+-~-+”tsk)} —_ ;,:l ! (212)
1-M8 3 ()Y i, w)

i=1

with,
AY(Lw) := [1+Bw;] ™!, (2.13)

AY(2,0) 1= [1+B{wx—1 TA—MY (1,0} 7!,

AY (@) 1= [1+B{wg—i+1 TA—MEY( — Lol AX( —2,0) - - - [4X 2,0)4R (1)
PG=D+1—p( =2 =3)+1—pG=3)]- - - p()+1-pN]I"",
i=3,..k,
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fG0) = AF (kAR (k — L) - - (2.14)
[AY 2,0 AY¥(Lwp(k +i—2)+1—p(k +i—2)]
pk+i=3)+1—pk+i—3)] - p@)+1-p@)], i=L..,N.

PROOF
Substitute z; ;=1 into (2.9)(2.11), i =1,..., N, j =0,...k.

COROLLARY 2.2
The joint distribution of the number of type-i customers, i =1,...,N, present in the
queue at the end of the j-th service of a tagged customer is independent of j and

given by

By =By s —12— @)
1-M2q()z

i=1

|z;] <1, i=1,..,N, j=0,1,..k

PROOF
It follows from (2.3) and (2.6) that (2.15) holds for j =0. If (2.15) also holds

for j =1, then it clearly holds for all j =0,1,... . The validity of (2.15) for j =1
follows by a simple calculation.

REMARK 2.2

Corollary 2.2 is, in a more general context, known as the ‘arrival theorem’ for
product form networks, see e.g. Walrand [1988, Section 4.4]. This theorem
implies that an arriving type-i customer (who has just completed his (i —1)-th
service) ‘sees’ the system as at an arbitrary epoch.

The Laplace-Stieltjes transform of the joint sojourn time distribution
((2.12)~(2.14)) can be presented in a form which is more suitable for obtaining
sojourn time moments. For this purpose we first rewrite (2.13) and (2.14):

AYG,0) 1= [1+ By 41 +AB(1—3G — 1) [T 4Y ()~ 2.16)
j=1
fi=1 s
22}(1’—IXl—p(i—l))I_]:lAf(j,w)}]_', i =1k
1=2 j=i
A0) = 2[4k +i — D] TAYG, )+ @.17)
q() j=1
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k k
Sqk+i—D(1—pk +i —D)[[AYG,w)), i=1,..,N,
F=2 j=l

with
q(0) := 1,
i—1
é(l) = HP (I)’ I= 1’2""’

j=0

and an empty product being one by definition. From (2.17) it is found that
the summation in the denominator of (2.12) can be written as

N k—1_ k k k
AR G,w) = (p—A8 3 NI IAY G w) + ABD gk —1 + D] [AR () -

i=1 b=l j=1 1=2 j=i

Substituting this into (2.12) and introducing

i1
M ‘, — - % .:1,...,k,
(i, w) j£]|:AkN(1s°’) i
M (0,0) := 1,
we obtain
E{e—(w,s.+...+w.8.)} — (2.18)
1—p
k. k=1, ’
My (k,0) — AMBG(k —1 + DM (I —1,0) — (p—AB X §(i))
1=2 bl
with, from (2.16),
M (i,0) = (14 Buy - +)Mi(i — 1,w)+AB [Mk(i—l,w)—é(i -D- (2.19)

i—1
S GG — X1 —p (i — ) M — l,w)], i=1,..k
j=2

Note that (2.18) and (2.19) are independent of N - the number of different cus-
tomer types in the system. Hence, this result for the joint sojourn time distri-
bution is also valid without the assumption made in Section 2.2 that the feed-
back probabilities remain constant after a finite number N of services. More-
over, it follows from (2.18) and (2.19) that the joint distribution of the first k
successive sojourn times of a particular customer depends on the feedback
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probabilities only through p(1),...,p(k—3) and p (which reflects the
influence of p(k —2), p(k —1),..., cf. (2.1), (2.2)). In the next section we shall
use (2.18) and (2.19) to derive some important sojourn time characteristics.

2.4 SOJOURN TIME CHARACTERISTICS

In this section we derive expressions for some important sojourn time charac-
teristics such as the marginal distribution of the successive sojourn times, the
correlation coefficient of the i-th and the j-th sojourn time of a particular cus-
tomer, and the mean and variance of the total sojourn time after k services.
As an example we study the case that a customer receives exactly 2 services;
for this case simple explicit results for the above mentioned sojourn time
characteristics are obtained.

The fact that the joint queue length distribution at the arrival of a customer
and after each of his passes is the same (cf. Corollary 2.2), implies that the
sojourn times S;, j=1,..,k have the same marginal distribution. S; can
easily be obtained from (2.18) and (2.19) by taking kK =1. It is found that the
sojourn times are negative exponentially distributed with mean B/(1—p):

Ef{e %} = ﬁ, =1,k (2.20)
J

Note that this coincides with the sojourn time transform in an ordinary
N
M/M/1 queue with mean service time 8 and arrival rate A >\q (i), cf. (2.5).

i=1

In order to investigate the dependence between the i-th and j-th sojourn
times we have computed the Laplace-Stieltjes transform of the joint distribu-
tion of S; and S;, 1<i <j<k. It is found from (2.18) and (2.19) that

-WS+wS)y _ 1—p ..
E{e Y = , Isi<j<k, (221

where C; _; is determined by
C =1 2.22)

C, = (14ABC -1 =N8'S stn— Dl —p(n —D)Cig, n=2,—1,
1=2

Note that E {e _(“"s‘+”’s’)} only depends on i and j through the difference j —i.
This property might also have been derived from Corollary 2.2.
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REMARK 2.3
It was pointed out by Prof. J.W. Cohen that the two-dimensional Laplace-

Stieltjes transform given by (2.21) is of a type for which the corresponding
joint probability density function, f; (-, -), is known. From the formula given
in entry 8 of Table B in Voelker and Doetsch [1950, p. 208] it is found that,
for I<i<j<k,

fij(xy) = 2.23)

m
%”—_e“"””w"" > [Bz—_CxL] (=p+1/C_y"(1/mIR, xy=0.
]t m=0 ]t

From (2.21) the correlation coefficient, corr (S;,S;), can easily be obtained:
corr(S;,S;) = 1-C;_i(1—p), 1<i<j<k (2.29)

It follows from (2.22) and (2.24) that corr(S;,S;) as a function of i and j only
depends on j—i. Noting that in (2.22) 2;‘;2‘ gin—=0D(1—p(n—D)<1
(remember that g(n —I)1—p(n —1)) is the probability that a customer receives
exactly n —/ services) it follows by induction that the row {C,, n=1,2,..} is
monotonically increasing. Hence, from (2.24), corr(S;,S;) decreases if j—i
grows. In particular it can be proven that limC,=1/(1—p), see Chapter 3,
yielding lim corr(S;,S;)=0. For j—i=1, ;;;(S,»,Sj)=p. So, the successive

Jj—i—o

sojourn times of a tagged customer are always correlated positively.

The Laplace-Stieltjes transform of the distribution of a customer’s total time
spent in the system until the end of his k-th pass S®: =S, +..+S;, can be
obtained from (2.18) by substituting w; =wy, j =1,....k. From (2.20) it follows
immediately that E{S®)} is linear in k:

E(S®) = SE(S;) = kTin. (2.25)
i=1

To derive an expression for the variance of this sojourn time, var(S®), it is
convenient to use the formula

k kK k
var(S®) = Swar(S)+2> 3 cov (S;,S)).

i=i i=1j=i+1

Hence, from (2.20),
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kK  k
var(S®) = k var(S))+23 3 cov(S;,S)).
i=1j=i+1

The covariance of S; and S;, cov(S;,S;), and var(S,) can easily be obtained
from the results (2.20) and (2.24). It is found that

2 f—
var(S®) = lff—p] [kz—z(l—p) S ey 226)
j=1
with Cy, . . ., Ce—; given by (2.22).

The Laplace-Stieltjes transform of the distribution of the total sojourn time S
of an arbitrary customer is now given by

E{e %) = S —ppE(e ™). @27)

k=1

In an example, we shall examine the case k =2 for which explicit closed
form results can easily be obtained.

EXAMPLE 2.1 (The case k =2)
From (2.21) and (2.22) it follows that for the case k =2,

_("’|sl+"‘xsx) — 1 _p
E = ; 2.28
te Y = ot Bor + Bt P er @28

Note that the feedback probabilities p (i), i =1,...,N, enter into the joint distri-
bution of S; and S, only via the offered load p. Thus, as long as p remains
constant, the joint distribution of S, and S, is independent of the individual values
of p(i), i=1,..,N. (Consequently, this also holds for S; and S, ,, i=1,2,..,
cf. (2.21)). Doshi and Kaufman [1988] derived (2.28) for the (special) case of
Bernoulli feedback (p (i) = p).

From (2.24) it follows that
corr(S;,S;) = p. (2.29)

Let F,(¢) denote the distribution function of the sojourn time until the end of
the second pass:

Fy(t) := Pr{S,+S,<t}, t=0.
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From (2.28) we find

1+Vp 1-Vp 1-Vp  1+Vp

2Vp 1-Vo+Bw, 2V 1+Vp+Buy

E{e—ﬂo(SH'S)} -

Hence

1+Vp . 1-Vp -
Fy(t) = —F-(1—e 10~ VeVBy — LB (1 —~10+VeVB) 120, (2.30)
2(1) Vo ) Vo ( )

In Doshi and Kaufman [1988], F,(-) is compared with the distribution of
S; +S, that results when one assumes that S; and S, are independent. Due
to the positive correlation between S, and S, (cf. (2.29)), it is found that F,()
has a longer ”tail” than this approximate distribution.

Finally, the variance of S; +S, is obtained from (2.26):

2
var(S; +S,) = 21+p) —-B—] . @.31)

1—p

2.5 SPECIAL CASES: BERNOULLI FEEDBACK AND DETERMINISTIC FEEDBACK

In this section we study two feedback systems which are special cases of the
general model described in Section 2.2, viz., Bernoulli feedback (Subsection
2.5.1) and deterministic feedback (Subsection 2.5.2). For these models we
obtain simple, explicit expressions for most of the quantities analyzed in Sec-
tion 2.3. The results for the deterministic feedback model have been published
before in Van den Berg et al. [1989]. The Laplace-Stieltjes transform of the
joint sojourn time distribution in the Bernoulli feedback model has also been
derived by Doshi and Kaufman [1988].

2.5.1 Bernoulli feedback

The Bernoulli feedback model is obtained from the general model by taking
p(i) = p: when a customer completes his service he departs from the system
with probability 1 —p and is fed back with probability p.

Obviously
'
P=1
P
The Laplace-Stieltjes transform of the joint distribution of the successive
sojourn times S;, ...,S; can be obtained from (2.12)-(2.14) (or from (2.18)

and (2.19)) by substituting p (i) = p. The expression that results from (2.12)-
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(2.14) has also been derived by Doshi and Kaufman [1988].
To obtain explicit expressions for E{e “S*%S)) corr(S;,S;), and
var(S®)), (see (2.21), (2.24) and (2.26)) we have to derive C,, n=1,...k —1,

from the set of difference equations (2.22). After the substitution
q(H=p’ 7', j=1,2,..,, (2.22) reduces to

£y w11, (2.32)

n—1
Co = (A+MC 1 =M S "' —p"HCi—y, n=2,.k—1.
1=2

From (2.32) it follows that
Cl = ]9
Cz =1 +AB,

Cn _pcn—l = (1 +AB)Cn—l —p(l+AB)Cn—2 _Aﬁ(l_P)Cn—Z,
n=3,...,k—1.

Hence

C; =1, (2.33)
C, = 1+,
Co = (I +AB+p)Cy 1 —(AB+p)Cp—z, n=3,..k—1.

The general solution of (2.33) is given by
G = Upi+Uys,
where y; =1 and y, =AB+p are the roots of
y}=(1+AB+py +(AB+p)=0,
and U, and U, are determined by
Uy, +Uy,=1,
Uyl + Ui =148

After some calculations it is found that

— n=1
¢ =3 P(’;{:P) , n=1..k—1 (2.34)
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Substitution of (2.34) in (2.21), (2.24) and (2.26) yields, respectively

E(e @S98y = 1-p (2.35)

_ j—i—1 ?

I<i<j<k, Rew;,w;=0,

corr(si,Sj) = pAB+py 7, 1<i<j<k, (2.36)
var(S®) = (2.37)
2
_B_ p k___1 b
[1—,; k+21_P{1_p > (l_p)z\l (p+xp)*)H,

k=12,...

It follows from (2.36) that‘ hm corr (S;,S;)=0 (cf. Section 2.3). It is also seen

—if
that corr (S;,S;) is an incréa.;i:g function of AB for fixed i and j. These intui-
tively appealing properties are illustrated in Fig. 2.2.

The Laplace-Stieltjes transform of the distribution of S®) can be obtained
from (2.18) and (2.19) by substituting w; =wg, j =1,...k. The resulting set of
difference equations (2.19) can be solved in the same way as (2.33). After
extensive but straightforward calculations it is found that

Ef(e %" = 1—p—28 . Rew=0, k=12, (238
)= ARt )
where,

o L+BaytMB+p+ V(14 Buo +AB+p) —4(p +pBun +AB)

1 — 2 )

s 1+ Bwg +AB+p — V/(1+ Bwg +AB+p)2 —4(p +pBug +AB)

2 = 2 s

_ x3—(1+Bw)
o = T
il
0, = x1—( ﬁwo).

X17X2
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0.0 0.2 0.4 0.6 0.8

Fig. 2.2 corr(S;,S;) as a function of offered load p=1—>:%, with p =0.5.

2.5.2 Deterministic feedback

Taking p(i)=1, i=1,..,N —1, p(N)=p =0, we obtain the deterministic feed-
back model in which each customer is fed back exactly N —1 times and leaves

the system after the N-th service.

Obviously
p = NAB.
Noting that
90) = q() =1, 0<j<N,

=0, j>N,
it is easily seen from (2.18) and (2.19) that

1—p

Efe —(@S, +...+w,s,)}

i=0

Me(k,w) — AB'S MyGi,0) — (N —kAB

» (2.39)
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with
M (0,0) = 1, (2.40)
Mk(i, w) = (1 +Xﬁ+ﬁwk =i +|)Mk(i == l,w)—kﬂ, i= 1,...,k, k<N.

At the end of this subsection we shall use (2.39) and (2.40) to obtain an expli-

cit expression for the Laplace-Stieltjes transform of the total sojourn time dis-
tribution.

As in Subsection 2.5.1 we solve the set of difference equations (2.22) to
obtain explicit expressions for E{e “S79%)) corr (S;,S;) and var(S®) from
the general formulas (2.21), (2.24) and (2.26). Substituting in (2.22)
p()=q@()=1, i=1,.,N —1, we get

Ci=1,
C, = (1+A8C,-y, n=2,.,N—1.

Hence

C,=0+M8)"!, n=1.,N—1.

Now it follows from (2.21), (2.24) and (2.26) that

E{e 4N 4N = I-p —, 2.41
e ) 1—p+Bw; +Bw; + B2 ww;(1+ABY ~' ! 24D
1<i<j<N,
corr(S;,8;)) = 1-(1—p)1+ABY 77!, 1<i<j<N, .42
2 r L
var($) = || (k2201 —py A KA1 |y (2.43)
1=p A8

The Laplace-Stieltjes transform of the distribution of the total sojourn time
after k services is obtained from (2.39) and (2.40) by substituting
wj=wy, j =1,...k. The resulting set of relations yields

MiGiyw) = (14AB+Bug) —AB'S (1 +AB+Bupy = (2.44)
j=0

2 (1+AB+Bup) +

A+w

| = <N.
g’ i=0,...,k, k<N.
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Using (2.44) it follows from (2.39) that

Y

E{eg™ } = (2.45)

(1—p)A +wp)?
w§(1+AB+Bug) +AA+wo)1—p—(N —k)Buwp)+Awy’

Re wy=0, k<N.

REMARK 2.4

The simple explicit formula (2.45) for the LST of the total sojourn time distri-
bution has been obtained under the assumption that A<N. Unfortunately,
this result can not be extended to the sojourn time of a (special) customer who
is fed back k >N times. The problem is that, for kK >N, the set of difference
equations (2.19) for the M, (i,w)’s can not be explicitly solved (cf. (2.44) for the
case k<<N). The same holds for the solution of the C,’s from (2.22) for the
analysis of the sojourn time variance.

2.6 FURTHER EXTENSIONS

In this section we consider the feedback model described in Section 2.2 with
the following extension: the successive service times of a customer are gen-
erally distributed and may depend on the number of times he has already been
fed back. We also omit the assumption made in Section 2.2 that the feedback
probabilities remain constant after a finite number (N) of services (cf. the dis-
cussion below (2.19)). For this extended model the joint stationary distribu-
tion of the number of type-i customers in the system is no longer of product
form type. In fact no results concerning the distribution of the queue length
are available. Consequently, it can not be expected that we are able to obtain
sojourn time distributions. Therefore, in this section, we restrict ourself to the
derivation of mean queue lengths and mean sojourn times. First, as in Simon
[1984] (cf. Subsection 1.5.1), we derive a set of linear equations from which the
mean sojourn time per visit can be calculated. Next, we show that for the spe-
cial case of deterministic feedback with all mean service times equal (but not
necessarily negative exponentially distributed), this set of linear equations can
be solved explicitly. It appears that from the second visit on, all mean sojourn
times are equal. Finally, explicit results are obtained for the case of Bernoulli

feedback.

2.6.1 Derivation of a set of linear equations

We consider the case that the service time distribution of a customer who has
been fed back i —1 times is given by B;(-), with mean B; and second moment
B?, i=1,2,... The definitions of type-i customers and their characteristic
quantities, as given in Section 2.2, are extended in an obvious way. Denote by



34

pi:=Aq(i)B; the offered traffic due to type-i customers. Obviously the stability
condmon for this system is that p= 2°° pi < 1. We start by obtaining a
relation for ES;. Note that a newly arnvmg customer is a Poisson arrival and
hence PASTA (see Wolff [1982]) applies. Consider the mean amount of work
that has to be handled before this newly arriving customer (in the following:
the tagged customer) receives his first service. This quantity consists of two
components:

1. the mean amount of waiting work found upon his arrival that is handled

before his first service, given by: § B,EXY;
i=1 3(2)
2. the mean amount of work currently in service: Ep, TR
1

where X" denotes the number of waiting type-i customers. The expression for
the second component follows by noting that, at an arbitrary epoch a type-i
customer is being served with probability p;, while his residual service time has
mean B /28;. It may now be seen that,

3(2)
ES] = ZﬁxExw + pr 2 B

i=l1 i

With EX? = EX; — p; we obtain:

ES, = SBEX, + Z(B(

dp; + B . 2.46
2 2Gg A A (2.46)

ES; +, is composed of mean service times of “old” customers (customers who
were already present at the first arrival of the tagged customer) and of custo-
mers who have arrived during the first i sojourn times. It is easily seen that
the mean number of old type-j customers still present in the queue (as type-
j +i customers) immediately after the i-th service of the tagged customer is

given by -q—(%lE X;. The mean number of customers that arrived during the

tagged customer’s j-th sojourn time and that are still present (as type-
(i —j +1) customers) at the end of his i-th service is Ag(i —j +1)ES;. Hence

o by 2
ES; = EMB]+iExj + AXqGE —j+DBi—; +1ES; + Biv1, (247)
Jj=1 Jj=1
i=12,...

The mean number of type-j customers in the system and the j-th sojourn time
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can be related to each other by Little’s formula (see e.g. Kleinrock [1975]):
EX; = M(J)ES,;.

Substituting this into (2.46) and (2.47) leads to

— <~ 2B
j=1 j=1 J
00 i
ES; iy = X0 +iES; + Xpi_j 1 ES; + By, i=12,... (2.49)

Formulas (2.48) and (2.49) represent an infinite set of linear equations in
ES,, ES,, ... . For some special cases this set of equations can be easily
solved explicitly. In the next subsections we shall consider two cases which
yield interesting results for the successive mean sojourn times of a customer.

2.6.2 Special case: M/G/1 queue with deterministic feedback

In this subsection we assume that the customers require exactly N services and
that all service time distributions are the same, i.e. B;(.) = B(.) and p(i)=1,
i=1,.,N—1, p(N)=0, in the general model. Let S denote the total sojourn
time after N services. The equations (2.48) and (2.49) now become:

ES, = ABES + %N(ﬁ‘”—ﬂﬁz) + B, (2.50)
N—i i

ES;;y = MB X ES; + ABYES; + B, i=1,.,N—1. (2.51)
j=1 j=1

Due to the symmetry in (2.51) we have that
ES,-.H = ESN_,'.H, izl,...,N—l.
Subtracting ES; from ES, ., we obtain

ES;+) — ES; = —ABESy_;+1 + ABES; = —AB(ES;+, — ES)),
i=2,..,.N—1.

Hence, ES; = ES; 4, i =2,..,N —1, and, interestingly, we have

ES, = ES; = --- = ESy. (2.52)



36

Now from (2.50) and (2.52):

ES, = ABES, + (N —\BES, + %N(ﬂ‘z)—ZBz) + B (2.53)
And from (2.51) and (2.52):
ES, = 2\BES, + (N —2MABES, + B. @.54)

Solving equations (2.53) and (2.54) yields:

1=V~ DN DN (D —28)

__B
Efy = 1-NAB * (1+ABX1—NAB) ' (2.55)

B 4 MRN8} oo

ES, = ESy = -+ =ESv = 10 0ng T g a—Nag)
Hence
Es = —NB_ | 1+NAB A NP2 2.57)

1-NA8  1-NAB2 1+AB

For N=1 (2.57) gives the well-known formula for the mean sojourn time in
the standard M/G/1 queue, (see e.g. Cohen [1982])

Y.
= + :
ES 21—2B) B, (2.58)
as could be expected.

Observe from (2.55) and (2.56) that ES; = ES, if the service times are nega-
tive exponentially distributed (i.e. B®=28%), cf. Section 2.3. Noting that
(1—(N —2ABAN /2> MN?BN (use NAB=p<]) it follows from (2.55) and
(2.56) that ES, <ES, if B® <2p? and ES, >ES, if P >2p2.

REMARK 2.5
Note that, in fact, for the derivation of (2.52) it suffices to assume that all
mean sojourn times are equal, i.e. 8;=8,i=1,..,N.

2.6.3 Special case: M/G/1 queue with Bernoulli feedback

In this subsection we consider the M/G/1 queue with Bernoulli feedback, i.e.
B;(-) = B(-) and p (i) = p in the general model. For this case the set of equa-
tions (2.48) and (2.49) reads



ES, = xﬁﬁpf"lss, + %(ﬁ(z)—Zﬁz)ﬁpj'l +B.
j=1 j=1

ES;s1 = MBSp/ T TIES, + N3P JES, + B, i=12,..

Introducing

A o) 1
= Z(BP —281)—,
M 2(/9( ﬁz)l_p

=1,2,..,

M= L _ﬁ_} ;
1-AB/(1—p)

J M Esj—

we can rewrite (2.59) and (2.60) into

M, =3P IM, + 1,

j=1

=1 . o . .
My = MBI p/M;_; + N8PV TIM;, i=1,2,....
j=0 j=1

From (2.62),

M,'+2 = (Aﬂ+P)M,+| =~ s = (AB'*‘p)’Mz, I:O,l,
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(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

Substitution of (2.63) into (2.61) and (2.62) leads to a set of two linear equa-

tions with two unknowns M, and M,; these equations yield

M =kL}‘EE
1 I_P_AB’

1—p(AB+
My = 2R

_ A o2 1 1-p—ABp
= + — =
55 1-A8/(1—p) G 252’1—,; 1-p—A8"’

(2.64)
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N B
ES, T8I 0=p) + (2.65)

A 1 1—pAB+ =
?(5(2)_2132)1_]’}\3 lfj(lfké,)o‘ﬁ*’l’)k k=23,

From (2.64) and (2.65) it follows that the successive mean sojourn times are all
equal if the service times are exponentially distributed (8® =28?), cf. Section
2.3. Using AB/(1—p)=p<1 it can be shown that ES, <ES, if f? <28’ and
ES,>ES, if f2>28%. In the previous subsection we have observed similar
properties for the first two sojourn times in the M/G/1 queue with determinis-
tic feedback. Apparently, the difference between ES, and ES, is due to the
fact that a customer’s first sojourn time may contain a residual service (of
mean length B /(2B)) while the second sojourn time only consists of complete
service times, cf. (2.50), (2.51) and (2.59), (2.60). From (2.65) it is seen that,
for k—>o0,

B
ESi>T—: L (2.66)

which is the mean sojourn time per visit in the case of a negative exponential
service time distribution, cf. (2.20).

Finally, the mean total sojourn time, ES, is given by

ES = ipi_lESi = 1—7% + %(ﬁ(z)—Zﬁz)ﬁ. (2.67)

i=1

This result has been obtained before by Takacs [1963].
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APPENDIX 2.1

In this appendlx we derive Formula (2.8). For ease of notation we introduce
the service time distribution function B(7):=1—e ~/#; the n-fold convolution
of B() is denoted byB()" n=12,..

The derivation of (2.8) is based on the fact that XE+D, L XED), which
determines the distribution of S;,,, is conditionally independent of
(XQ, .. XP), ..., XD, L XETD) S, .. L,S) given {((XP, ...,
X%); S;+1), i=1,...,k —1. Using this property it is easily seen that, condi-
tioning on the number of type-j arrivals, nj("'), during the m-th sojourn time,

/Sy +...+0,S,) b o X o - . -
E{e © ASI XS - ze) @ ) [XP=xy, . XP=xy) =

0 =]

o o0
X X, —w ! —wyt =i — W
zl,l()”'zl\zo_/e ”/8 Wil . fe"’llklfe CAA

1,=0 1,=0 4-,=0 4=0

K - ( n j .n") e x—n") "(l)
2 N'T ' H 2 [n;fillp(])’“(l_l’(l))' Mzt

1
i=1n,

A S N\ (Mm )"(I-) n Nim-—1 7 n("' =D ™ R TR
H 2 e - n$m)| Z1,m H 2 [ ("') P(I) " (1 _P(])) ! /“zj,rl,m
T !

2 =0 j=1 a7 =0

*-1) *k-1 4 *-2) G- g
dB(tk)(l+n, +..Fnyey) dB(tk_l)(l+n' totaya-)* |

(0] M 1o .

dB(tz)(l+n, +.+ny,,) dB(tl)(l+xl+...+x,,) ]

Note that by definition gyj=znjs i=N+L1.,N +k, j=1,..,k.
We first evaluate the integral with respect to #, obtaining

— @S +..+0,S) , XP Xy X\’ Xy - = =
E(e @ST-ToRGY o 200) @k - 2w [XP=x, . XP=xy) =

£ 4]
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o }‘I "u)
$ e 93' Ji) [,,(li

n'" x =, nh,
p(N"A=pGY” "z

n =0

k=1 & ) QA m) A | Ntm—1 P n("’_l ) WD
= . + +

II: S e —"S,,,)' Z1m 2 (m) ()" (A=p())” Mz m

m=2 p™=0 j=1 nh=0
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- n(k-l) - N+k—1 R
[1+ B +A(1— 2y g O+ el h @G 10+ 1-p G

J=

*-2) *-2 4 ) O o .
dB(Ik_l)(1+"' +o.tnyy) "'dB(tz)(l+"' *+..t+nyy,) dB(tl)(l+x,+...+x,) =

o
Zi‘o ZN oA (1, w,z)/e “ti fe L f P U
5=0 L,=0 t,_,=0
& O‘tl)’l('l) [N X
-1, ' %, x,—nlY, b
Se ™M= T 3 | PO a—poy i,
M —0 ns : .=ln;|ll=0 nj

k=2 0 (Mm)"r) am | Nitm—1 7 (’""1) o R B R
S e i | 11 s l o, ]p(z)“'(l—p(/»f * 2

e = _
Jj=1 n3, =0

e—n._.a—zu_.Ai‘<1,u,zxp(1)zu+l—p(l)l)
N+k-—-2 N . . . o
A (Lw,2)p(+ Dz 426+ 1=p(G +DP ()2j 4161 H1—p ()"
Jj=1

* -2 k-2 g 1 1 = .
dB(tk_l)(|+n| Fotnyia)* | - dB(tz)(l+n(l’+...+nL)ﬂ) dB(tl)(l+x|+...+xN) )
Next the integral with respect to #; _; is evaluated, yielding
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oo _ 0 _ o0
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=0 1,=0 -2=0
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A" =0 S ! ), =0 n
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) n{™\ i

m=2 pi” =0 j=1 a2 =0

—A+n P+ 00

[14B{wk—1 A=Az 4 1 4F (Lo, 2)p (D224 +1—p (D]}]
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*-3) *k-3) 4 (0] W) e -
dB(tk_z)(H"' +..+nsi) '-'dB(tz)(H"‘ +...+n,,.)dB(tl)(1+x.+...+x,) _

o0 o0 o]

—w ! —w,l. Wl

2o - 2N oAk (Lo )AY Q0,2) [0 [T [ gmunhn
t,=0 1,=0 4_,=0

"(|”
- Q)

1 N X/ X; -"(lll ; x_’lu‘)'| ";21
n{P! 2 (11 3 [n}il]p(l)l A=p(G)” ™"z

n’ =0 j=1n}%,=0
k=2 o _,, (Atm)"('.) ™ Ntm—1 n " n}"'_l) ™ R L B O R0}
e " Yn)' Z1,m n("l) P(]) IH(I _P(])) d lejq-ll,m
m=2 p=0 nys ji=1 A% =0 1+l
N+k—2 N N . . . an®?
Ak 2,0,2)[ A4k (L,w,2)p( +1)zj 4246 +1=p (G + Dl (Nzj+16 -1 +1=p (D"
j=1

(k—3) *k-3) o ) M) o .
dB(tk_z)(H"' +..+nt2) -"dB(tz)(H"‘ +otn) dB(tl)(1+x,+A..+x,) .

We now sum over nf™?,. .. nf§7?_, and subsequently integrate with
respect to # _,, thus obtaining AY(3,w,z) terms; etc.; finally the summations
over n{", ... ,n{) and the integration over ¢, are performed, which gives rise
to the (ﬂv (i,w,2))" contribution in Formula (2.8).
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Chapter 3

THE M/G/1 PROCESSOR SHARING QUEUE
AS A LIMITING MODEL OF THE
M/M/1 FEEDBACK QUEUE

3.1 INTRODUCTION

In the previous chapter we have regarded the feedback model as an M/M/1
queue in which after each service it is decided whether or not the customer is
fed back. In this chapter we consider the same model from another point of
view, viz. as a round robin (time sharing) model in which a customer’s service
demand requires a stochastic number of exponentially distributed service
quanta with mean length B. Obviously, the service requirements are com-
pletely determined by the feedback probabilities p (1), p(2), - - -, as defined in
Chapter 2. From this point of view it is intuitively clear that if the mean ser-
vice time B shrinks to zero while the feedback probabilities go to one such that
a customer’s total required service time remains unchanged, the behaviour of
the feedback queue approaches that of the M/G/1 processor sharing (PS)
queue. Different choices of the feedback probabilities lead to different service
time distributions in the PS queue.

The queue length process in a round robin type of queue is usually less
amenable to mathematical analysis than the queue length process in its limit-
ing case, a PS queue. This has been the main reason for the queueing analysis
of processor sharing, see Kleinrock [1976]. Sakata et al. [1969] showed that the
distribution of the queue length, X”S, in the M/G/1 PS queue is independent
of the distribution of the required service time apart from its first moment:

Pr{XfS=j} = (1-p)/, j=0,1,2,..., 3.1

with p the offered load per unit of time. The determination of the sojourn time
distribution in a PS queue has turned out to be a much harder problem. Only
recently the sojourn time distribution in the M/G/1 PS queue has been
derived, cf. Yashkov [1983], Ott [1984], Schassberger [1984], and the survey of
Yashkov [1987]. We refer to Section 1.5 for a brief description of the
approaches used by these authors. The approach presented in this chapter is
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new: via a limiting procedure we obtain sojourn time results for the M/G/1
PS queue' from known sojourn time results (obtained in Chapter 2) for the
M/M/1 queue with general feedback.

The limiting procedure described above was first proposed by Van den Berg
et al. [1989A]. In that paper it is shown how the distribution of the sojourn
time in the M/D/1 PS queue follows immediately (by taking appropriate lim-
its) from the sojourn time distribution in the M/M/1 queue with deterministic
feedback. In Van den Berg and Boxma [1989B] this method has been
extended to the analysis of the processor sharing queue with general service
times. In these papers the authors concluded on intuitive grounds that the per-
formance measures such as the sojourn time in the feedback model converge to
the corresponding performance measures in the processor sharing queue. Only
very recently a formal proof of this convergence has been given by Resing et
al. [1989]. They present a probabilistic coupling between the M/G/1 PS queue
and the approximating sequence of M/M/1 feedback queues, which shows that
the sojourn time of the n-th customer in the feedback model converges almost
surely to the corresponding quantity in the PS model. From this result they
conclude the distributional convergence of the steady state sojourn times. The
proof partially follows the same line of thought as Schassberger [1984].

The organization of the rest of this chapter is as follows. Section 3.2 con-
tains some definitions and restates those results of Chapter 2 that are essential
for the analysis in Section 3.3. In the latter section we study sojourn times in
the M/G/1 PS queue, by taking appropriate limits in the M/M/1 queue with
feedback. We first derive the mean sojourn time (Subsection 3.3.2) and the
sojourn time variance (Subsection 3.3.3). Next, in Subsection 3.3.4, it is shown
how the LST of the distribution of the sojourn time in the M/G/1 PS queue
can be obtained. Section 3.2, Subsection 3.3.2 and Subsection 3.3.3 are mainly
based on Van den Berg and Boxma [1989B]. In Section 3.4 we consider the
same feedback model as in Chapter 2 but with state dependent service rates.
It is shown how a similar limiting procedure leads to the analysis of the
M/G/1 queue with the so called ‘generalized processor sharing’ service discip-
line. This section is restricted to the derivation of mean sojourn times. In the
last section of this chapter, Section 3.5, we analyze sojourn times in the
M/G/1 PS queue with feedback. Using the (M/M/1 FCFS) feedback results
obtained in Chapter 2 and applying the limiting procedure we derive new
results for the correlation coefficients of the successive sojourn times of a
tagged customer.

3.2 PRELIMINARY RESULTS

We consider the M/M/1 feedback queue introduced and analyzed in Chapter
2. In Section 2.2 we made the assumption that the feedback probabilities of a
customer remain constant after a finite number of services. However, from the
ultimate result for the joint sojourn time distribution ((2.18)) it appeared that
this assumption is not needed, see the discussion below (2.19). In the
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following no restrictions will be put on the structure of the feedback probabili-
ties. So, we rewrite Definition (2.1):

g(l):= 1, (3.2)
=1
q():= TI p(), i=23,...

j=1

Obviously, for stability it is required that the ¢ (i)’s satisfy:

00
ABDg(i)=:p<1.
i=1
For future reference we introduce the generating function of the probabilities
of visiting the queue exactly i times, i =1,2,...:

0@) = 3 gX1—p@)7, zI<L. (33)

i=1

We now recall those feedback results obtained in Chapter 2 which are essen-
tial for the analysis in the next sections. Some of the expressions will be
rewritten such that they are more suitable for analyzing sojourn times in the
M/G/1 PS queue.

First, we slightly rewrite formula (2.18) and use it to obtain a convenient
expression for the LST of the total sojourn time after k services. Replacing the
term M, (k,w) in the denominator of (2.18) by the RHS of (2.19) (with i =k)
and substituting w;=wg, j =1,...,k, it is easily seen that (using the notation
introduced in (3.2)), for Re wy=0, k =1,2,...,

E{e_”"sm =
(3.4)
1—p
k—2 k—2 4
(1+Bw)Mi -y — AB X q(k —j—1M; — (p—AB X q()
j=1 i=1
where,
Mg =1, 3.5)
M, := (1+Bug+ABM, 1 — AB|q(n =D+ S q(n —X1—p(n —I)M,_, |,
1=2
n=L12..:

qO:=1
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In Chapter 2 it has been found that the mean total sojourn time after k ser-
vices is linear in k, cf. (2.25):

E{S®} = kTin, k=1.2,... (3.6)

Formula (2.26) gives the variance of the total sojourn time after k services:

k=1
var(®®) = (G ~20-p) 3 Gl k=12, (37)
j=1
where C,,...,Cy—; can be successively obtained from (2.22). This

recurrence relation for the C, can be simplified in the following way. Noting
that g(n —I)(1—p(n —0)=q(n —1)—q(n—1+1), and splitting the sum in
(2.22) we obtain

n n—1
C,,—)\qu(n _l+1)C1_1 = C,,_l _AB 2 q(n —I)Cl—l 3
1=2 1=2

Now, using C; =1, it is easily seen that
C, =1, (3.8)

n—1
C,=1+M3qn—0C, n=23...
=1

Taking generating functions and using (3.3) leads to

4

C@):= 3C2" = - . lz|<l. (39
w=d (1—=zX1-AB 1-=0@))

1—z

The sequence C;,C,,... is non-decreasing and, cf. (2.24), limited from above.
Hence lim C, exists; an Abelian theorem now implies that (cf. Titchmarsh

nes2y

lim C, = lim (1-2)C() = - (3.10)

n—o0 l—p

For future use we also introduce the generating function of the M,’s. From
(3.5) it follows that

1+ By —MBT—(1-0(2))
“1=2(1+ By tAB)TAB2Q () °

MGe) = SM" =

n=1

|z| <1 (3.11)
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3.3 THE M/G/1 PROCESSOR SHARING QUEUE

3.3.1 The limiting procedure

In this section we show how the feedback results collected in Section 3.2 can
be used to analyze the sojourn time in the M/G/1 PS queue. We apply a limit-
ing procedure, in which 8—0 while the feedback probabilities approach one in
such a way that the mean total required service time, B, remains a positive
constant. We restrict ourself to those service times, 7%, in the PS queue which
are composed of negative exponentially distributed stages:

E{exp(—a7®)) = 3 o, [T — (.12)

j=1 i=1 1+.8ij‘°0

with ay, . . .,a,>0, 2?‘=laj=1, 1, ...,y positive integers (cf. Kleinrock
[1975], p. 145); note that this class of distributions contains the Erlang,
hyperexponential and Coxian distributions, and that arbitrary probability dis-
tributions of nonnegative random variables can be arbitrarily closely approxi-
mated by distributions from this class (cf. Tijms [1986], p. 398). This choice of
service time distribution for the PS queue enables us to choose the feedback
probabilities (hence Q(z)) such that 75 and the total required service time 7%
in the feedback queue have exactly the same distribution - not just in the limit
B—0, but for a wide range of values of 8. Observe that, cf. (3.3),

8 . . I 1
Eferp(—ar™)} = 2 g1 —pONg) = 0g) G1)
Re wy=0.
Now choose
m 7, 1— i
@)= X q; 1 (T_M, (3.14)
j=1 =1 Pijz
with
Pij = l—B/iJ,,» >0, i=lL.,rj=1..m (3.15)
Then
o 7 B/Bi'
E{exp(—a7?)} = 3 I = (3.16)
e ,El ’E 1+Bay —(1=B/By)

m

] 1
a; —=— =E{ex _wo,rps) 3
j=21 j:{il 1+ B " }

As an example, consider the «case of Bernoulli feedback:
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Q(z) = (1—p)z/(1—pz). In this case,

: -

1+B/(1=p)eo 1+ Buy

E{exp(—wyT®)} = E{exp(—woT?)} =

Hence the total required service times in both the feedback queue and the PS
queue are negative exponentially distributed with mean 8=8/(1—p).

When B—0, performance measures in the feedback queue clearly approach
corresponding performance measures in the PS queue. Resing et al. [1989]
give a formal proof of the convergence of the sojourn time. Note that the
queue length distribution in both models is the same for the whole range of
possible B values, cf. (3.1) and (2.5). Below we shall focus mainly on sojourn
times. In particular we are interested in the sojourn time of a customer condi-
tioned on his required service time. This is an important performance measure
for time sharing systems like PS queues, cf. Kleinrock [1976]. We define for
the PS queue

- SPS(x): conditional sojourn time of a customer with service demand x;

- S§P5:  sojourn time of an arbitrary customer.

Obviously,

Pr(SP<s) = 7Pr{s”s(x)<s}dpr{f'°s<x}, 5=0. (3.18)

x=0

The conditional sojourn time S”S(x) can be derived from the total sojourn
time after k services, S®, in the feedback queue as follows. Choose Q(z) for
the feedback queue as in (3.14), (3.15), and consider a newly arriving customer,
say C, who requires exactly k services. Then take B=x/k and let k—o0. Itis
easily seen that the total required service time of C approaches the constant x.
Indeed, the LST of C’s total required service time equals (1+Bw) % =
(1+xwy/k)™® > e ™. Hence, for k—o0, C can be viewed as a customer
with service request x in the M/G/1 PS queue with service time distribution
characterized by (3.12).

The limiting procedure described above will be applied below. We shall
obtain results for the mean, the variance and the LST of the sojourn time in
the PS queue from E{S’s(x)} hmE{S"‘)} var(SPS(x))= hmvar(S(")) and

k-
E{e @S }= hmE {e Naid } respecuvely Thie resilis 16 be presented for the

k—
mean and the variance of the sojourn time are more general and more detailed
than the results for the LST.
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3.3.2 The mean sojourn time
In the M/G/1 PS queue, the mean sojourn time of a customer with service
demand x is linear in x (cf. Kleinrock [1976]):

E(SPS(x)} = lf_p. (3.19)
We now show how this well known result can be easily obtained from the
feedback results collected in Section 3.2. The mean total sojourn time E{S®}
of a customer who requires k services is linear in k, see (3.6). Apply the limit-
ing procedure described in Subsection 3.3.1, taking 8=x/k and letting k—co.
Formula (3.19) now immediately follows from (3.6).

3.3.3 The variance of the sojourn time

The sojourn time variance for a customer with service request x in the M/G/1
PS queue, var(SP5(x)), can be obtained by apsplying the limiting procedure to
(3.7). First, as an example, we derive var(S™°(x)) for the M/M/1 PS queue.
Next the analysis is extended to the PS queue with general service times. This
leads to a simple explicit expression for the asymptotic behaviour of
var (S*S(x)) for very large (x—0c0) and very small (x—0) service requests.

The M/M/1 PS queue

As observed in (3.17), the choice Q(z) = (1—p)z/(1—pz) leads, in the feed-
back queue as well as the PS queue, to a negative exponentially distributed
total service time with mean B/(1—p) = B. To obtain an explicit expression
for var(S®)), see (3.7), we derive C,, n=1,2,..., from (3.9). Substituting
Q(z) = (1—p)z/(1—pz) into (3.9) yields

_ 1—pz
C(z) =z A—2X1—B+p))’ (3.20)

Rewriting the right-hand side of (3.20) as

1 1
+
U+ gy
it follows that
C,=U, + Upx3~!', n=12,.., (3.21)

with U,=1/(1—p), Uy=—p/(1—p), x,=AB+p. Substituting (3.21) into
(3.7) yields

x5 +k(1—x5)—1
(1—x,)?

var(S®) = (T%)Z[k — 21-p)U, ] = (3.22)
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—sz-i- 2p Kk _ 1_()‘B+P)k
Gk + TGS~ oo

Let ;9 be the mean service time for the M/M/1 PS queue and let x be the ser-
vice time of a tagged customer (cf. Subsection 3.3.2). Substitute B=x/k and
p=1—x/kpB into (3.22). Letting k— oo leads to var(S"5(x)):

var (8°(x)) = lim var(s%) = (12”_“':)’;3 - (12211)4 —e~x(-R/B) (323)

a result previously obtained by Ott [1984]. Note that the sojourn time variance
depends linearly on x for x—o0:

~ ~2
ps, w . 2B _2pB .
var (S™°(x)) (—p) x —pf X—00, (3.29)

(see also Kleinrock [1976], p. 170), whereas it depends quadratically on x for
x—0:

PS = p 2 e A 3 )
var(S™°(x)) - )2 3(1_p)x, x—0. (3.25)

The M/G/1 PS queue

We now derive an expression for var (SPS(x)) for the M/G/1 PS queue, in par-
ticular showing that the above asymptotic properties hold for general service
time distributions. We consider service time distributions with LST as in
(3.12), by choosing Q(z) as in (3.14), (3.15):

_Pl BZ/B,
(@) = -t (3.26)
e -2 Hl 1—p;z ,21 ,ﬂll —(1—B/By):

Analogously to the M/M/1 case analyzed above, (3.9) and (3.26) lead to:

C,=U +Uxj '+ -+« + Uxi™, n=12,., (3.27)
where 1/x,, ...,1/x; are the roots of
1—X Q(2)) = 0. (3.28)

Uy, ..., U, are determined by
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U]Z ULZ
+ .
1—x,z 1—x,2

= C(2). (3.29)

Note that in (3.27)-(3.29) we have used the following assumption:

ASSUMPTION 3.1
It is assumed that the roots 1/x,, ..., 1/x; of (3.28) are all distinct.

REMARK 3.1

Assumption 3.1 can be easily proved to hold for the case of Erlang and
hyperexponential service times; we have found no example for which the roots
are not distinct.

REMARK 3.2

1/x3,...,1/x, are the roots of a polynomial of degree L —1< Y™ r;, see
(3.26), (3.28); for example, for m-stage hyperexponential and m-staéé lErlang
service time distributions L =m +1. Note that (3.29) leads to a set of L linear
equations from which U, . . ., U, can be obtained.

We now prove some properties of x; and U; that will be used in the sequel.
LEMMA 3.1
@ |x|l <1, i=2.,L;
(i) x; can be written as

x; = 1—Ba;, (3.30)

with a; independent of B, and Re a; > 0, i=2,..,L;
(i) U; is independent of B, i =1,...,L, and U;=1/(1—p).

PROOF
Noting that (see (3.9)),

z
1—z

(1-0@) = 1-A83 q()',

i=1

1-A8

and }\B§ q(@i) = p < 1, it follows immediately that |x;| <1, i =2,..,L. To

e
prove (ﬁ), substitute (3.26) into (3.28) and replace z by 1/(1—Bz). Then (3.28)
reduces to

42— 28 [T—— =0 (3.31)
z zj=1 =1 1 B,jz

Since 1/x; is a root of (3.28), (1—x;)/B = a; is a root of (3.31). The fact that
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B does not occur in the left-hand side of (3.31) implies that 1—x; depends
linearly on B. The statement concerning Re a; > 0 now follows from (i).
It follows from (3.29) that

1

]
1- B2 g

X
U— = lim (1—zx;)C(z) = lim (1— —)C(
X z-1/x; Za, 1 —BZ

(3.32)

1

1—8z

Observing that BC( ) is independent of B, it is found that

. Xi 1
;aqx( 1—32) (1—52)

is independent of B.
Finally, U, =1/(1—p) follows from (3.10), (3.27) and (i).

Substituting (3.27) into (3.7) yields (cf. (3.22))

k N
var (S®) = (Tijﬂk - 201-p Sy (3.33)

j=2 (l_x_])z

Now, let x be the service time of a tagged customer, and take S=x/k. For
k—o0, var(SPS(x)) follows from (3.33) and (i) of Lemma 3.1; integrating
E{(S"S(x))? }_§var(s"s(x))+x2/(1 —p)* over x and  subtracting
(E{S"S}* =B /(1—p)* yields the unconditional sojourn time variance. We
collect these results in

THEOREM 3.1
In the M/G/1 PS queue with service time LST given by (3.12),

PS ! v) —xa
var(S™°(x)) = —p E(I/aj) Uj[1—xa;—e 7], (3.34)

j=2

L N rs S\2 _A2
var(8*S) = lfp.%(lxa,)Zq[l—ﬁaj—E{e“‘" 1+ %’B—, (3.35)
=

with a,, . .. ,a; the roots of (3.31) and U,, ..., U determined by (3.29), cf.
Remark 3.2; a; and U; are independent of x, j =2,...,L.

Formula (3.34) shows that var(S”5(x)) depends on the required service time
x in a very simple way. It is convenient to use this formula for the analysis of
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the behaviour of the sojourn time variance when x varies. Below we shall

derive asymptotic results for x—oo0 and x—0.

From (ii) of Lemma 3.1 it follows that

lim —2— $(1/aUje ™ = 0.

X—00 I_J =2

Hence, the sojourn time variance is asymptotically linear in x:

var(SPS(x)) ~ 2(1/a,)2U(1 xa)), X—00.

] 2

From (3.27) and (3.30),

[
S
Ms

Cn__ ’
( _p)

L
j=2

and

x 1
anzn(Cn-m%

2 —
2(1/aj) U; ,BZEU (1— x>

It can be derived from (3.9) that

x 1 B,
Cy— = -
’E( =0 T T2

and
S by 1 Ag e g2 147
angl"(cn l—p) 2(1_P)3[333+}\(232 3 BB,
with B; := E{(#S)}, i=2,3.
Hence, from (3.36),
N,
a-p (-

var (SPS(x)) ~

L Ag g 1
p)4[3ﬁs+>\(232 3333)],

(3.36)

(3.37)

X—00.

(Note that, formally, this asymptotw result should have been written as
var (875(x) ~ (\By/ (1= pP)x ~ 15 2By +N(s Bz——Bﬁs)l/(l—p)‘ X—00).
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Noting that, in (3.34),

= o (—xa;) :
l—xaj—e M = —2——1—'L 5 J Sk
i=2 .
and using
Sy, = ¢,-—— = ——£ SUx = C;——— = ag——L—
i bol-e =’ 5777 1o 1=p’
it is found that (cf. the remark below (3.37))
A
var (SPS(x)) ~ —L—x2— x}, x-0. 3.38
( (1—p)? 3(1-p) e

This expression appears to be independent of the service time distribution,
apart from its first moment (cf. also (3.25)). The quadratic behaviour of
var (SPS(x)) for small service requests x should be contrasted with the linear
behaviour for large x.

REMARK 3.3

Formula (3.38) slightly generalizes Theorem 1 of Yashkov [1986]. Formula
(3.37) is contained in Theorem 2 of the same paper; but for the service time
distributions defined by (3.12), Yashkov’s theorem follows immediately from
(3.34).

3.3.4 The distribution of the sojourn time

Application of the limiting procedure to (3.4) yields the LST of the distribu-
tion of the sojourn time in the M/G/1 PS queue. The analysis can be per-
formed along the same lines as the analysis of the sojourn time variance. It
appears that the M,’s in (3.4) have similar properties as the C,’s in the previ-
ous subsection. However, there are some difficulties which did not arise in the
analysis of the variance. These problems are due to the presence of the indivi-
dual feedback probabilities contained in the g(n)’s in the denominator of (3.4).
In general the g(n)’s are given by very complicated expressions and can not be
explicitly determined for the whole class of service time distributions given by
(3.12) (cf. (3.14), (3.15) and (3.16)). Therefore, we shall restrict ourself below
to a subclass of these service times, viz. mixtures of Erlang distributions: (cf.

(3.12))

E{e™™ } = o
j=1

+ 5 (3.39)
1+Bj“’0
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with ap,...,a,=0, 2’?‘ | =1, ry...,r, positive integers. The
correspondmg feedback pr6bab1ht1es are determined by (cf. (3.14), (3.15))

0() = ﬁ [il;p*’)—z] g (3.40)
g=1 —Pjr
with p; = 1—B/B; > 0.
From (3.40) we find
qUX1—p ) = 2 ,(1—p,) [, ~,]pj B (3.41)

from which the g(n)’s can be obtained via:

gy = SqX1—-p), n=12,... (3.42)

I=n

Note that the (sub)class of distribution functions determined by (3.39) is still
large enough to approximate the distribution of any nonnegative random vari-
able arbitrarily closely (cf. Tijms [1986], p. 398).

We shall start the analysis with a lemma that states some properties of the
M,’s given by (3.5) (see also (3.11)). Then, as an example, we consider the
M/M/1 PS queue and show how these properties can be exploited to derive
from (3.4) the LST of the sojourn time distribution. Next, the general case is
treated. Finally, we consider the M/D/1 PS queue. Although the determinis-
tic distribution is not contained in the class of service time distributions deter-
mined by (3.39) it appears that this case can be (partially) analyzed and yields
simple expressions.

Let 1/y,,...,1/y, be the zeros of the denominator,
1 = z(1 + Bay +AB) + ABzQ(2), (3.43)

of the generating function M(z) of the M,’s, cf. (3.11). To obtain closed
expressions for the M,’s we introduce the following assumption: (cf. Assump-
tion 3.1)

ASSUMPTION 3.2
We assume that the zeros 1/y,, ... ,1/y; of (3.43) are all distinct.

Under this assumption it is easily seen that we can write, cf. (3.27),

M, =4y + --- + A1, n=12,., (3.44)
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with 4, .. ., A; determined by

A A
4 TR .~ S R (3.45)
1=y2 1=yLz
REMARK 3.4
1/yy,...,1/y, are the roots of a polynomial of degree L <1+ ™

, see
(3.11), (3. 40), for example, for m-stage hyperexponential and m-staée lErlang
service time distributions L =m +1. Note that (3.45) leads to a set of L linear
equations from which 4,, . . . ,4; can be obtained (cf. Remark 3.2).

Analogously to the proof of (ii) and (iii) of Lemma 3.1 it can be shown that

LEMMA 3.2
(i) y; can be written as

= 1—pd;, (3.46)
with d; independent of B, i=1,...,.L;
(ii) A; is independent of B, i=1,...,L.

Note that, in fact, d; = (1—y;)/ B, i =1,...,L are the roots of: (cf. (3.43) and the
derivation of (3.31))

z+w0+7\—}\2a [;]I=O. (3.47)
Jj=1 B]

The properties stated in Lemma 3.2 will be used below. Before treating the
general case we first give an example.

The M/M/1 PS queue
For exponential service times (Q (z)=(1—p)z/(1—pz), with p =1 —B/B)

1+Buwy ~NT=—(1=(1=p)z/ (1—pz))

M) = I 0+ Bao + N8+ Mz —p)e/ (1 —pz) (3.45)

It is easily seen that the zeros 1/y, and 1/y, of the denominator of (3.48) are
given by

y1 = 5 [1+Boo B +p+ V1+Bun +NB+p) —4tp +pBan +AB)|

1+%B [w0+>\—1/i;+ Viwo +A—1/B)2+4w0//§],
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y2 = 7 [1+Bo+AB+p— VAT +Bn TAB+p) —4p +pBn+AB) |

- 1+%B [wo+)\—1/ie— \/(w0+A—l//§)2+4w0//A3}.

We can write (cf. (3.44))
M, = Ayt +A4y5, n=12,... (3.49)

For the determination of 4, and A, it is more convenient to use (3.5) instead
of (3.45):
A1+A2 = MO =1,

Hence

_ y2—(1+Bwy) _ y1—(1+Bwy)
A] e Az == " “a
Y271 Y17)2

Now substitute (3.49) into (3.4) and evaluate the summations in the denomina-
tor (take g (i) =p'_'). Taking in the resulting expressions y;=1—8d;, i =1,2,
p =1—B/B, B=x/k and using that 4; is independent of B it is easily seen that

2 - X
lim(14Bwg)M; -y = Ddye ™

k— h=1

X k=2 . 2 A 1 —x e ps
EmAB > gk —j —1)M; = A A,B———I[e * —e~*/P],
koo o) h=1 d),

mAB S (i) = AB(1—e~*/Py .
k—oo

Hence, cf. (3.4),

E{e %5 ®) :kumE{e“*"’} = (3.50)
-0
1—p
2 _ . 3w B A
EAhe xdn_pe—x/ﬁ_AEAhB 1‘\ [e an_e—xlﬂ]
h=1 h=1 — Bd,,

It is easily shown that this result coincides with the result obtained in Coffman
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et al. [1970] (formula (30) on page 128). Note that formula (30) of that paper
represents the LST of the distribution of the total delay of a customer with a
specific service demand. To match it with our result it has to be multiplied by
the LST of the required service time (given by e “**).

The M/G/1 PS queue

Now we shall treat the general case, i.e. the case that the service times are
determined by (3.39). Consider in the corresponding feedback queue the total
sojourn time after k services given by (3.4). As in the M/M/1 case, we evalu-
ate the terms (1+ Bwg)My —1, ABSK 2q(k —j—1)M; and }\BZ" 24(i) in the
denominator and take the limit k-3 00 mdependently for each term. The first
term is simple: from (3.44) and (3.46) it is easily seen that

L -
Lim(1+Bwg)M; —1 = hm(l+—w0)2A,,(l——d,,)" e = D Aze 4 3.51)
k—o0 k F=1 k o=

The second one needs more effort. Using (3.41)-(3.44) and (3.46) it is found
after extensive calculations that

k—2
A X qk—j—DM; =

Jj=1
k12 =1=i_k=j=2=(r.=1=i) _
ry—1=i

k—2 m
MM Da, E (=p)"" 'pn

j=1 n=1 i=0

L m rn—1g— r—1—i k—j—2—(r —1—0) i
M34 S0 S 'S [’,‘ _fl_f](l W) p Ty =

h=1 n=1 i=0j=1

m sl (1—x/ (kB 217D
A3 S S
TS E Gy 2 — 2 B | R i
2 e B = =2=(Fy— 2 )X n - A |
= P : 1—x/(kB,)

The last equality is obtained by substituting p, =1—8/ 2?,,, B=x/k and noting
k j -2 _ ] =
that ML ] =0ifk—j—2<r,—1—i.

Using that, actually by definition,

k—r_—l+ix
R S e R T e R (R B T (3.52)

k—o0 j=1
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D il M
X n PRI, -
I_X/(kﬁn)

"/‘. 5 r—l ip s~ ”B)ds
- ﬂn
we obtain
khm)\p 2 gk—j— )M, = (3.53)

—00 j=1

—x/B, X X i)’-_l—ie_s(d‘_”h')dy .

The evaluation of the third term is analogous to that of the second term

k=2 _ k2m el i—1 IS S L o o (P )
Aﬂzq(’)_)\ﬁz Eanz I'_l—j ¢ Pn) Pn

i=1 i=ln=1 j=0

a G (—x/kB) "

ASa, .
2% 2T 1))

n=1

. ) |
5 =D = 1= =2 )/ kBT (A —x/ KBy

i= r—]

Hence, cf. (3.52),
! y-m1~d ~s/B,

hm?\ﬁ E 9() =A3a, 3 (r,.—l—j)', fo( % Te™ "l (3.54)

n]_[O

(In the derivation of (3.54) one recognizes the convergence of the binomial
TP, T TGT1) 4o the Poisson probability

probability i__ N -](1 =Pl
(=—)"""/e™*'" cf. Feller [1950, Ch. 6]; a similar phenomenon

(= 1 MR,
occurs in the derivation of (3.53)).

The integrals in (3.53) and (3.54) can be evaluated by noting that
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x" jcj+l .

%
j’sne—slcdy — n+l(l_e—xlc‘) e—x/c n!
s=0 =0 (n —.])'

Using the resulting expressions and (3.51) we obtain from (3.4):

THEOREM 3.2

In the M/G/1 PS queue with service time LST given by (3.39), for Re wy=0,

E{e "} = limE(e %"} = (3.55)
k—o0

(1-p) éAhe a —Azanﬁn ~sth, 2 2(X/B")‘
=1

j=0i=0
& . 7-1
L m oA n=l —x/8, " (x(1=B.dh)/ Bn)
AS A SeB(——)" S (A-BudiY(e ™ —e A S S
h=1 n=1 —Bndy =0 i=0 5
with dy, ... ,d, the roots of (3.47) and A,, ... ,A; determined by (3.45), cf.

Remark 3.4; dy and A, are independent of x, h =1, ..., L.

For hyperexponentially (H,,) distributed service times (r;=1, j=1,...,m, cf.
(3.39)) (3.55) reduces to

_ s L _ A g
E{e ™S ™) = (1—p) | Sdpe ™™ — A a,B,e ¥ — (3.56)

=1 n=1

=]

AEAhe Xd.zanpn = (l_e_x(l_ﬂ.dn)/ﬁ.)
h= n=1 1- 'n%h

It is easily verified that for m =1 (the M/M/1 case) (3.56) coincides with
(3.50).

REMARK 3.5

Our formulas for the variance ((3.34), (3.35)) and the LST ((3.55)) of the
sojourn time are given in terms of the roots of a polynomial and the solution
of a set of linear equations. The corresponding formulas presented in Yashkov
[1987] are given in terms of multiple integrals. In general both types of formu-
las can only be evaluated numerically. For obtaining numerical results it
seems in our case to be more convenient to use the feedback results (2.22),
(2.26) and (3.4), (3.5) and to evaluate a finite number of steps of the limiting
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procedure described in Subsection 3.3.1.

As we remarked at the beginning of this subsection the analysis above does
not apply to the M/D/1 PS queue. In fact, the deterministic service times can
be approximated by an Erlang-n distribution (for large n) but this leads to the
problem of finding the roots of an (n +1)-th degree polynomial and the solu-
tion of a set of n +1 linear equations (cf. (3.44), (3.45)). Below we shall show
how explicit formulas for the sojourn time in the M/D/1 PS queue can be
easily obtained from the sojourn time in the M/M/1 queue with deterministic
feedback analyzed in Chapter 2.

The M/D/1 PS queue

Consider the M/M/1 queue with deterministic feedback in which each custo-
mer receives exactly N services, see Subsection 2.5.2. Taking N =[B/B] and
B=x/k it is clear that the total sojourn time after k services in the feedback
queue approaches, for k— oo, the sojourn time of a (special) customer with ser-
vice demand x in the M/D/1 PS queue with service time B. Application of
this ll,i;niting procedure to (2.45) yields immediately the LST of the distribution
of S (x):

(1=ABYA+wp)?
w3 *T O L AN +wo)1 —AB+wo(x —B)]+Awy

E{e “S®) = (3.57)

~

Re wy=0, x<§B.
This result has been obtained before by Ott [1984].

REMARK 3.6 . )

(3.57) holds only for 0<x<p. To gbtain a similar formula for x>8 we need
an explicit expression for E {e_“*'s‘ } for k>N, cf. (2.45); but as noted in
Remark 2.4 this seems to be impossible for the case of deterministic feedback.
Ott’s method also precludes the derivation of an explicit formula for x >f (cf.
Remark 5.2 in Ott [1984]).

We conclude this section with a remark on the state of the PS system just
after the departure of a tagged customer.

REMARK 3.7

From Corollary 2.2 and application of the limiting procedure, see Subsection
3.3.1, it follows that for the M/G/1 PS queue the state of the system (the
number of customers present and their residual service requests) just after the
departure of a tagged customer who has received an amount x =0 of service is
described by the stationary distribution of the state of the system at an arbi-
trary epoch, independent of x. This result slightly extends Theorem 2.3 of Ott
[1984]. Ott’s theorem concerns only the distribution of the number of
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customers at a departure epoch of a tagged customer with initial service
demand x.

3.4 THE M/G/1 QUEUE WITH GENERALIZED PROCESSOR SHARING
3.4.1 Introduction

In the previous sections it has been shown that the M/G/1 PS queue can be
considered as a limiting case of an M/M/1 queue with feedback. We
exploited the well known product form property of the joint queue length dis-
tribution to derive some sojourn time characteristics in the feedback queue and
we used these results to obtain corresponding performance measures in the PS
queue. In this section we shall show how a completely similar method can be
applied to analyze an interesting generalization of the PS service discipline
denoted as ‘generalized processor sharing’ (GPS). The GPS service discipline,
investigated by Cohen [1979], generalizes the PS discipline as follows: when
there are j customers present in the system then the service rate for each of
these customers is f(j)>0, i.e. during a small time At the attained service of
each customer increases with f(j)Az, j =1,2,... . Note that, when j customers
are present, the capacity of the server (the total service rate) is equal to jf (j),
j=L2,... If f(j)=1/j then the GPS model clearly reduces to the PS model.
It will be shown below that results for the M/G/1 GPS queue can be easily
obtained from the analysis of the M/M/1 feedback queue with state dependent
service rates. Indeed, it is intuitively clear that when we choose the service rate
in the feedback queue equal to jf (j) when there are j customers present and
let the mean service times B—0 (p(i)—1) as described in Subsection 3.3.1 then
the behaviour of the feedback queue approaches that of the GPS queue. The
formal proof of this convergence is completely analogous to that of the PS
case, see Section 3.1. To illustrate this new approach to the GPS service dis-
cipline we shall show how the following two basic GPS results can be easily
obtained from corresponding results for the feedback queue with state depen-
dent service rates. Let

-1
#(n) := [f[f(j)] . n=1.2,., (3.58)
i=1
0.

=1, n=

For the M/G/1 GPS queue, cf. Cohen [1979],

(i) the distribution of the number of customers X%%S present in the system is
given by

£ om)
Pr(X?P=n} = — (3.59)
SL40)

j=0J"
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(ii) the mean conditional sojourn time, E{S%"S(x)} of a customer with service
demand x is given by

ﬁ%ﬂn +1)
E{S%(x)} = x=0———, (3.60)
S a0)
j=0/"

where p denotes, as usual, the offered load to the system per unit of time.

The formulas (3.59) and (3.60) have been derived under the stability condition
;°= . %«p(j) < oo. Note that both the queue length distribution and the

mean conditional sojourn time are independent of the service time distribution

apart from its first moment; E{S%"S(x)} is linear in x. Apparently, the GPS

service discipline generalizes similar properties of the M/G/1 PS queue, cf.

(3.19).

In fact, Cohen [1979] studies the GPS discipline in a very general model of
open and closed networks with different job classes. This general model con-
tains e.g. the classical Erlang and Engset systems. For the analysis Cohen
uses the technique of the supplementary variable. He obtains generalizations
of known results for closed and open networks such as the product form and
the insensitivity property of the probabilities of the network states, cf. Baskett
et al. [1975]; sojourn time results are restricted to means. We have found that
most of these results can also be obtained from the M/M/1 feedback queue
with state dependent service rates or from networks of these feedback queues.
In fact the GPS network can be considered as a limiting model of a network
consisting of M/M/1 feedback queues with state dependent service rates and
suitably chosen routing probabilities. Each feedback queue corresponds to a
node in the GPS network. This network of feedback queues is contained in
the well known class of product form networks analyzed by Baskett et al.
[1975]. Application of the limiting procedure to their results yields Cohen’s
GPS results. Here we shall restrict ourself to the derivation of (3.59) and
(3.60).

3.4.2 Analysis

Consider the M/M/1 feedback model described in Section 2.2 but with one
difference: when there are j customers present in the system then the server
works with a rate u(j), j =1,2,... . Note that the amount of service that a cus-
tomer receives during each pass is still exponentially distributed with mean B;
only the speed with which he is served may change during time. The ‘old’ case
is obtained by taking u(j) = 1. As in Section 2.2 we start the analysis assum-
ing that the feedback probabilities remain constant after a finite number of
services, i.e. p(i) = p, i=N for some N=>1. (The notation introduced before
is extended in an obvious way). Thus, the total number of different customer
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types is limited to N. It will appear later on that the results are independent
of N; so, this assumption is no restriction. We define

i—1
pi := MIIp(), i=1.,N—1,

j=1

Thus, p; is the offered load to the system per unit of time due to type-i custo-
mers. Obviously, the total offered load to the system per unit of time, p, is

equal to Zf’zlp,-.

The (stationary) joint queue length distribution is found from the general
network results obtained by Baskett et al. [1975]:

Pr{xl =x|,...,XN=xN} = (361)
(xl+ +xN)! N x, Xyt txy o

C e 1 Hpi H (F(I)) 1’

X: XN i=1 j=1
with
1

C=—— , (3.62)
A 8 (TN
m=0 j=1

an empty product being one by definition. (Note, for the derivation of (3.61)
and (3.62), that in Baskett et al. [1975] the service rate is defined as the mean
number of customers that can be served per unit of time; multiplication by 8
yields our definition of the service rate.)

It follows from (3.61) and (3.62) that the distribution of the fotal number of
customers in the system is given by

o TIGG) ™!
Pr(X=n} = Pr{X;+ - +Xy=n} = —L=- s (3.63)
S TIwo)™

m=0 j=1

n=0,1,....

The mean number of type-h customers in the system can also be obtained
from (3.61) and (3.62):

E{(X;} = (3.64)
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0 (xl+ “ew +xN)! N ’x,+...+x,, L
CX == B% el e I II W' =
x,=0 xxy=0 1 N* =] j=1
0 0 (xl+ +xN+1)! N 'x,+...+x,+l o
phcz 2 xq 1 e oo xnd pr H (I‘(]»l:
=0  xy=0 1 N:

i=1 j=1

00 m+1
prC D (m +1)p™ ﬁ W™, h=L..N.

m=0 j=1

Using Little’s formula it follows immediately that the mean duration of the A-
th sojourn time, E{S,}, of a customer is given by

E(Sy) = BCS m+1p" TLwG) ™", h=1,..N (3.65)
m=0 j=1

Note that both (3.63) and (3.65) are independent of N. In addition E{S,} is
independent of A. Hence, the mean total sojourn time after k services is linear
in k:

83 om+ 1o T gy
E{s(k)} =k m=0 - = (=1 " k:1,2, (366)
L (T
m=0 j=1

Now, choose the feedback probabilities such that the total required service
time has the same distribution as the service time in the GPS queue, cf. (3.14)-
(3.16). Substitution of w(j)=jf (j) in (3.63) and (3.66) and application of the
limiting procedure described in Subsection 3.3.1 yield immediately the GPS
results (3.59) and (3.60).

Although our approach to the GPS queue yields simple derivations of the
results previously obtained by Cohen [1979] it seems to be very hard to derive
new results such as the sojourn time distribution. The problem is the untracta-
bility of the distribution of the successive sojourn times of a customer in the
feedback queue with state dependent service rate. For the derivation of the
distribution of the sojourn time in the feedback queue with constant service
rate, which led to the sojourn time distribution in the PS queue, we used the
property that the joint process of successive departure epochs and queue length
vectors at these departure epochs is a Markov renewal process, cf. the deriva-
tion of (2.8). However, this property does not hold in the feedback queue with
state dependent service rate. Indeed, in the latter model a customer’s sojourn
time does not only depend on the number of customers of each type present at
the beginning of the previous sojourn time and the number of new arrivals
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during it but it depends also on the epochs at which these arrivals occur.
Moreover, the sojourn time is also dependent on the order of the different
types of customers in the queue.

3.5 THE M/G/1 PROCESSOR SHARING QUEUE WITH FEEDBACK

3.5.1 Introduction

In this section we consider an M/G/1 PS queue with feedback. The feedback
mechanism has the same structure as described in Chapter 2 for the M/M/1
FCFS queue, i.e. the probability that a customer is fed back after completing
his service may depend on the number of times he has already been served.
We shall study the successive sojourn times of a tagged customer. In particu-
lar we are interested in dependencies between these sojourn times.

The PS queue with feedback has been studied before by Klutke et al. [1988].
They consider the special case of Bernoulli feedback and analyze the behaviour
of the internal input and output processes. In particular they study the
influence of the shape of the service time distribution on the interoutput time
distribution. Their main result is that when service time distributions with the
same mean are convexly ordered (see Stoyan [1983]), so are interoutput time
distributions. The purpose of their study is to gain insight into the properties
of traffic processes in general queueing networks with processor sharing nodes.

In Klutke et al. [1988] it is remarked that the study of flow processes is cru-
cial to understanding the behaviour of more complicated processes in the sys-
tem. As an example the authors mention the sojourn time process and say
that ”this is still an open problem”. In this section we shall show that sojourn
time results for the M/G/1 PS queue with feedback can be obtained from the
sojourn time results for the M/M/1 FCFS feedback queue derived in Chapter
2.

3.5.2 Model description and notations

We consider an M/G/1 PS queue with feedback (PSFB), see Fig. 3.1. When a
customer in the system has completed his i-th service, he departs from the sys-
tem with probability 1—p(i) and is fed back with probability p(i), i =1,2,... .
Fed back customers return instantaneously, i.e. due to the PS service discip-
line a returning customer is immediately taken into service again. The succes-
sive service requests T;, T,, ... of a customer are independent random vari-
ables with distribution functions B;(-), B,(*), ... and means B;, B, ...
respectively. New customers arrive according to a Poisson process with inten-
sity A Obv10usly, for stablhty it is required that the offered load p =

AS(A-5O) TIONE+ - +B) < 1.

j=1 i=1 ~
We are interested in the successive sojourn times S,(Tl), - .»SN(Ty) of a

(tagged) customer in the PSFB queue who requires at least N=>1 services of
length T, . . ., Ty =0 respectively. In particular we shall derive an expression
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=
p@)

A - B() ) >
w 1-p(@i)

Fig. 3.1 The M/G/1 PS queue with feedback.

for the correlation coefficient, corr(é,-(ﬂ),éj(T})), of the i-th and the j-th
sojourn time of a tagged customer, i,j =1,...,N.

For the analysis of the successive sojourn times in the PSFB queue we shall
consider corresponding sojourn times in an associated processor sharing queue
without feedback. Let B(:) denote the distribution function of the total
required service time, i.e.

A 0 . fi=1., ~ ~
Bty := SN TIHOXB (0 - -+ *B;(1)), 1=0. (3.67)

j=1 i=1

It is easily seen that the behaviour of the M/G/1 PS queue with service time
distribution B() is exactly the same as the behaviour of the PSFB queue
described above. In the sequel the PS queue with service time distribution B(-)
will be called "the associated PS queue” (or simply “the PS queue”). For a
tagged customer with initial service demand TS=T,+ --- +Ty,
Ty, ...,Ty=0, in the associated PS queue we define:

- SPS(T;): time during which the remaining service demand of the tagged cus-
tomer is in the range (f"s—z}zl T;,7"s —2};'1 T;), i=l,..,N.
Obviously, the joint distribution of S{5(T)), .. .,SPS(T;) does not depend on

Tis1,--->Tn, i =1,..,N —1; SFS(T)) is distributed as the conditional sojourn
time of a tagged customer with service demand T :

E{e Sy = E(e™S" ™) 7,30, Re wy=>0. (3.68)

It is clear that the quantities S/5(T}), i =1,..,N in the associated PS queue
correspond to the successive sojourn times S,(7';), . ..,Sy(Ty) in the PSFB
queue, ie, for ¢y, ... ,ty=0,

Pr{Si(T))<ty, . ..,Sy(Ty)<ty} = (3.69)
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Pr{SPS(T)<t,,...,SF5(Tw)<ty}, Ti,...,Ty=0.
Specifically,
corr(Si(T),S{(T))) = corr(SPS(T}),SPS(T}), ij=1,...,N. (3.70)

So below we shall focus on the sojourn times S”S(7;), 7;=0, i =1,..,N, in the
PS queue.

3.5.3 Analysis

Consider the M/G/1 PS queue with service time distribution B() We assume
that B(") belongs to the class of phase-type distributions given by (3.12). The
first moment of B(") is denoted by 8. From Remark 3.7 it follows immediately
that for 2<i<N the joint distribution of SPS(T}),...,SE5(Ty) does not
depend on T}, j =1,...,i —1; in fact Remark 3.7 implies that, cf. (3.68),

E{e S ™) = E(e™S @y T30, i=1,.,N, Rewy=0. (3.71)

Hence means are simply given by, see (3.19),

T;
E(SP5(T)) = FE i=1,..,N, (3.72)
with offered load p=AB. It also follows that corr (SPS(T,),SFS(T))),
Ty, ...,Ty=0 depends only on T;, T; and > _ ,+ T,, 1<i<j<N. Hence,

for the analy51s of corr(SPs(T),SPs(T ), Tq, o }‘N>O i,j=1,..,N we can
sestriot oursell 1o the Sstsenination of corr (ST s(Tl),SP 3(T5)); T1,T5, T3>0
without loss of generality. Below we shall derive an expression for
corr(SY5(T),S855(T3)), T,,T,,T3=0. We shall consider corresponding
sojourn times in the M/M/1 FCFS feedback queue and apply the limiting pro-
cedure described in Subsection 3.3.1. The analysis is largely analogous to the
derivation of the sojourn time variance in the M/G/1 PS queue, see Subsec-
tion 3.3.3.

Consider the M/M/1 FCFS feedback queue with mean service time S8 and
feedback probabilities p(i), i =1,2,... related with B such that the total
required service time has distribution function B(), see (3.14)-(3.16). We fol-
low a tagged customer during his first kK =k;+k,+k; successive sojourn
times Sy, . . .,S;. Define

Sl(kl):=S| e B e +Sk.9
Sp(k2):=Sk, +1+ = - +Sk 44,5
S3(k3): =Sk, +x,+1F - ° Sk, 4k, 4k,
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Clearly, when we take k,=[T,/B], k3=[T3/B], B=T,/k, and let k;—>c0
then S,(k,), S,(k;) and S;(k3) correspond to the PS quantities STS(T)),
S$5(T,) and S§5(T;) respectively (cf. Subsection 3.3.1; note that, for k,— oo,
kiB—T;, i=1,2,3). We shall first derive corr(S;(k;),S;(k;)) for general
ky,k,,k3=0. Next, taking k,, k3 and B as indicated above we use

corr(ST3(T),85°(T)) = kh'm corr(S,(k1),S;(k3)). (3.73)

1—>®

From the definition of S;(k;), i =1,2,3, it follows that the covariance of
S,(k) and S;(k3) can be written as

k, ks
cov(S,(k1),S3(k3)) = 2 ECOV(Si,Sk.+k,+j) , ki,ka,k3=0. (3.74)
i=1j=1

The covariance of S; and S; is found from (2.20) and (2.24):

2
cov(S,,S)) = [—L A—(1-p)C_y), 1<i<j<k, (3.75)

1—p

with C,, n =1,...,k as in Subsection 3.3.3, see (3.27)-(3.30).
Substituting (3.75) into (3.74) and writing C, as in (3.27) it follows that, for
k 1 1k29k3 20,

-
oS Sik) = |71 B Ba-0-0C k) G0
L i=1j=1

( 12 ki ks _—
= || [kks—a-p3 S Suakthri=i-t

~1—p1 i=1j=11=1

L .k ks
& Suat St S
1=2 i=

i=1 j=1

B g LU k, x;‘l —x1—1 k'_l)(l—x, 1
l_plg 1x1( P X P

The third equality of (3.76) follows from (iii) of Lemma 3.1. Replacing in
(3.76) x; by 1—Bay;, I =2,...,L, see (3.30), we obtain

cov ($10k) Sstks) =~ a7
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L (1—Ba)*' —(1—Bay)™"! 1, 1-(1—Ba)*™!
St pa LB ey,

1=2

ky,ka,k3=0.

Now, taking in (3.77) appropriate limits, i.e. k,=[T,/B], k3=[T3/pB],
B=T,/k, and k;— o0, we find, cf. (3.73):

cov(ST5(T1),S5°(T3)) = (3.78)

L = - -
N l_lp SU(1/a)e M (1—e Y 1—e DY), T,,T5,T5>0.
1=2

Hence, from (3.71) and (3.34),

corr (ST3(T'1),85°(T3)) = (3.79)

L
— U1 /a)e” 4 (1—e Y 1—e" D)
1=2

>

1

L iy 7 | L _
2| X1/ U1 —Ta—e T"")} [E(I/a,)zul(l—rga,—e Ty
=2 =2

L
2

T 5. T30,

Returning to the PS queue with feedback we have from (3.79) (cf. (3.70), the
discussion below (3.72) and Lemma 3.1):

THEOREM 3.3 B .
For the successive sojourn times S\(T,),...,Sy(Ty), T;,...,Ty=0, of a
tagged customer in the M/G/1 PSFB queue with total service request LST given

by (3.12),

corr (S(T),S{(T)) = (3.80)

L - = -
— U/ e T (1—e Ty 1—e” %)
=2

>

1 1
I _ 2| E = 2
2 [/ U(1—Tia—e T"")} [z(lfa,)ZU,(I—T,-a,—e Ty
=2 =2
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I<i<j<N,

with T, ;: 21 1 Tn- @2,...,a are the roots of (3.31) and U,, . . . ,Uy are
determmed by (3 29) of. Remark 3.2, a and U, are mdependent of T,
n=1,.,N, [1=2,.,L

It is interesting to consider some asymptotic properties of
corr (Si(T;),S;(T;)). First, noting that in (3.80) Req; >0, /=2,..,L, see
Lemma 3.1, we obtain

corr(S(T),S(T)) - 0, T, T;=0, T, j—>o0, I<i<j<N, (3.81)

which is intuitively clear. Another asymptotic result applies to the case that
T;, T; and T;; become very small. Using 2’“ U=1—1/(1—p) and (3.34),
(3.38) it follows from (3.80) that

corr(S(T),S(Tp) > 1, T, T;,T;;—0, 1<i<j<N. (3.82)

This result can be explained as follows. Suppose a tagged customer starts his
i-th service at time 7. For T;, T; and T;; close to zero it may be expected that
the successive sojourn times S;(T;), . . S (T;) of the tagged customer are
small (cf. (3.72)) and no new arrivals or departures occur during the time inter-
val [1,t +Si(T;)+...+S;(T;)]l Hence, due to the PS service discipline
Si(T;)=T,S(T:)/ T, i.e. Si(T;) is completely determined by S;(T;).

We conclude this section with an example.

The M/M/1 PS queue with Bernoulli feedback

Consider the M/M/1 PS queue with Bernoulli feedback, i.e. B(t) = f—e™¥ ﬁ
p())=p, 0<p<1, see Subsection 3.5.2. For this case the total required service
time is exponentially distributed with mean B=p/(1—p), cf. (3.67). From the
calculations for the determination of the sojourn time variance in the M/M/1
PS queue, see Subsection 3.3.3, we have in (3.80) L=2, U,=—1/(1—p),
a;=(1—x,)/B=(1—p)/B. Hence, for the M/M/1 queue with Bernoulli feed-
back (3.80) reduces to

corr (S(T)),S,(T))) = (3.83)

e_Tu(l_P)/B(l _e_Tl(l_P)/ﬂ)(l _e_T,(l_P)/ﬁ)
: T :
2 [e‘”‘"’””— 1 +T,(1—p)/B] . [e‘T/“"’)’”— 1 +Tj(1—p)/ﬁ]

, 1<i<j<N.

0=
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Chapter 4

SIMPLE APPROXIMATIONS FOR SECOND MOMENT
CHARACTERISTICS OF THE SOJOURN TIME IN
THE M/G/1 PROCESSOR SHARING QUEUE

4.1 INTRODUCTION

Although in literature considerable attention has been paid to the exact
analysis of the sojourn time in the M/G/1 PS queue, little work has been done
on the investigation of the practical implications of the results. The expres-
sions for the second moment and the LST of the sojourn time distribution
obtained by Yashkov [1983], Ott [1984] and Schassberger [1984], see also
(3.34), (3.35) and (3.55), are complex and not very attractive for practical
applications. Only for the mean sojourn time a simple explicit expression
exists; this expression is insensitive to the service time distribution apart from
its first moment, see (3.19). The formulas for the second moment of the
sojourn time require perfect information about the service time distribution,
which is almost never available in practice. Moreover, in general these formu-
las can only be evaluated numerically. As far as we know no attention has
been paid to the derivation of approximations or asymptotic formulas which
are useful for practical evaluation, apart from a paper by Yashkov [1986].
Yashkov derives some asymptotic estimates for the conditional sojourn time
variance for customers with small or large service times. We have obtained
similar results in Section 3.3, see (3.37) and (3.38). In particular the asymp-
totic formula (3.38), for customers with small service times, slightly generalizes
Yashkov’s result, cf. Remark 3.3.

Actually, our interest in approximations for second moment characteristics
of the sojourn time in the M/G/1 PS queue started with the derivation of
(3.37) and (3.38). We found that these asymptotic formulas yield reasonable
estimates for a wide range of the parameter values. The discovery of simple
bounds for the second moment of the sojourn time also stimulated the investi-
gation of approximations. Indeed, noting that in (3.7) C,=1, n=1,2,..., it is
easily seen that, for the total sojourn time after k services in the feedback
queue,
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var(S®) < ﬁ(kﬁ)’ , k=12
-p

Hence, applying the limiting procedure described in Section 3.3,

PS p 2
var(S™°(x)) < (1—p)2x g 4.1

Note that this bound depends on the service time distribution only through its
first moment. Obviously, (4.1) implies an upper bound for the unconditional
sojourn time variance which depends on the first two moments of the service
time distribution. After having noticed the existence of these bounds we found
out that they can also be easily obtained from the results in Yashkov [1983]
and Ott [1984]. However, neither Yashkov nor Ott points at this interesting
property of the sojourn time variance in the PS queue.

The aim of the present study is to derive approximations for the second
moment of the sojourn time distribution, which are quite simple and yet accu-
rate enough for most practical purposes. Some very simple approximation for-
mulas based on the first and second moment of the service time are presented.
The accuracy of the approximations is tested for a large number of different
service time distributions and a wide range of traffic intensities. A refinement
of the approximation is obtained by taking the third moment of the service
time into account. This refinement yields remarkably accurate results with
relative errors less than 1.5 percent in most cases.

The organization of the rest of this chapter is as follows. In Section 4.2 we
introduce the notations and give a summary of those known sojourn time
results which are relevant for our study. We also present some extensions and
new results. In particular the heavy traffic behaviour of the second moment of
the sojourn time is derived. Section 4.3 is concerned with the second moment
of the conditional sojourn time of a customer with service demand x. We show
that the asymptotic result (3.38) yields reasonable approximations for a wide
range of x values. In Section 4.4 approximations are developed for the second
moment of the unconditional sojourn time. We first propose an approximation
which uses only information about the first and second moment of the service
time distribution (Subsection 4.4.1). In Subsection 4.4.2 we construct a more
detailed (and more accurate) approximation formula, which is based on the
first three moments of the service time distribution.

4.2 NOTATIONS AND PRELIMINARY RESULTS

We consider an M/G/1 PS queue with arrival rate A and service time distribu-
tion B(-) with first and second moment B and B,. It is assumed that
p:=AB<1 and that the system is in steady state. Since confusion with the
sojourn time in the feedback queue is not possible we use in the rest of this
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chapter S(x) and S instead of S”5(x) and S”S to denote the conditional and
unconditional sojourn time in the PS queue.

The sojourn time formulas obtained by Yashkov [1983] and Ott [1984] are
more suitable for heavy traffic analysis than our expressions derived in Chapter
3. They have for the second moment of the conditional sojourn time,

2 x
E(S'(x)} = (1ip)2 + (1_2p)2 —fo(x—t)(l—R(t)) dr 42)

where R(t) represents the waiting time distribution for the M/G/1 first come
first served (FCFS) queue with service time distribution B(-),

R@) = (1-p)Se"F" (), @3)
n=0
F() =+ [(1-B@)du.
Bu =0

Note, for the waiting time distribution R(r) in (4.2), that
1—R()<1—R(0)=p, t=0. Hence, cf. (4.1),

E(S(0)) < —Lx? @.4)
(1—p)?

A lower bound for E{S?(x)} follows immediately from the mean sojourn time,
given by (3.19), and Schwartz’ inequality (or alternatively from (4.2)),

X2

(1-p?

E{S’(x)} = 4.5)

So,
1
(1-p)

Note that the upper bound is 100p% higher than the lower bound and that
these bounds depend only on the mean service time; this supports a certain
robustness of E{S*(x)} for the service time distribution.

x? < E(S*(x)} < (ll—j:)—zxz . 4.6)

The heavy traffic behaviour of E {Sz(x)} can be derived from (4.2) by noting
that the heavy traffic behaviour of the waiting time distribution for the M/G/1
FCFS queue is, for p—1, negative exponential, i.e. (see Cohen [1982, p. 596])

R(—l—i—p) ~1—e™4,  forp>l, @.7)
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where d = %p/}z / ;9

Substituting (4.7) into (4.2) yields

E(S*(x)} ~ (1—”)—2 x2, forpol. (4.8)

The asymptotic behaviour of E{S?(x)} for x—0 is given by (3.38) and
(3.19):

2 _dtp o _ p 3 —
E{S°(x)} (l—p)zx 3&(1—p)x , forx—0. (4.9)

For exponen&al and deterministic service times, simple explicit expressions
for E S?(x) exist. For future use we state these expressions. From (3.23) and
(3.57) it follows that

E{S*()}exp = (121)112)3 - (lzip;’)“ e”‘“_")/k) y  xl, (4.10)
E 2 — 2 2 __ 2k2 px/B .
{S (x)}DET = (l_p)zx p (l—p) e l_pX/B)7 0<X<B (411)

From (3.19) and the above results for S(x) it follows immediately that for
the unconditional sojourn time S, cf. (3.18),

E{S} = —Ll_ ’ (4.12)
p
Bz 1+p =
< E($*) < LB, 4.13
(1 _p)Z { } R _p)z B ( )
E(S*} ~ (1 )2 —LB,, forpol. (4.14)

For exponential and deterministic service times,

2y —L
E{S"}pxp = (1t 2 ’ (1 ok (4.15)
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~2 A2
2
E{S*}per = (l—ﬂp)z = pz(zlﬁ_p)(e"—l—p). (4.16)

REMARK 4.1

(4.13) implies that, for the M/G/1 PS queue, the dependence of E{S?} on the
third moment of the service time distribution is limited. This should be con-
trasted with the behaviour of the second moment of the sojourn time distribu-
tion for the M/G/1 FCFS queue. For the FCFS discipline it depends linearly
on the third moment of the service time distribution, see e.g. Cohen [1982].

In the following sections the above results are exploited to develop simple
approximations for E{S?(x)} and E{S?}. We present extensive tables com-
paring the approximations with exact values. The service time distributions
which we have chosen to test the approximations are:

- exponential distribution

- deterministic distribution

- k-stage Erlang distribution (E)

- two-stage hyperexponential distribution (H), in particular
H, with balanced means (HZ™), and
H, with gamma normalization (HSM)

- two-stage Coxian distribution (C,)

- three-stage hyperexponential distribution (/)

These types of service time distributions are often used for practical applica-
tions in queueing theory, see Tijms [1986] and Whitt [1982, 1984].

In practice service times are often characterized by the mean, B, and the
squared coefficient of variation, ¢?, defined by

,_ @

¢t = =7,

where o denotes the service time variance, see Tijms [1986]. Here we shall use
c? rather than o’ to characterize the variability of the service times.

The H5™ and HSV distributions have been introduced to reduce the number
of parameters of the H, distribution, see Tijms [1986]; they are uniquely deter-
mined by their first two moments. In particular, the H5" distribution with
mean f and ¢?>=1 has the same third moment as the gamma distribution with
mean B and squared coefficient of variation c2. In Section 4.4 the class of H,
distributions will be considered in more detail.

The tables presented at the end of this chapter contain relative errors of the
approximations for various service time distributions. The relative error is
defined as

100% approximation result — exact resuIt.
exact result

The exact values of E{S*(x)} and E{S?} have been obtained from (3.34) and
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(3.35). For H; and C; (and E;) service time distributions these formulas
require the roots of a polynomial of degree k and the solution of a set of k
linear equations. Even for the case k =2, the resulting expressions are very
large and complicated and do not give much insight into the influence of the
parameters.

4.3 APPROXIMATION OF E {S?(x)}
In this section we show that the asymptotic result (4.9) yields a good approxi-
mation for E{S?(x)} for an important range of x-values.

We define (cf. (4.9)),

E{S*(0)appx := (11:”:)2 3 — 3ﬁ_p)x3. (4.17)

Note that E {Sz(x)} 4ppx Satisfies the heavy traffic behaviour of E {Sz(x)} (see
(4.8)) and that E {Sz(x)}Apr is smaller than the upper bound of E {Sz(x)}
given by (4.4). Approximation E (Sz(x)} 4ppx 1s independent of the service
time distribution apart from its first moment. Obviously it can not be applied
for too large values of x because it becomes negative for
x>3B(1+p)/(p(1—p)). Moreover, assuming that the variance of S(x) is a
convex function of x (cf. (4.9) and (3.37)), we may not expect that
E {SZA(x)} 4ppx 18 a good  approximation for x>x;, where
x,=B/(1—p)=E{S} is the point of inflection of (cf. (3.38))

=L B4, 4.18
TO= ™~ Shan @1

For x<x,, E{Sz(x)}Apr is within the bounds of E{S?(x)} given by (4.6).

In Table 4.1 approximation results are compared with exact results for a
number of different values of x (x :%ﬁ, ,&, %B, ZB, -f&, TL) and
—p 1—p

different service time distributions. For each of these cases p varies from 0.1
to 0.9. For the sake of clarity only the relative approximation errors are given.
It appears that for most cases the relative approximation errors are negative.
As expected, the approximation becomes less accurate when x grows. For
0<x<§ _the relative errors are less than 2.34% in absolute value. For
0<x<2pB the maximum relative error is 6.56%. When x remains constant the
maximum errors occur for p~0.3. For x =B/(2(1—p)) and x =B/(1—p) the
relative errors tend to increase when p grows. For x =8/(1—p) the maximum

error is 11.29%.
It is seen from the results for different service time distributions that the accu-
racy of the approximation tends to decrease when ¢? becomes larger.
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REMARK 4.2

In Van den Berg [1988] we have derived an approximation for E{S?(x)} for
the whole range of possible x-values (x=0) by appropriately combining the
two asymptotic formulas (4.9) and (3.37). The idea is as follows. Two values
x, and x, are determined, such that for x<x, (4.9) yields a good approxima-
tion and for x=Xx, (3.37) yields a good approximation. For X;<x<x,,
E{S%(x)} is approximated by the term x2/(1—p)* plus a linear function of x,
cf. (3.37). We took x; =B/(1—p). Details about the determination of x, are
given in Van den Berg [1988]. The approximation yields reasonably good
results for service time distributions with ¢? not too large (0<c?<2). For
these cases we found relative errors which are typically less than 10%. A
minor drawback of this approximation is that it needs the first three moments
of the service time distribution (cf. (3.37)).

4.4 APPROXIMATION OF E{S?}

In this section we propose two different approximations for the second
moment of the unconditional sojourn time S. First we derive a simple approx-
imation which is based on the exact formula of E{S?} for the case of deter-
ministic service times and for exponentially distributed service times. This
approximation uses only the first two moments of the service time distribution.
Next it is shown how this simple approximation can be improved. We derive
a (second) approximation based on exact expressions of E{S?} for two classes
of H, distributions. This latter approximation also takes the third moment of
the service time distribution into account.

4.4.1 Simple approximation
It follows from (4.13) that an approximation E{S?},pp of E{S?}, which
satisfies

~

B2 2 1+B z
(l_p)z < E{S }APP < (l_p)zp2 ’ (419)

yields relative errors which are bounded by 100p% in absolute value. This
observation and the relations for E{S?} given in Section 4.2 support the idea
to derive an approximation for E{S?} which is based only on the first two
moments of the service time distribution. We propose an approximation
which is a linear interpolation on the service time squared coefficient of varia-
tion such that it yields exact results for the case of exponential and determinis-
tic service times. This type of two-moment approximations is often used to
estimate performance measures (e.g. mean sojourn times) in (complex) queue-
ing systems, see Tijms [1986, Ch. 4]. The rationale behind it is that the
Pollaczek-Khinchine formula for the mean sojourn time E{S"FS} in the
M/G/1 FCFS queue allows the representation
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E{SFCFS}y = 2E{SFSYexp + (1—cHE{S* ) pgr , (4.20)

where E{SFF)yp and E{SFFS}ppr denote the mean sojourn time for the
special cases of exponential and deterministic service times (with the same
means). Note that this kind of representation is also allowed for the mean
sojourn time in the M/G/1 PS queue, cf. (4.12). For the present case of the
second moment of the sojourn time distribution in the M/G/1 PS queue this
idea leads to an approximation E{S?},pp, for E{S?} which reads as follows:

E{S*}4pp1 = CE{S*}gxp + (1—cHDE{S?}ppr = (4.21)
24p B 28 2

21+ +(1-c? - (e —1—p)).

e - VT G P

Note that this approximation has the following appealing properties:

APPROXIMATION PROPERTIES

(1) The approximation is exact for deterministic service times.

(2) The approximation is exact for exponentially distributed service times.

(3) The approximation yields values between the lower and upper bound of
E{S?} given by (4.13).

(4) The approximation satisfies the heavy traffic behaviour of E{S?} (see
(4.14)).

(5) The approximation yields the exact value of E{S?} for p=0:
E(S*}4pp = E{S’} = B,, forp=0.

The approximation results for the test set of service time distributions and
traffic intensities are presented in Table 4.2. It appears that the approximation
yields reasonably good results. In all tested cases the relative approximation
error is smaller than 5%. In particular for service time distributions with c?
close to one (0<c?<2) the relative errors are less than 1.89%. Obviously this
small error is due to the fact that the approximation is exact for exponential
and deterministic service times. For larger values of ¢? (c2>4) the approxima-
tion becomes worse. It is noticeable that the approximation is significantly
better for the H, distribution with gamma normalization (H$") than for the
H, distribution with balanced means (H¥™). In the next subsection we shall
show that this is due to the influence of the third moment of the service time
distribution on E {S?}.

4.4.2 Detailed approximation
The simple approximation (4.21) tends to be less accurate if the squared
coefficient of variation of the service time distribution becomes larger.
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Therefore, for service time distributions with ¢>=>1 we shall develop a new
approximation, APP2, for E{S*}. This approximation is based on simple
exact formulas for two classes of extreme H, distributions. It contains the
first three moments of the service time distribution.

We start with recalling some characteristics of the class of H, distributions.
The H, distribution function is given by

By (1) = a(l—e~"F) + (1—a)1—eF") 4.22)

where 0<a<1 , 0<f” <p®. o ”
So, there are three parameters. Given the mean B=af " +(1 —a)B( ) and
¢?=>1 there is thus one remaining degree of freedom, r, defined by

A
Q

r = ~ ~ .
of" +(1-a)f?

r =1/2 yields the class of H, distributions with balanced means (H3™).
Obviously, if ,& and c? are given, r determines the third moment, /:33, of the

H, distribution. For fixed B8 and B, (c;),AtzheAsmallest possible value of B; is
obtained for r =0. In that case B3= 7 B,/B. For r—1, B3—>oc0 (see Whitt

[1982,1984]).

Our numerical experience with respect to H, distributions indicates that
E{S?) becomes smaller when f; grows (B and B, constant). So (cf. (4.13)), we
expect that E{S} }H, hAas a limit for f3—o00, B and B, fixed. From (3.35) it is
found that, for B and B, fixed,

E{S* )}y =_ lim E{S}}y = b 4 B B (4.23)
! &,—»co(r—-»l) ’ (1_9)2 2_P (I_P)z
~ 3 A2 ~
and, for B3=758,/B (r=0),
E(8)g~ = 1+ L ; (4.24)
’ 2=p " (1-p)
It is easily seen that, for ¢?=>1,
E{S )y~ < E{S*}g~, 0<p<l. (4.25)

In (4.25), equality holds if =] (ﬁ2=2ﬁ2), hence if the service times are
exponentially distributed.
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Now we introduce two approximation assumptions to extend the above
results with respect to H, distributions to general service time distributions.

Assumption 1: E {S2} depends only on the first three moments (i?, ,l}z, ,233) of
the service time distribution.
Assumption 2: E{S?} decreases if B grows (B and B, fixed).

Unde; these assumptions it follows from (4.23) and (4.24) that, for ¢ 21,
Ba/—ﬂz /B,

/§2 2p [92 2 kz
E{(S 1 T 4.26
ey L Al Ul e e R

(4.23), (4.24) and (4.26) suggest an approximation, APP2, for E {SZ} which
reads as follows:

Bz 3 2 [}2
E{S? = —L - £ 427
{S"}app2 = v(1+ ) o (1=pp + (=X (1—pp Ll o (1—pp ), (4.27)

where Y: :'Y(P’B,Bz,BB), OSYS L,

The choice of the weight factor y will be partially determined by the approxi-
mation properties listed below (4.21). Besides the properties (2)-(5) we require
that

6) for B, B, fixed,

. B, » f
lim E S2 = o )
Bow PR (—pP T 2-p (1-pp
(1) for By=>B/B,
B,
E{S? =1+ )
{87 )app2 = A+ 52 p)(1 s

Note, that, without any further specification of y, APP2 satisfies the approxi-
mation properties (2) and (5). Considering the other required properties ((3),
(4), (6) and (7)) it is natural to choose y as follows,

y= P - : (4.28)

1471(Bs —5 B2/ BX1—p)

where vy, represents the relative influence of B3 on E {Sz}. y; remains to be
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specified. We assume that y, depends only on 8 and ,l}z. Note that y; has to
be chosgn such that y is dimensionless. The most obvious choices are
Y1=1/8 or y;=1/(BB;). For both cases we compared approximation results
with exact results. Our test set consisted of H, service time distributions with
c? ranging from 1 to 20. For each value of ¢? a large number of B; values
was considered. It ap?eared that the choice v, =1/(BB;) yields much better
results than y;=1/8. However, in most cases the choice y, =1/(88,)
underestimated E{S?}. In particular for larger values of ¢? the approximation
results became worse. Extensive tests of the approximation for some variants

of vy =1/(BB,) led to a modification which yields remarkably accurate results:

1 1

1 = (62—1)3—[}2_.

So, the ultimate approximation formula is given by (4.27), with

v B 2k B @2
{1 =g — S 2Ly ety
=0, 27 F

It is seen from Table 4.3 that for H¥™ and HSM service time distributions
(with ¢2=2, 4, 6) APP?2 yields very accurate results with relative errors less
than 1%. )

Table 4.4 illustrates the influence of B; on E{S?}. This table shows exact
values of E{S?} for a number of H, distributions with the same first and
second moment but with a different third moment. The traffic intensity varies
from 0.1 to 0.95. The relative approximation errors of APP2 are indicated
below the exact values of E{S?}. As we stated before E{S?} decreases when
B; grows. Note that even for large ¢? (c2=10) the relative approximation
errors are less than 1.5%. It may be concluded from Table 4.4 that the
influence of the third moment of the service time distribution on E{S?}
increases when c? grows, cf. (4.13).

In Table 4.5 APP2 is tested for some arbitrarily chosen H3 and C, service
time distributions. The relative errors are in all cases less than 1.5%.

Originally, APP2 has been developed for service time distributions with
=1, By= 5 Ba2/B. For these cases E(S*},4pp, can be interpreted as an
interpolation formula, see (4.27). Nevertheless, approximation formula (4.27)
(Atoget.tier)gritl} (4.29)) can be applied to service time distributions with c2<1 or
B3< 5 B2/B as well. In Table 4.6 some results are shown for deterministic,

C, and E; service time distributions with ¢2<1. It appears that the accuracy
of APP?2 for these cases is about the same as the accuracy of APP 1.
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4.5 CONCLUSIONS

In this section we briefly review the results and sum up the main characteris-
tics of the different approximation formulas proposed in Section 4.3 and Sec-
tion 4.4.

We have studied the second moment of the conditional and unconditional
sojourn time, E{S?*(x)} and E{S?}, for the M/G/1 processor sharing queue.
An upper bound and some asymptotic properties (like the heavy traffic
behaviour) have been derived. Based on these properties and on exact expres-
sions for specific service time distributions we developed some simple approxi-
mations. The approximations have been compared with exact results for a
large number of different service time distributions and a wide range of traffic
intensities. We conclude as follows.

- The influence of the third and higher moments of the service time distribu-
tion on E{S*(x)} and E{S?)} is limited. An upper and a lower bound for
E{S*(x)} can be expressed in terms of x (the service demand of a tagged cus-
tomer) and the traffic intensity p, see (4.6). The corresponding upper and
lower bound for E{S?} contain only the second moment of the sojourn time
distribution and p, see (4.13).

- Approximation APPX for E{S?*(x)}, given by (4.17), is based on the asymp-
totic result (3.38) for x—0. It depends on the service time distribution only
through its first moment. APPX yields reasonably good results for not too
large values of x, see Table 4.1. For 0<x < the relative error of the approxi-
mation is a few percent. The approximation becomes less accurate when x
increases. For x =28 the relative errors are typically less than 7%. APPX
satisfies the heavy traffic behaviour of E S%(x), see (4.8).

- The approximations for E {Sz}, APP1 and APP2, given by (4.21) and (4.27),
have been constructed in such a way that they have the following appealing
properties:

* they are exact for exponential service times

* they yield values between the lower and upper bound of E{S?}

* they satisfy the heavy traffic behaviour of E{S*}

* they yield the exact value of E{S?} for p=0.

In addition, APP 1 yields exact results for deterministic service times; APP2 is
exact for two classes of extreme H, distributions.

- Approximation APP1 is the most simple approximation. It depends on the
first two moments of the service time distribution. For not too large values of
¢? (¢2<6) it yields fairly accurate results, see Table 4.2. In practical situations
APP 1 may be applied as a first order approximation for E{S?}.

- APP?2 depends on the first three moments of the service time distribution. It
is based on exact formulas of E{S?} for two classes of extreme H, distribu-
tions. The details of the construction of APP2 are rather heuristic. Neverthe-
less, it yields remarkably accurate results. 4APP2 has been tested for a large
number of different service time distributions with ¢? ranging from 0 to 10, see
Tables 4.3 through 4.6. In all of these cases the relative error is less than 1.5%.



TABLE 4.1. Approximation of E{S?(x)}. The table contains relative errors
(%) of approximation APPX (given by (4.17)) for various service time distribu-
tions.

Service time distribution: H3M  cv =2.

~

e 5y g =2}
px—zﬂxﬁxzﬁx

:
-

2 0=p | ¥ 1=p

0.1 -0.19 -0.66 -1.35 -2.18 -0.23 -0.80
0.3 -0.32 -1.16 -2.40 -3.94 -0.62 -2.20
0.5 -0.27 -0.99 -2.08 -3.46 -0.99 -3.46
0.7 -0.15 -0.56 -1.19 -1.99 -1.44 -4.80
0.9 -0.04 -0.15 -0.30 -0.51 -2.31 -6.61

Service time distribution: HZM, cv =4.

a

%& x=B xZ%B x =28 x=1-8_ x=L

p = 2 1—p 1—p
0.1 -0.22 -0.77 -1.55 -2.46 -0.27 -0.93
0.3 -0.39 -1.39 -2.83 -4.58 -0.76 -2.61
0.5 -0.35 -1.26 -2.58 -4.23 -1.26 -4.23
0.7 -0.21 -0.77 -1.60 -2.64 -1.93 -6.11
0.9 -0.06 -0.23 -0.48 -0.79 -3.39 -8.98

Service time distribution: HZM, cv =6.

p x:%k x:ﬁ x:%B x:zk x—l_L x:_L

21-p 1—p
0.1 -0.24 -0.82 -1.63 -2.59 -0.29 -0.99
0.3 -0.42 -1.50 -3.02 -4.86 -0.81 -2.78
0.5 -0.38 -1.37 -2.80 -4.56 -1.37 -4.56
0.7 -0.24 -0.86 -1.78 -2.92 -2.14 -6.67
0.9 -0.07 -0.27 -0.55 -0.91 -3.85 -10.01

Service time distribution: exponential.

o | x=2h | x=h | x=2p | x=2p [ x=1-£ | £

2 21—p 1—p
0.1 -0.14 -0.53 -1.11 -1.85 -0.17 -0.64
0.3 -0.23 -0.86 -1.86 -3.17 -0.45 -1.70
0.5 -0.17 -0.66 -1.46 -2.53 -0.66 -2.53
0.7 -0.08 -0.30 -0.67 -1.19 -0.83 -3.19

0.9 -0.01 -0.04 -0.09 -0.16 -0.96 -3.74




84

TABLE 4.1 (Cont’d)

Service time distribution: H$Y, cv =2.

“1i | mp | x=2p | xo2p | x=lB | -8B
p x—2B x=8| x ZB x=28 | x 21-p x T—p
0.1 -0.25 -0.83 -1.58 -2.45 -0.30 -0.98
0.3 -0.45 -1.51 -2.91 -4.56 -0.85 -2.69
0.5 -041 -1.38 -2.68 -4.21 -1.38 -4.21
0.7 -0.26 -0.87 -1.69 -2.64 -1.99 -5.66
0.9 -0.08 -0.27 -0.52 -0.79 -2.82 -7.15
Service time distribution: HS", cv =4.
1ol ep | x=2p | xmop | x=l B | B
p |l x > Bl x=B]|x > B | x=28 215 x=7 =
0.1 -0.34 -1.07 -1.98 -2.98 -0.41 -1.26
0.3 -0.64 -2.03 -3.79 -5.75 -1.17 -3.52
0.5 -0.61 -1.96 -3.68 -5.61 -1.96 -5.61
0.7 -041 -1.33 -2.50 -3.81 -2.93 -1.72
0.9 -0.14 -0.46 -0.86 -1.30 -4.33 -10.02
Service time distribution: HSY, cv =6.
TS Y - T S B e P
p x—zﬂ x=B1| x ZB x =28 21-p X i—
0.1 -0.38 -1.18 -2.16 -3.23 -0.45 -1.39
0.3 -0.72 -2.26 -4.17 -6.29 -1.31 -3.88
0.5 -0.69 -2.21 -4.11 -6.22 -2.21 -6.21
0.7 -0.48 -1.53 -2.85 -4.32 -3.33 -8.63
0.9 -0.17 -0.54 -1.00 -1.52 -4.98 -11.29
Service time distribution: E,.
p x=lé xIB xziﬁ x=2ii x=l—L x=—L
2 2 21—p 1—p
0.1 -0.03 -0.24 -0.68 -1.32 -0.05 -0.32
0.3 -0.00 -0.24 -0.86 -1.88 -0.06 -0.75
0.5 0.07 0.05 -0.26 -0.91 0.05 -0.91
0.7 0.11 0.27 0.33 0.24 0.32 -0.84
0.9 0.06 0.19 0.34 0.48 0.85 -0.53
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TABLE 4.2. Approximation of E{S?}. The table contains relative errors (%)
of approximation APP1 (given by (4.21)) for various service time distributions.

Service time distribution: HZM.

p cv=2 | cv=4 | cv=6

0.10 (| 0.29 0.52 0.62
0.30 | 0.91 1.67 2.01
0.50 || 1.52 2.88 3.49
0.70 || 1.89 3.65 4.48
0.90 (| 1.26 2.50 3.11
0.95 || 0.75 1.50 1.87

Service time distribution: H§" .

P ov=2 | cv=4 | cv=6

0.10 || -0.13 | -0.22 | -0.28
0.30 | -0.29 | -0.52 | -0.61
0.50 || -0.30 | -0.54 | -0.63
0.70 || -0.17 | -0.27 | -0.31
0.90 0.00 0.05 0.07
0.95 0.01 0.05 0.08

Service time distributions with ¢2<1.

p E, E, E, (' c®

0.10 || 0.18 | 0.14 | 0.13 [ 0.00 | 0.00
0.30 |[ 0.35 | 035 | 0.28 [ 0.00 | -0.02
0.50 || 0.38 | 0.38 | 0.32 | -0.07 | -0.09
0.70 || 0.25 | 0.24 | 0.21 | -0.13 | -0.11
0.90 || 0.05 | -0.01 | 0.04 | -0.11 | -0.07
0.95 ]| 0.02 | -0.01 | 0.02 | -0.08 | -0.04

cP: v =075, CP: cv=0.92.
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TABLE 4.3. Approximation of E{S?}. The table contains relative errors (%)
of approximation APP2 (given by (4.27) and (4.29)) for various service time

distributions with. ¢%54, [93>%ﬂ§/ B

Service time distribution: HZM.

p cv=2 | cv=4 | cv=6

0.10 || -0.15 -0.27 | -0.32
0.30 || -0.32 | -0.58 -0.69
0.50 [ -0.31 -0.53 -0.61
0.70 || -0.12 | -0.09 | -0.04
0.90 0.08 0.34 0.51
0.95 0.07 0.26 0.39

Service time distribution: H$ .

p cv=2 | cv=4 | cv=6

0.10 || -0.12 | -0.21 -0.25
0.30 || -0.23 | -0.41 -0.48
050 || -0.17 | -0.30 | -0.35
0.70 || -0.01 0.01 0.03
0.90 0.09 0.20 0.26
0.95 0.07 0.14 0.18
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TABLE 4.4. The influence of the third moment of the service time distribution
(B3) on E{S?}. In the table the exact values of E (S?) are given. The relative
approximation errors (%) of APP2 are indicated in parentheses below the
exact values of E(S?).

H,, service time distributions with =1, cv =4.

B |l =010 | p=030 | p=050 | p=0.70 | p=0.90 | p=0.95

37.500° 6.498 1200 | 2667 | 8547 | 909.1 3810
0.00) | (000) | (0.00) | (0.00) | (0.00) | (0.00)

49.084 || 6.434 11.68 25.65 82.10 889.2 3762
(025) | (0.50) | (-0.40) | (-001) | (0.26) | (0.19)

68.329 || 6.388 1143 | 2478 | 7874 | 8643 3698
(026) | (-0.58) | (0.56) | (-0.15) | (0.34) | (0.29)

105.42 6.353 11.24 24.02 75.35 830.6 3609
(-0.19) (-0.47) (-0.54) (-0.28) (0.24) (0.26)

190.02 6.329 11.09 23.41 72.17 785.3 3441
(0.11) | (-0.29) | (-0.38) | (-0.31) | (0.01) | (0.08)

310.86 6.318 11.02 23.12 70.47 751.6 3295
(-0.07) (-0.19) (-0.26) (-0.25) (-0.13) (-0.09)

716.53 6.309 10.97 22.86 68.85 709.3 3063
(-0.03) (-0.08) (-0.12) (-0.14) (-0.17) (-0.22)

1391.8 6.306 10.95 22.77 68.21 689.0 2927
(002) | (-004) | (-006) | (-008) | (-0.13) | (-0.20)

22919 6.305 10.94 22.73 67.94 679.6 2856
(-0.01) (-0.03) (-0.04) (-0.05) (-0.09) (-0.16)

45419 6.304 10.93 22.70 67.74 671.9 2794
(-0.00) (-0.01) (-0.02) (-0.03) (-0.05) (-0.10)

00 6.303 10.92 22.67 67.52 663.6 2724
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00

~ 3 A2 ~
* = 532/3
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TABLE 4.4 (Cont’d)

H, service time distributions with ,23= 1, cv =10.

ﬁ;; p=0.10 | p=0.30 | p=0.50 | p=0.70 | p=0.90 p=0.95
181.50° 14.29 26.41 58.67 188.0 2000 8381
©.00) | 000) | (000) | (000 | (0.00) | (0.00)
223.21 14.17 25.80 56.78 181.9 1965 8298
029) | (050) | (035 | (005) | ©28) | (0.19)
330.00 14.01 24 .95 53.89 171.3 1891 8110
(0.40) | (080) | (0.68) | (003 | (0.70) | (0.53)
502.34 13.90 24.34 51.62 161.6 1802 7859
031) | 073) | 072) | (0.04) | (1.00) | (0.86)
710.16 13.84 24.00 50.26 155.0 1724 7612
024) | (060) | (065 | (009 | (113) | (1.09)
1323.2 13.78 23.61 48.65 146.4 1588 7093
0.14) | (037 | (044) | 011 | (113) | (137
1845.6 13.76 23.49 48.11 143.2 1523 6797
0.10) | 027 | (034 | (0.10) | (104) | (142
4162.2 13.73 23.31 47.31 138.4 1401 6129
005 | 0.13) | (0.17) | (0.06) | (0.69) | (1.26)
12263 13.72 23.22 46.89 135.7 1315 5543
0.02) | (0.04) | (0.06) | (0.03) | (030) | (©.71)
30488 13.71 23.19 46.76 134.8 1285 5305
“001) | 002) | (002) | (001) | (013) | (034
00 13.71 2317 46.67 134.2 1264 5124
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

~ ~ 2 ~

*By= % B2/B




89

TABLE 4.5. Relative approximation errors (%) of APP2 for Hy and C, ser-
vice time distributions.

p |10 | w9 | | | o

0.10 || -0.20 | -0.29 | -0.15 | -0.30 | -0.32
0.30 [ -0.54 | -0.71 | -0.31 | -0.63 | -0.63
0.50 f -0.65 | -0.82 | -0.25 | -0.54 | -0.48
0.70 || -0.44 | -0.48 | -0.04 | -0.04 | 0.05
090 (| -0.00 | 020 | 0.12 | 040 | 0.39
0951 000 010 ] 0.09 [ 0.31 0.28

HY: cv =2.778, B, =40.963
HY: cv =4.130, B, =85.622
;v =2.200, B;=18.240
C¥: cv =5.000, B; =84.000
C¥): v =8.556, B, =187.33
In all cases: =1

TABLE 4.6. Relative approximation errors (%) of APP2 for various service

: M . £ A
time distributions with ¢2<1 and 83 < % B2 /B.

P DET E4 E2 C2

0.10 || -0.02 | 0.16 | 0.12 | 0.06
0.30 || -0.18 | 0.23 | 0.22 | O.11
0.50 || -0.36 | 0.16 | 0.18 | 0.10
0.70 || -0.44 | -0.02 | 0.05 | 0.04
0.90 || -0.25 | -0.10 | -0.04 | -0.02
0.95 || -0.13 | -0.08 | -0.03 | -0.02

* cv =0.75
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Chapter 5

QUEUEING MODELS WITH ADDITIONAL
PERMANENT CUSTOMERS

5.1 INTRODUCTION

In the previous chapters we considered models with a single Poissonian exter-
nal arrival stream. However, in many practical situations a service facility is
shared by two or more classes of customers originating from different sources.
An interesting aspect is the influence of the interference of the different custo-
mer streams on their queueing behaviour. A simple case occurs when it is
assumed that the arrival processes are independent Poisson processes and the
service discipline does not depend on the origin of the customers. Indeed, in
that case the resulting ‘overall’ arrival process is also Poisson and hence we can
use known results for the corresponding single arrival stream model.

In this chapter we consider single server queueing models with two classes of
customers, viz. (i) ordinary customers who arrive according to a Poisson pro-
cess, and (ii) permanent customers who immediately return to the end of the
queue after having received a service. In Fig. 5.1 we have depicted the basic
model: an M/G/1 FCFS queue with K permanent customers all having their
own service time distribution B;(-), i =1,...,K; the ordinary customers, in the
sequel called ‘Poisson customers’, have service time distribution B (-).

A ] Bo() -
‘ B,()

Fig. 5.1 The M/G/1 queue with K additional permanent customers.

Note that the presence of permanent customers may represent the existence of
an ‘infinite customer pool’ (or several infinite customer pools) of which only a
fixed number (K) is allowed to be in the system at the same time; when one of
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these customers departs upon service completion then a new customer from the
pool immediately enters the queue. The main goal of this chapter is to study
the influence of the K permanent customers on queue length and sojourn time
of the Poisson customers.

Besides the basic model described above we shall also analyze some variants
related with the models considered in the previous chapters, viz. the M/M/1
queue with general feedback and its limiting case, the M/G/1 processor shar-
ing queue. The analysis of these models with additional permanent customers
yields very interesting new results for the sojourn time distribution of the Pois-
son customers.

The M/G/1 queue with additional permanent customers is related with a
class of models referred to as vacation queues. These are queueing models
where a server now and then interrupts the service to a customer stream to
take a vacation, see e.g. Fuhrmann and Cooper [1985] and the survey of Doshi
[1986]. For the special case K =1 our model behaves exactly like an M/G/1
queue with vacations and so called ‘gated service’. This is an M/G/1 vacation
queue in which, after a server vacation, the server handles exactly those custo-
mers who are present at the end of the vacation, etc.. Clearly, a service of the
permanent customer in our model (with K =1) corresponds to a server vaca-
tion in the gated vacation model.

The M/G/1 queue with vacations is a special case of a cyclic service model, a
single server multi queue model in which the server attends to the queues in
cyclic order, see e.g. Takagi [1986]. In Section 5.5 it will be pointed out that
for general K=1 the M/G/1 queue with K permanent customers can be
viewed as a cyclic service model of a type not yet studied before.

Other related queueing models are the finite and infinite source interaction
model studied by Kaufman [1985] (see also Boxma [1986A, 1986B] and Doshi
and Wong [1987]), and a model with two stages of waiting introduced and
analyzed in Ali and Neuts [1984].

The M/G/1 queue with K permanent customers is also studied by Boxma
and Cohen [1989]. In particular, they present a fundamental analysis of the
Markov chain of queue lengths at service completion epochs. In this chapter
we present a different approach which is based on the observation that the
queue length at an arbitrary epoch is the sum of K independent random vari-
ables which are related with queue lengths in the model with one permanent
customer; the distributions of these random variables are obtained from
known results for the M/G/1 queue with vacations.

As mentioned above we shall also consider the M/M/1 queue with general
feedback and additional permanent customers. This is a very interesting
model. Under the assumption that the service times of the permanent custo-
mers and the service times of the Poisson customers have the same exponential
distribution, the addition of permanent customers to the M/M/1 feedback
queue preserves the product form property of the joint queue length
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distribution, cf. (2.3). Using this property we can derive the joint distribution
of the successive sojourn times of a tagged Poisson customer. The analysis is
largely analogous to the case without permanent customers, see Chapter 2. It
appears that the queue length and sojourn time distributions become the
(K +1)-fold convolution of the queue length and sojourn time distribution in
the original system. Application of the limiting procedure described in Section
3.3 leads to similar results for the M/G/1 PS queue with K additional per-
manent customers. Note that, actually, the service discipline in the latter
model is a special case of generalized processor sharing, i.e. an M/G/1 GPS
queue with service rate function f (j) = 1/(j +K) (cf. Section 3.4).

The organization of this chapter is as follows. First, in Section 5.2, we give
a detailed description of the basic model (the M/G/1 queue with K additional
permanent customers) and introduce some notations. Section 5.3 is concerned
with the derivation of mean queue lengths and sojourn times. We show that
these quantities can be obtained from simple balance arguments. In Section
5.4 distributions of queue lengths and sojourn times are obtained. We start
with the case of only one permanent customer (Subsection 5.4.1). The results
for this case are obtained from known results for the M/G/1 queue with vaca-
tions. Next, in Subsection 5.4.2, the general model with K=1 permanent cus-
tomers is studied. In the remaining part of Section 5.4 we consider the results
for some special choices of the service time distributions (Subsection 5.4.3),
and we analyze a generalization, viz. the M/G/1 queue with Bernoulli feed-
back and additional permanent customers (Subsection 5.4.4). Section 5.5 is
concerned with the relation with cyclic service models. Finally, in Section 5.6
we study the M/M/1 queue with general feedback and additional permanent
customers together with the corresponding M/G/1 (G)PS queue.

5.2 MODEL DESCRIPTION AND NOTATIONS

We consider the single server queueing system with infinite waiting room pic-
tured in Fig. 5.1. There are two classes of customers, viz. (i) ordinary custo-
mers who arrive according to a Poisson process with intensity A, and (ii) a
class of K permanent customers who immediately return to the end of the
queue after having received a service. The service discipline is first come first
served (FCFS). The order of the permanent customers in the system is fixed;
they are numbered from 1 to K. The service times of the Poisson customers
and of the permanent customers are assumed to be independent random vari-
ables; those of the Poisson customers all have the same distribution By(-) and
the i-th permanent customer has service time distribution B;(*), i =1,...,K. The
first two moments of B;(-) are denoted by B; and B respectively, i =0,...,K.
Bi(*) denotes the Laplace-Stieltjes transform of B;("), i =0,...,K. Obviously, the
total offered load to the queue per unit of time due to the Poisson customers,

Po, is given by
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po = ABo. (5.1)

For stability it is required that py<1. (For a formal derivation of this stability
condition see Boxma and Cohen [1989]).

Observe that p, can also be viewed as the long range fraction of time spent on
serving Poisson customers (as can be formally proved using the theory of
regenerative processes, see Cohen [1976]). Similarly, we define for the per-
manent customers:

- p;: fraction of time that (permanent) customer i is in service, i =1,...,K.

Noting that the total fraction of time spent on serving permanent customers is
equal to 1—py it is easily seen that

pi = &(l—po), i=1,..,K, 5.2)
B
with
- K
B:= 2/3,

We shall use (5.2) in the next sections.
We are interested in the following steady-state quantities:

- Xo: number of Poisson customers in the system at an arbitrary epoch;
- Sp: sojourn time of a Poisson customer;

- C;: sojourn (cycle) time of permanent customer i, i=1,..,K (ie. time
between two successive service completions of customer i, i =1,...,K).

The generating function of the distribution of X, is denoted by X,(*). In the
next section we shall derive the mean values of these performance measures; in
Section 5.4 distributions are obtained.

5.3 MEAN QUEUE LENGTHS AND SOJOURN TIMES

In this section we derive expressions for the mean sojourn times and queue
lengths. It is shown how simple (balance) arguments can be used to derive
these quantities. We start with the analysis of the mean sojourn time of the
Poisson customers. Next, the mean cycle times of the permanent customers are
derived.

Poisson customers
The PASTA property (see Wolff [1982]) implies that a newly arriving (tagged)
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Poisson customer ‘sees’ the system as at an arbitrary epoch. Hence, the proba-
bility that the tagged customer arrives during the service of a Poisson customer
is equal to py; the probability that permanent customer i is in service upon
arrival of the tagged customer is equal to p;, i =1,...,K. Now, considering the
mean amount of work in the system that has to be handled before the tagged
customer receives his service it follows by a similar argument as used for the
derivation of (2.46), that

(2)

ESo = (EXo )y + 31006, + S etk 53

i=1
Using Little’s formula,
EXy = AES,,

it follows from (5.3) that

ESy = ——| S1-p)8, 2 & (5.4)
=7 —p)Bi + Pi—= .
1 - PO i=0 zﬂl
Substituting (5.2) into (5.4) we find
T AP N B
ES, = + N—(—- 5.5
So=Toaap t At Tha ._213(23, B (55)

Again applying Little’s formula yields the mean queue length EX,.

Note that the first two terms in the right-hand side of (5.5) represent the mean
sojourn time in a standard M/G/1 queue (i.e. without permanent customers).
The expression becomes very simple when all service times are exponentially
distributed (i.e. B =287, i =0,..,K). In that case,

Bot+B
1—py

ES, = (5.6)

REMARK 5.1

It follows from (5.5) that the mean sojourn time ES; of the Poisson customers
in the M/G/1 queue with K permanent customers is larger than the mean
sojourn time ES§# of the Poisson customers in the same M/G/1 queue but
with only one (‘super’) permanent customer who has a service time which is
equal to the sum of the service times of the K permanent customers in the ori-
ginal model. Noting that the second moment of the service time of the super

permanent customer is given by 3% (B +28; =i +18)) it is easily found
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that

K B i<l
ES, —ESpP" = 3= 3 B;.
i=1 B j=1

We shall now consider the mean cycle times of the permanent customers.

Permanent customers
From the fact that the order of the permanent customers in the system is fixed
it follows immediately that their mean cycle times are all equal:

EC = EC;,, I<ij<kK (5.7

It is easily seen that, in steady-state, the mean amount of work that arrives
during a cycle of customer i is equal to the mean amount of work that is served
during a cycle. This balance argument leads to the following equation for
EC;:

EC, = B + (A\EC)B,, i=1,..,K, (5-8)
yielding
EC, = 1—_/3;, =1,k (5.9)

Note that in the right-hand side only the first moments of the various service
time distributions do occur. Apparently, this is due to the fact that the succes-
sive cycle times of a permanent customer consist of a random sum of complete
service times.

There are some other simple and interesting methods to derive formula (5.9).
Here, we mention two of these methods.

(i) From the definition of p; it follows that p;/B; equals the throughput of
customer i. Hence, from Little’s formula: EC;=1/(p;/B;), i =1,...,K.
Substituting (5.2) into this expression yields (5.9).

(i) The service of a permanent customer induces an amount of work to be
handled by the server which consists of the permanent customer’s own
service time plus the sum of the lengths of a (random) number of stan-
dard M/G/1 (A, By(-)) busy periods. This number is equal to the number
of Poisson customers who arrive during the service time of the permanent
customer. So, the mean amount of work induced by a service of customer
J is given by B;+AB;(By/(1—py)), j =1,...K. Noting that during a cycle
of customer i all permanent customers receive exactly one service it fol-
lows from a balance argument that, cf. (5.9),
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K
EC, = SIB+MBo/ (1=l = T i=1...K
Jj=1

The methods used in this section for the derivation of mean sojourn (cycle)
times are based on mean value analysis. The derivation of queue length and
sojourn time distributions requires a more detailed study of the model. This
will be presented in the next section. It will also give us more insight into the
results obtained above.

5.4 DISTRIBUTIONS OF QUEUE LENGTHS AND SOJOURN TIMES

In this section we derive expressions for the generating functions and Laplace-
Stieltjes transforms of the distributions of the queue lengths and the sojourn
(cycle) times of the different customers in the model. We shall start in Subsec-
tion 5.4.1 with the case of only one permanent customer (K =1); in Subsection
5.4.2 the general case (K=1) is considered. A close study of the behaviour of
the system with K permanent customers will show that its queue length at an
arbitrary epoch can be written as the sum of K independent random variables,
which are related with queue lengths in the model with one permanent custo-
mer. The distributions of these random variables can be obtained from the
results in Subsection 5.4.1. In Subsection 5.4.3 we shall consider the results
for some special choices of the service time distributions. Finally, Subsection
5.4.4 is concerned with the analysis of the M/G/1 queue with Bernoulli feed-
back and additional permanent customers; it appears that this generalization
can be analyzed completely analogously to the basic model.

5.4.1 The case K =1

In this subsection we consider the M/G/1 queue with one permanent custo-
mer. As pointed out in Section 5.1 this special case behaves exactly like an
M/G/1 queue with vacations and gated service. A service of the permanent
customer corresponds to a server vacation in the vacation model. For the
analysis we shall use the following decomposition result for the distribution of
the queue length in a vacation queue. Define for the M/G/1 queue with vaca-
tions,

- X("): generating function of the distribution of the queue length at an arbi-

trary epoch,
- Xy(*): generating function of the distribution of the queue length at an arbi-
trary epoch given that the server is on vacation,

and let

- m(): generating function of the distribution of the queue length at an arbi-
trary epoch in the corresponding standard M/G/1 queue (i.e. the same
model without vacations).
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Then,

THEOREM 5.1 (Fuhrmann and Cooper [1985])

X(z) = Xp(2)m(z), |z|<L (5.10)

Actually, this result does not only hold for the M/G/1 vacation queue with
gated service; it is valid for a very general class of vacation models, see
Fuhrmann and Cooper [1985].

Now, we return to the M/G/1 queue with one permanent customer. Define

- Xp: number of Poisson customers in the system at an arbitrary epoch given
that the permanent customer is in service,

and let Xp(-) denote the generating function of the distribution of X,. From
(5.10) it follows immediately that the generating function X,(°) of the distribu-
tion of the queue length at an arbitrary epoch can be written as

Xo(2) = Xp(2)m(2), |z|<l. (5.11)

The generating function of the queue length distribution in the standard
M/G/1 queue, 7("), is given by the well-known formula (see e.g. Cohen [1982],
p. 238): ,

o) = (1 poy 1N =2)
o AM1=2)}—z

|z| <1 (5.12)

For the derivation of Xp(z) we need the following definitions:

- Xpp: number of Poisson customers in the system just after the start of a ser-
vice of the permanent customer;

- Xpg: number of Poisson customers in the system at a service completion
epoch of the permanent customer.

Xpp(-) and Xpg(-) will denote the generating functions of the distributions of
Xpp and Xpg, respectively.

The number of Poisson customers present at an arbitrary epoch during the ser-
vice of the permanent customer is equal to the number of Poisson customers
present at the start of that service plus the number of Poisson customers that
has arrived during the past service time. It is easily seen that these quantities
are independent. Hence,
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1-8{A(1—2)}

Xp(z) = Xpp(2) , |z|<l 5.13
p(2) pB(2) BA(1—2) |z| (5.13)
1—Bi(m) . R
(Remember that, for Re =0, —B_"I_ is the LST of the distribution of the
1

past part of the service time.)
Analogously, we have

Xpe(z) = Xpp(2)Bi{M1—2)}, |z|<L (5.149)

Now, from (5.11)~(5.14) it follows that

_ Xpe(z) 1-B{A(1—2)}
%@ = -2 BMI-2)

mz), |z|<lL (5.15)

It remains to determine Xpg(°).

The discrete time stochastic process constituted by the number of Poisson
customers present in the system at the successive service completion epochs of
the permanent customer is easily seen to be a Markov chain with state space
{0, 1, ...} and stationary transition probabilities p;; given by

o]

p= | e—“%l d[BS (0*B\ ()], i,j>0, (5.16)

with * the convolution operator. Application of standard Markov chain
theory leads to the following functional equation for Xpg(-):

Xpe(z) = Bi{M1—2)}Xpe(Bo{M1—2)}), |z|<L (5.17)

From this equation the moments of Xpr can be obtained. For example,
differentiating both sides once and taking z =1 yields,

EXpr = m (5.18)

Analogously, the moments of the distribution of X, can be obtained from
(5.15) and (5.17). It is easily found that, for the case K =1,

2) 2)
EX0=—}‘%—ABI+)\M b o B % e (5.19)
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This is in agreement with (5.5) for K =1 (noting that EX, =AES,).

REMARK 5.2

The generating function of the distribution of the queue length at the departure
epochs of the Poisson customers is also given by (5.15). Indeed, an up-and-
down-crossing argument shows that this distribution equals the queue length
distribution seen by an arriving Poisson customer; the PASTA property implies
that this is also the distribution of the queue length at an arbitrary epoch.

REMARK 5.3
In Boxma and Cohen [1989] it is shown that the unique (non trivial) solution

of (5.17) is given by:

Xpe(z) = ﬁﬂl AM1=8(2))}, |z|=<], (5.20)

h=0
with
80(z) := 2z, (5.21)
8 +1(2) := Bo{(AM1—8,(2))}, h=0,1,...

The derivation is based on iteration of (5.17) and on some well-known results
from branching theory; the condition py<<1 guarantees the convergence of the
infinite product in (5.20).

The LST’s of the sojourn time of the Poisson customers and the cycle time
of the permanent customer can be derived from the above queue length results.
Noting that the cycle time of the permanent customer consists of his own ser-
vice time plus the service times of the Poisson customers present in the system
just after the end of his previous service, we have,

E{e ™} = Xpr(Bo(m)Bi(m), Ren=0, (5.22)

with Xpg(-) determined by (5.17). The LST of the sojourn time distribution of
the Poisson customers can be derived from (5.15). The classical observation
for FCFS queues that the number of Poisson customers left behind by a
departing customer equals the number of (Poisson) arrivals during the sojourn
time of that departing customer, leads to (cf. Remark 5.2)

E{e M%) = Xo(2),  |z| <L

Hence,

E{e ™} = Xo(1—n/)A), Ren=0. (5.23)
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From the above results the moments of the distributions of Sy and C; can be
obtained. Differentiating (5.22) and (5.23) once with respect to 7 and taking
n=0 yields the mean cycle time and sojourn time (use (5.18) and (5.19)); it is
easily verified that these results coincide with the results obtained in Section
5.3.

We conclude this subsection with a remark on notation. For the analysis in
the next subsection it is convenient to have at our disposal a specific notation
for some of the quantities in the model with one permanent customer. There-
fore, for the M/G/1 queue with one permanent customer and service time dis-
tributions B(-) and B;(*) for the Poisson customers and the permanent custo-
mer respectively we define, for i =1,...,K,

- xf, ')(-): generating function of the distribution of the number of Poisson
customers in the system at an arbitrary epoch;

- x(pE‘)('): generating function of the distribution of the number of Poisson
customers in the system at a service completion epoch of the per-
manent customer.

Obviously, these quantities can be obtained from (5.15) and (5.17) by taking
B\()=B,(),i=1,...K.

5.4.2 The case K=1

We now turn to the case of an arbitrary number K=1 of permanent custo-
mers. In Fig. 5.2(a) we have pictured the composition of the queue just after a
service completion epoch of permanent customer i —1. It can be described as
follows: counted from the head of the queue there is a group of Poisson custo-
mers followed by permanent customer i; subsequently there is a second group
of Poisson customers followed by permanent customer i +1, etc., until finally
the queue is ended by a K-th group of Poisson customers followed by per-
manent customer i —1 (who has just returned from the head of the queue).
The group of customers consisting of the Poisson customers at the head of the
queue and permanent customer i will be called ‘group i’; the group of custo-
mers consisting of permanent customer j and the Poisson customers ahead of j
and behind j —1 will be called ‘growp j, j =1,...,K, j5i. (Note that during a
service time the last permanent customer in the queue may be followed by one
or more Poisson customers; in that case these Poisson customers are assumed
to be members of the group at the head of the queue, cf. Fig. 5.2(b)). The
(random) number of Poisson customers in a particular group will be referred
to as the ‘size’ of that group. So, the total number of Poisson customers in the
system is equal to the sum of the sizes of the K groups. To determine the dis-
tribution of the size of each group we shall first investigate how these groups
develop. Let us start with the present situation, i.e. just after a service comple-
tion of permanent customer i —1. Now, the first customer of group i is taken
into service; next the second one, etc, until finally permanent customer i



permanent permanent  Poisson

customer i-1 customer i  customers
tail |i-1 || i-2 || i+1|...| i || head
.y .y
(@)
‘new’ Poisson permanent ‘old’ Poisson
custqmers custoerr i custf)_mers
>\_>...|i-1 ||,2|| i+1|...| ,|_>
group,
(b)
permanent  Poisson
customer /i  customers
tail | i | | | |-1] | | 2] | | i+1| | | | head
groupz grou.xlr;.z: +1
©

Fig. 5.2 Composition of the queue
(a) just after the service completion of permanent customer i —1,
(b) during the service of group i,
(c) just after the service completion of permanent customer i.
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completes his service. During these services group i consists of two parts, see
Fig. 5.2(b): (i) permanent customer i together with the (‘old’) Poisson custo-
mers in front of him who have not yet been served to completion, and (ii)
Poisson customers at the end of the queue (behind permanent customer i —1)
who have newly arrived during the past service time of group i. Just after the
service completion of permanent customer i this second part has developed
into a complete, ‘new’, group i at the end of the queue, see Fig. 5.2(c); its size
is equal to the number of Poisson customers who have arrived during the ser-
vice of the ‘old’ group i. Note that the size of the other groups has not
changed. After the service completion of group i the service of group i +1 is
started, next the service of group i+2, etc. During the service of groups
i+1,...,i—1 group i moves to the head of the queue, while its size remains
unchanged. Just after the service of permanent customer i —1 the order of the
different groups within the queue is again as in Fig. 5.2(a). Now, a second ser-
vice of group i is started, and the whole procedure as described above is
repeated, etc.

From the above discussion and from the memoryless property of the Poisson
arrival process it is clear that during the service of group i this group behaves
exactly like an M/G/1 queue with one permanent customer and service time dis-
tributions B(-) and B;(") for the Poisson customers and the permanent customer
respectively, i =1,...,K. It is also seen that at a service completion epoch of one
of the permanent customers the sizes of the groups are independent; this indepen-
dence property also holds at an arbitrary epoch given that group i is in service,
i=1,..,K. Now define, for i =1,...,K,

- xf,’ )(-): generating function of the distribution of the number of Poisson cus-
tomers present in the system at an arbitrary epoch given that group i
is in service;

- x‘,',};(-): generating function of the distribution of the number of Poisson cus-

tomers present in the system at a service completion epoch of per-
manent customer i.

It is easily seen that

0, A0 .
XPE(Z) - HXPE (Z) 5 I—l,...,K, |Z|<], (524)
j=1
and
i L) I .
V@) = OIS @), i=1,..K |z|<l, (5.25)

j=1
J#i
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where the generating functions X( 3 ) ) and X((,l’] )(-) of the queue length distri-
butions in the model with one permanent customer are given by (5.20) and
(5.15) respectively (see also the definitions at the end of Subsection 5.4.1).
Substituting (5.15) into (5.25) yields

1 1-Bi{A(1—2)}

(1 J)
BN1-2)) BMi-z) ¢ ) TIX2 (5.26)

j=1

X'(2) =
i=1..,K |z|<L

Obviously, the probability p; that group i is in service at an arbitrary epoch is
equal to the long range fraction of time that group i is in service. Noting that
the mean time spent on serving group i during a cycle is equal to B;/(1—p)

(cf. the derivation of (5.24) and (5.18)) we have from (5.9),

_ Bi/(1—py) _ Bi/(1—pg) _ B;

; a =, i=1..K (5.27)
: EG B/(1—p) B
Hence, for K=>1,
X_ o0 '
Xo(z) = 2piXo'(2) = (5.28)

i=1

(1,/) B 1 1—B:{\M1—2)} e
W(){HX (Z)}Z 5 BOG=D)  BAI-2) y =LK, |z|<l,

j=1

Remember that 7(z) represents the generating function of the queue length dis-
tribution in the M/G/1 queue without permanent customers, cf. (5.12). Note
that it is not allowed to take K =0 in (5.28); in its derivation K is explicitly
assumed to be positive.

The LST’s of the sojourn time and cycle time distributions can be easily
obtained from the above queue length results. Analogously to the derivations
of the sojourn time and cycle time in the model with one permanent customer
we have, from (5.24) (cf. (5.22)),

E{e ™) = X% @) I8 = T1(BmXoBom) ). (5.29)

i=1 Jj=1

=1,..,K, Ren=0,
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and, from (5.28) (cf. (5.23) and Remark 5.2),

E{e ™) = Xo(1—n/)) = (5.30)

K 0.J i 1-8
A e nRT e, e W

Bﬁi("l) Bm ' Ren=0

j=1 i=1

Differentiating these expressions once with respect to  and taking n=0 yields
the mean cycle time of the permanent customers and the mean sojourn time of
the Poisson customers; it is easily verified that these results coincide with (5.9)
and (5.5).

5.4.3 Results for some special choices of the service time distributions

For some special choices of the different service time distributions in the model
the queue length and sojourn time formulas (5.24) and (5.28)-(5.30) reduce to
much simpler expressions. The following two cases are worth mentioning.

(i) Equal service time distributions for the permanent customers
If Bi(")= - - - = Bk("), then, from (5.24),

Xpe(z) = Xpe@)X, i=1,..K, |z|<], (5.31)
and, from (5.28),

Xpe@)*  1-B1{A1~2)}
Bi{A(1—-2)} BA1-2z) '’

Xo(z) = m(2) |z| <1, (5.32)

with Xpg(*) determined by (5.20).

(ii) All service time distributions equal and negative exponential

If B;(z) = l—e—”ﬁ", i=0,1,...,K, then the solution of the functional equation
(5.17) has an explicit form (cf. Remark 5.3, for the solution of the general
case). Defining, for |z|<1,n=1,2,..,

fOe) := fiz) := Bo{(M1—2)}, (5.33)
f70@) = (@),

one can iterate (5.17) in the following way:
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Xpe(z) = fOXpe(f(2) = [P P Xpe(fP ) = -~ = (5.39)

(TLO@)Xp£(f™(2)).
j=1

For our case of exponentially distributed service times, i.e. (cf. (5.33))

B 1 B 1
SO = Td=2) = T+m-2)"

it is easily found that

m G 1 1
I]’j(/)(z) = = - —T 3 (5.35)
J=1 1+(1-2)Xpb 1+(1_2)(L_1)
h=1 1=py
and hence,
f™(z) > 1, form—oo. (5.36)

Now, from (5.34)-(5.36) we obtain (cf. (5.20))

m 1=
Xes(z) = lim ([0 Xes (/@) = 7

m-—oo -

J=1

, (5.37)

which equals the generating function of the queue length distribution in an
ordinary M/M/1 queue. Substituting (5.37) into (5.31) and (5.32) we find, for
|z] <1,

. _ K
xg)E(z) = [ ll_p‘;oz ] s i = 1"",K, (5-38)
1—po K+1
Xo(2) = [ l_poz] . (5.39)

Formula (5.39) exposes a remarkable effect of the presence of permanent cus-
tomers on the queue length of the Poisson customers in an M/M/1 queue:
their queue length distribution becomes the (K +1)-fold convolution of the queue
length distribution in the system without those permanent customers.
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From (5.29), (5.30), (5.38) and (5.39) the LST’s of the cycle time and sojourn
time distribution are obtained: for Re n=0,

3 1—pg il
2Cy -
E{e = |—————|, i=1,..,K, 5.40)
te ™) | 100+ Bom | (
- ( l_po K+1
Efe = fe——tt] 5.41
{ ) | I=Po+hom 41

So, the presence of K permanent customers also leads to a (K +1)-fold
increase of the sojourn times of the Poisson customers.

REMARK 5.4

The above mentioned phenomenon (expressed by (5.41)) for the case of identi-
cal, exponential service times can be explained as follows. Consider the model
with one permanent customer, i.e. the case K =1 (the general case follows
immediately from this special one). It is seen from Formula (5.40) that the
successive cycle times of the permanent customer are exponentially distributed
with mean B, /(1—py). A newly arriving (tagged) Poisson customer enters the
queue during one of these cycles; it is clear that his sojourn time, Sy, is equal
to the residual cycle time (C{®) plus the sum of the service times of the custo-
mers who have arrived during the past cycle time (V) plus his own service time
(10): So=C{® +V+1,. From standard probabilistic arguments it follows that
the residual and past cycle time are exponentially distributed with mean
Bo/(1—pg), and it is found that the number of customers who have arrived
during the past cycle time has a geometric distribution with mean py/(1—pp).
Moreover, C{®), V and 7, are mutually independent. Now it is easily seen that
V+1, is exponentially distributed with mean B, /(1 —py) and, hence, Sy has a
2-stage Erlang distribution (E,) with mean 28, /(1 —py), cf. (5.41).

REMARK 5.5 ,
Note that in the present exponential (product form) case a departing (and
hence again arriving) permanent customer sees the system in equilibrium with
one less customer of his own type (see e.g. Walrand [1988, Section 3.4]), which
confirms the relation between (5.38) and (5.39), and between (5.40) and (5.41).

In Section 5.6 it will be shown that generalizations of (5.38)-(5.41) hold for
the M/M/1 queue with general feedback and additional permanent customers.

5.4.4 Generalizations; the M/G/1 queue with Bernoulli feedback and additional
permanent customers
The results obtained in the previous subsections can be generalized in several
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ways. Firstly one may allow different arrival rates during the service of the
permanent customers. Another interesting possibility is the inclusion of a
(Bernoulli) feedback mechanism for the Poisson customers. For both generali-
zations the basic decomposition formula (5.11), which is implied by Theorem
5.1, remains valid (see Fuhrmann and Cooper [1985] and Shanthikumar
[1988]), and the analysis can be carried out in almost exactly the same way as
in Subsection 5.4.1 and Subsection 5.4.2. We shall consider the feedback case
in some more detail.

The M/G/1 queue with Bernoulli feedback and additional permanent customers
Consider the M/G/1 queue with K permanent customers described in Section
5.2 and assume in addition that the Poisson customers, after having received a
service, are fed back to the end of the queue with probability p and leave the
system with probability 1—p.

As for the model without feedback we first analyze the case K =1. Clearly,
this case behaves exactly like an M/G/1 Bernoulli feedback queue with vaca-
tions and gated service. In Fuhrmann and Cooper [1985] it is pointed out that
for this generalization of the ‘standard’ M/G/1 vacation queue (without feed-
back) Theorem 5.1 remains valid with, in (5.10), 7(-) denoting the generating
function of the queue length distribution in the corresponding M/G/1 queue
with Bernoulli feedback but without vacations. It is well-known that #(-) is
given by: (see e.g. Takacs [1963])

. (=-pR(-2)
T = R G e M=)~ i

provided that

Byi= <1, (5.43)

1—p

(Note that 7(-) equals the generating function of the queue length distribution
in the standard M/G/1 queue with service time distribution By(z) =
> (1—p)p’/ ~'Bf (¢), cf. (5.12)). Now, it is easily seen that for the present
mddel with Bernoulli feedback the rest of the analysis in Subsection 5.4.1 does
not change with the exception that the functional equation (5.17) for the gen-
erating function Xpg(-) of the queue length distribution just after a service
completion of the permanent customer becomes

Xpe(z) = Bi{AM1—2)} Xpe((1—p +p2)Bo{A(1—2)}), |z|<I. (5.44)

With this adaptation Formula (5.15) for the generating function Xo(-) of the
queue length distribution at an arbitrary epoch remains valid. Now, from
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equation (5.44), (cf. (5.18))

AB /(l—P) (5.45)

EXpr = "
—Po

and hence, from (5.15), (5.42) and (5.45) we have, for the case K =1, (cf.
(5.19))

. il

ABi/(1—p) BY
- ZBo] Po. (5.46)

Apo
B, = el e 4 R '
Ay T 1—50""1

REMARK 5.6

It follows from (5.45) that the mean cycle time, EC,, of the permanent custo-
mer is given by EC, = BoEXpr+B; = B, /(1—pp). As might be expected, for
Bo =, =P this result coincides with (2.66) which gives the mean k-th sojourn
time of a tagged customer in the M/G/1 queue with Bernoulli feedback for
k—>oo0.

It is easily seen that, using the above formulas for the case K =1, the
analysis for the case K=1 can be carried out in exactly the same way as for
the model without feedback and that all queue length formulas in Subsection
5.4.2 remain unchanged. For example, from the generating function of the
queue length distribution given by (5.28) and from (5.45), (5.46) we obtain for
general K=>1,

(2)
_MI_BZ 2 (B__ _B‘) + (5'47)
pO i=1 B ZB’
Aﬁo v 62’
1—py 1=p 2/30

Hence, using Little’s formula, the mean total sojourn time of the Poisson custo-
mers is given by: (cf. (5.5))

B/(1— (2)

S = S0 2’2(; —B) + (548)
By . B
R R T
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REMARK 5.7

Having obtained the generating function of the distribution of the queue
length at an arbitrary epoch we can also derive the LST of the joint distribu-
tion of the successive sojourn times of a tagged Poisson customer. The
analysis can be done almost completely analogously to the case without per-
manent customers as treated by Doshi and Kaufmann [1988]. We shall only
consider the case of negative exponential service times in some detail; in Sec-
tion 5.6 it is shown how the LST of the joint sojourn time distribution in the
M/M/1 queue with general feedback and additional permanent customers can
be obtained from the corresponding result derived in Chapter 2 for the same
model without permanent customers.

5.5 RELATION WITH CYCLIC SERVICE MODELS

In Section 5.1 it has been pointed out that the M/G/1 queue with one per-
manent customer behaves exactly like an M/G/1 queue with vacations and
gated service. In this section we shall show that the M/G/1 queue with K=>1
permanent customers can be viewed as a variant of a cyclic service model.

A cyclic service model (also called a polling model) is a single server multi
queue model in which the server attends to the queues in cyclic order, see e.g.
Takagi [1986] and Groenendijk [1990]. From the analysis in Subsection 5.4.2
it follows that the M/G/1 queue with K permanent customers can also be
viewed as a cyclic service model with K queues - albeit a rather special one, see
Fig. 5.3.

Fig. 5.3 The M/G/1 queue with permanent customers viewed as a cyclic
service model.

The service times of the permanent customers correspond to the switch-over
times of the server between successive queues; the customers in these queues
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represent the (Poisson) customers in the different groups in the single queue
M/G/1 model (cf. Fig. 5.2). To take into account that during the service of a
particular group all new arrivals are attached to that group (cf. Fig. 5.2(b)), we
have to assume that arrivals at a queue can only take place during its service
and during the subsequent switch-over time.

The resulting polling model is non-standard, but it is well-known that under
very general conditions the mean cycle time in a polling model is given by the
sum of the mean switch-over times, divided by one minus the load of the sys-
tem (see e.g. Takagi [1986]). Indeed this result holds here; it coincides with
Formula (5.9) for the mean cycle time of a permanent customer.

5.6 THE M/M/1 FEEDBACK QUEUE WITH ADDITIONAL PERMANENT CUSTOMERS
5.6.1 Introduction
In this section we consider the same M/M/1 queue with general feedback as in
Chapter 2 but with K=1 additional permanent customers. This model is pic-
tured in Fig. 5.4.

.
p@)

A > >
liww] B 1—p (i)

Fig. 5.4 The M/M/1 feedback queue with K additional permanent customers.

It is assumed that the service times of the Poisson customers and the per-
manent customers are independent, negative exponentially distributed random
variables, all with mean B. For the Poisson customers the assumptions about
the feedback mechanism, notations, terminology, etc. are the same as for the
model without permanent customers, see Section 2.2. Our main goal is to
study the influence of the presence of the permanent customers on the joint
distribution of the successive sojourn times of a (tagged) Poisson customer and
to use the results for the analysis of the sojourn time in the M/G/1 PS queue
with additional permanent customers. The results for this latter model are
obtained by applying the same limiting procedure as used for the case without
permanent customers, see Chapter 3.

Because the Poisson customers and the permanent customers have the same
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exponential service time distribution, the joint stationary distribution of the
number of type-i (Poisson) customers, X;, i =1,...,N, in the system at an arbi-
trary epoch is of product form type. From the queue length results for general
product form networks (see Baskett et al. [1975]) it is found that for our
model, cf. (2.3),

P(xl,...,xN):= Pr{X1=x1,...,XN=xN} — (549)
¥ oaem !
(]—p)K+| (x1 :::’K'K) H(}\ﬂq(z)) X1,-Xy = 0,1,....

xl!

(Remember that ¢ (i) represents the relative arrival rate of type-i (Poisson) cus-
tomers, i =1,...,N (cf. (2.1)), and that p denotes the total offered load to the

system per unit of time due to the Poisson customers: p= 2:”: ])\,Bq ©@)).

The generating function of the joint queue length distribution is given by: (cf.
the derivation of (2.4))

E@ ooy} = 3 Do P, ) = (5.50)

x, =0 xy=0

a-pFH-=3% 3 EMHQBq(i)z,-)"' =
‘'m=0 x, ti=1
Xt +x~—m

a3 "M |

K+1
zxﬁq (t)z.] bl
1—z:ABgq (i)

i=1

|z|<1,i=1,.,N.

Comparing this result with (2.4) we observe a similar phenomenon as for the
standard M/M/1 queue (cf. (5.39)): the presence of the K permanent customers
in the M/M/1 feedback queue leads to a joint queue length distribution which is
the (K +1)-fold convolution of the joint queue length distribution in the same
model without permanent customers. In the next subsection we shall use (5.50)
for the analysis of the sojourn time distribution.

5.6.2 Sojourn time distribution

In this section we present, in the form of Laplace-Stieltjes transforms and gen-
erating functions, an expression for the joint steady state distribution of the
successive sojourn times S;, j =1,..,k, and the number of type-i customers,
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XY, i=1,..,N, present at the j-th service completion of a customer who is fed
back at least k —1 times, k =1,2,... . It will appear that for the derivation of
this quantity we can largely rely on the analysis of the sojourn time in the
model without permanent customers given in Section 2.3.

Consider a newly arriving (tagged) customer, say C, and suppose that he
finds X§°)=x,- type-i (Poisson) customers in the system, i =1,...,N, together
with the K permanent customers. It is easily seen that the determination of
the (conditional) joint sojourn time distribution of C can be performed in
almost exactly the same way as for the original M/M/1 feedback queue
without permanent customers, see Appendix 2.1, the only difference being that
for the present model one has to take into account that after each of his ser-
vices C finds K additional permanent customers in the queue (besides the
different types of Poisson customers). Realizing this it follows immediately
from the analysis in Appendix 2.1 that, for Re w; =0, |z,-,j|<1, i=1,..,N,
J=0,...k, (cf. (2.8))

—(@ S +...+ S, x‘l'» x)«vn x(lh X(,:) - -
E{e (@S +..+ )(21,0 e zy'0) @k 2N lst)_xl"_.,ng)_xN}
% K+1 N
= HAﬁ(i,w,Z)] I1 Giof G w,2))", (5.51)
j=1 i=1
with w:=(w1, 5 5 3 ,wk), Z:Z((Zl,o, T ,ZN,o), 55 v(zl,k; & 9ZN,k))’ and with

AY(-,,") and f¥(-,-,") defined by (2.9) and (2.10). Comparing (5.51) with the
result ((2.8)) for the corresponding quantity in the model without permanent
customers it appears that these results differ only by a factor

(II;_‘= LAkN (A w,z))X; note that this could have been obtained directly from the
discussion in Remark 2.1.

Using the PASTA property and deconditioning we obtain from (5.50) and
(5.51) our main result:

THEOREM 5.2

The joint distribution of the successive sojourn times and the number of Poisson
customers of each type present in the system at the service completion epochs of a
tagged Poisson customer is the (K +1)-fold convolution of the corresponding
(joint) distribution in the model without permanent customers, cf. (2.11):

—(w ) (k) )
E{e (@, S, + +w.S.)(Zﬁ; . 2176?0) . (Zf(lk o o s Zﬁk)} = (5.52)

k K+1
(1-p) [TAR G w.2)
L= , Rew;=0, |z,|<l, i=1,..,N, j=0,..k

N
1-M8 3 4()zi 0 f2 (i, 0,2)

i=1
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Using Theorem 5.2 most of the sojourn time characteristics can be immedi-
ately obtained from the results given in Section 2.4. Here we shall restrict our-
self to a summary of the most important characteristics.

— The j-th sojourn time S; of a Poisson customer has a (K + 1)-stage Erlang
distribution (Eg 4 ;) with mean (K +1)8/(1—p): (cf. (2.20))

K+1
("5 = [LP_ - Ptk (5.53)

1—p+Bw,

— The correlation coefficient, corr(S;,S;), of the i-th and the j-th sojourn time
of a Poisson customer is independent of the number of permanent custo-
mers in the system: (cf. (2.24))

corr(S;,S;) = 1-(1-p)C;—;, 1<i<j<k, (5.54)
with C,, n =1,...,k — 1, determined by (2.22).
— The variance of the total sojourn time after k services, var(S®), is given

by: (cf. (2.26))

2 -
var(S®) = (K +1) —L] {kz—'Z(l—p)klek_j, k=1,2,.. (555)

1—p =l

REMARK 5.8

Noting that in the present product form model a departing (and hence arriv-
ing) permanent customer sees the system in equilibrium with one less customer
of his own type (see e.g. Walrand [1988, Section 3.4]) the characteristics of the
successive cycle times of a particular permanent customer can be immediately
obtained from the above sojourn time results for the Poisson customers. For
example, the cycle times have a K-stage Erlang distribution (Ex) with mean
KB/(1—p), cf. (5.53).

5.6.3 The M/G/1 PS queue with additional permanent customers

In Section 3.3 it has been shown how queue length and sojourn time results for
the M/G/1 processor sharing queue can be obtained from queue length and
sojourn time results for the M/M/1 queue with general feedback. We applied
a limiting procedure in which the mean service time S—0 while the feedback
probabilities approach one in such a way that a customer’s total required ser-
vice time remains constant, see Subsection 3.3.1. It is easily seen that applica-
tion of the same limiting procedure to the present M/M/1 feedback model
with K permanent customers leads to the M/G/1 PS queue with K permanent
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customers. Note that the behaviour of the latter model is independent of the
service time distribution(s) of the permanent customers (the permanent custo-
mers are always in service). From (5.50) it follows immediately that for the
M/G/1 PS queue with K permanent customers, the distribution of the queue
length XPS at an arbitrary epoch is the (K +1)-fold convolution of the queue
length distribution in the same model without permanent customers: (cf. (3.1))

K+1
E(X") = LP—‘ . lz|<1, (5.56)
1—pz
ie.
Pr{XPs=n}=(1—p)K“[";. o, n=0,1,.., (5.57)

with p the offered load to the system per unit of time due to the Poisson custo-
mers. From Theorem 5.2 we obtain the following remarkable sojourn time
result:

THEOREM 5.3

For the M/G/1 PS queue with K permanent customers the distribution of the
conditional sojourn time S™5(x) of a Poisson customer with given service demand
x is the (K +1)-fold convolution of the conditional sojourn time in the same model
without permanent customers. This also holds for the unconditional sojourn time
SPS of an arbitrary Poisson customer.

Theorem 5.3 implies: (cf. (3.19))

Vv

E{s”s(x)}=(1<+1)lfp, x=0. (5.58)

REMARK 5.9

For the present PS model it is interesting to study the influence of the presence
of the Poisson customers on the ‘speed’ with which the permanent customers
are served. For x=0 let C’(x) be the time required to give the permanent
customers an amount x of service. From the discussion in Remark 5.8 and
application of the limiting procedure it follows that C*S(x) is distributed as the
conditional sojourn time of a tagged Poisson customer with service demand x
in the same model but with one less permanent customer. For example, from
(5.58),

E{CP(x)} = K lfp, x=0. (5.59)

This formula shows that the influence of the Poisson customer stream on



115

E{CP(x)} is simply a reduction of the capacity of the server by an amount p.
Moreover, (5.59) implies that the mean total amount of service obtained by the
permanent customers per unit of time (given by Kx/E{C(x)}) is indepen-
dent of K.

REMARK 5.10

In Remark 3.7 we concluded that for the M/G/1 PS queue (without per-
manent customers) the queue length distribution just after the departure of a
tagged customer who has received an amount x of service is the same as at an
arbitrary epoch, independent of x. From (5.56) it follows that for the M/G/1
PS queue with one permanent customer the queue length distribution at an
arbitrary epoch is the two-fold convolution of the queue length distribution in
the PS queue without permanent customers. Since one would expect that,
when the required service time x of a tagged customer becomes very large, the
behaviour of the M/G/1 PS queue approaches that of the corresponding PS
queue with one permanent customer, it seems paradoxical that both statements
are true. However, viewing the M/G/1 PS queue as the limiting case of the
M/M/1 queue with general feedback this is immediately clear (the departure
of a tagged customer in the PS model corresponds to the (last) service comple-
tion of a tagged customer in the feedback model which is more likely to occur
when there are fewer customers in the system). A similar ‘paradox’ for queue
lengths in PS queues is discussed in Foley and Klutke [1989].

REMARK 5.11

It should be noted that the M/G/1 PS queue with K permanent customers can
also be viewed as a special case of generalized processor sharing (GPS), cf.
Section 3.4: if there are j customers present in the system then the service rate
for each of these customers is f(j)=1/(j +K), j=1,2,.... It is easily verified
that (5.57) and (5.58) coincide with the results for the queue length distribution
and the mean sojourn time in the M/G/1 GPS queue given by (3.59) and
(3.60) respectively, that have already been obtained by Cohen [1979]. Theorem
5.3 is a new result.

REMARK 5.12

Using Theorem 5.3 the approximations for second moment characteristics of
the sojourn time in the ordinary M/G/1 PS queue (developed in Chapter 4)
can be easily extended to approximations for the corresponding quantities in
the PS model with permanent customers.

The above results for the queue length and the sojourn time in the M/G/1
PS queue with permanent customers are interesting both from a theoretical
and a practical point of view. One example where this queueing model may
arise is provided by a ‘Stored Program Controlled’ (SPC) telephone exchange
that is offered two types of jobs: (i) call requests, and (ii) operator tasks (see
De Waal [1989]). To guarantee a certain quality of service of the call requests
only a limited number (K) of operator tasks is allowed to be in service at the



116

same time. It is clear that under heavy traffic conditions of the operator tasks
and for appropriate assumptions about the system parameters the above for-
mulas (5.56)-(5.58) (approximately) reflect the influence of the choice of the
control parameter K on the queue length and the delay of the call requests.
From the discussion in Remark 5.9 it follows that under certain conditions the
maximum throughput of the operator tasks is independent of K. So, if the
objective is to minimize the delay of the call requests and to maximize the
throughput of the operator tasks one should take K as small as possible, i.e.
K=1.
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SAMENVATTING

Wanneer meerdere gebruikers, op hetzelfde moment, de beschikking willen
hebben over de diensten die door een systeem (bijvoorbeeld een computer)
worden aangeboden zal vaak slechts een gedeelte van deze gebruikers direkt
tot het systeem kunnen worden toegelaten en moeten de anderen op hun beurt
wachten. De wachtrijtheorie, een tak van de toegepaste kansrekening, houdt
zich bezig met het bestuderen van dit verschijnsel ‘wachten’ in systemen die
diensten aanbieden voor collectief gebruik; in het bijzonder probeert men
m.b.v. de wachtrijtheorie de prestatie van zulke systemen te bepalen. De
wachtrijtheorie vindt zijn oorsprong in het onderzoek naar de vertraging en
congestie bij het aanvragen van telefoongesprekken, rond het begin van deze
eeuw. Tegenwoordig wordt de wachtrijtheorie op veel gebieden toegepast, in
het bijzonder bij productieplanning en bij de prestatie analyse van computer-
en communicatiesystemen.

Een wachtrijmodel wordt gewoonlijk beschreven in termen van klanten die
een hoeveelheid bediening vragen, bedieningsfaciliteiten die bediening verlenen,
en wachtrijen die op bediening wachtende klanten bevatten; de volgorde
waarin de klanten worden bediend wordt bepaald door de bedie-
ningsdiscipline. In dit proefschrift worden wachtrijmodellen bestudeerd waarin
klanten meerdere malen naar een bepaalde bedieningsfaciliteit terug kunnen
keren om zo verschillende bedieningsfasen te ontvangen voordat ze definitief
het systeem verlaten. Zulke ‘feedback’ verschijnselen treden o.a. op in pro-
cessen die zich voordoen in computercommunicatie- en in productienetwerken.
Een belangrijk voorbeeld is een computersysteem met multiprogramming. In
zo'n systeem kunnen meerdere jobs ‘tegelijkertijd” worden behandeld door elke
job een kleine hoeveelheid tijd (een bedieningsquantum) toe te wijzen gedu-
rende welke de job de beschikking over de CPU krijgt. Als de totale
verwerkingstijd van een job groter is dan het hem toegewezen bedie-
ningsquantum wordt hij in een wachtrij geplaatst; hier wacht de job tot hij aan
de beurt is om opnieuw een bedieningsquantum te ontvangen, enzovoort; als
de job uiteindelijk klaar is verlaat hij het systeem. Een ander voorbeeld van
feedback vindt men in productieprocessen waarbij na het verrichten van een
handeling gecontroleerd wordt of deze handeling eventueel opnieuw uitgevoerd
dient te worden.

Het basis feedbackmodel dat in dit proefschrift wordt bestudeerd bestaat uit
een bedieningsstation met één bediende en een wachtrij waarbij klanten arri-
veren volgens een Poisson proces. Nadat een klant een negatief exponentieel
verdeelde hoeveelheid bediening (met gemiddelde B) heeft ontvangen keert hij
terug naar het eind van de wachtrij (om later een volgende bediening te
ontvangen) of hij verlaat het systeem, respectievelijk met kans p (i) en met kans
1—p(i); hierbij is i =1,2,... het aantal keer dat de klant reeds bediend is. De
klanten worden bediend in de volgorde waarin ze in de wachtrij staan. Dit
model wordt het ‘M/M/1 model met algemene feedback’ of kortweg het
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‘M/M/1 feedbackmodel’ genoemd. Het onderzoek in dit proefschrift is in de
eerste plaats gericht op het bestuderen van de (kansverdeling van de)
verblijftijd van een klant in zo’n systeem. De totale verblijftijd van een klant is
de som van een stochastisch aantal parti€le verblijftijlden tussen de
opeenvolgende bedieningen van die klant (de eerste parti€le verblijftijd is de
tijd tussen de aankomst van de klant en het eind van zijn eerste bediening).
Het is duidelijk dat deze opeenvolgende (parti€le) verblijftijden niet onafhanke-
lijk zijn, hetgeen de analyse bemoeilijkt. Een ander aspect dat de bepaling van
de verblijftijdverdeling in de meeste wachtrijmodellen met feedback zeer moei-
lijk of onmogelijk maakt is het optreden van het zogenaamde ‘inhaal
verschijnsel: de klanten verlaten het systeem niet noodzakelijk in de volgorde
waarin ze het systeem binnenkomen. Een feedback wachtrijmodel is in feite
het eenvoudigste voorbeeld van een wachtrijnetwerk waarin dit inhaal
verschijnsel optreedt. Het bestuderen van verblijftijden in een één-bediende
wachtrij met feedback is dan ook van belang voor het onderzoek naar
verblijftijden in grotere wachtrijnetwerken waarin de klanten elkaar kunnen
passeren; hiervoor zijn in de literatuur nog nauwelijks resultaten bekend.

In het proefschrift leiden we een uitdrukking af voor de samengestelde
verdeling van de achtereenvolgende (parti€le) verblijftijden van een klant in het
hierboven beschreven M/M/1 feedbackmodel. Een belangrijk bijprodukt van
de feedbackstudie is nieuw inzicht in het gedrag en de analyse van het bekende
en veel gebruikte M/G/1 ‘processor sharing’ (PS) model voor computersyste-
men met multiprogramming. In dit één-bediende model met algemeen
verdeelde bedieningstijden worden alle aanwezige klanten tegelijkertijd en met
gelijke snelheid bediend, zodanig dat de totale bedieningssnelheid constant
blijft. In feite is het processor sharing model een model van een computer
systeem met multiprogramming waarin de lengte van de bedieningsquanta naar
nul gaat. Het is niet moeilik in te zien dat wanneer in het M/M/I
feedbackmodel de gemiddelde bedieningstijld B naar nul gaat en de
terugkeerkansen naar één zodanig dat de gemiddelde totale hoeveelheid bedie-
ning die een klant krijgt constant blijft, dit model zich precies hetzelfde
gedraagt als het M/G/1 PS model. Verschillende keuzes van de
terugkeerkansen in het M/M/1 feedbackmodel leiden tot verschillende
bedieningsduurverdelingen in het PS model.

We geven nu een kort overzicht van de inhoud van de vijf hoofdstukken.

Hoofdstuk 1 is een algemene inleiding waarin de praktische en theoretische
achtergronden van het onderzoek worden belicht. Dit hoofdstuk bevat ook
een uitgebreid overzicht van de literatuur m.b.t. de in het proefschrift
behandelde modellen. In de laatste paragraaf wordt een overzicht van de
inhoud van de hoofdstukken 2-5 gegeven.

Hoofdstuk 2 bevat een fundamentele analyse van de verblijftijden in het
M/M/1 feedbackmodel. We leiden eerst een recursieve uitdrukking af voor de
samengestelde verdeling van de opeenvolgende (parti€le) verblijftijden en van
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het aantal klanten in het systeem direkt na elke bediening van een klant die
precies k=1 keer bediend wordt. Met behulp van dit resultaat vinden we
tamelijk eenvoudige uitdrukkingen voor de verschillende
verblijftijdkarakteristieken, zoals de variantie van de totale verblijftijd na k
bedieningen, de verdeling van de i-de (parti€le) verblijftijd, i =1,...,k, en de
correlatiecoéfficient van de i-de en de j-de verblijftijd, 1<<i<j<k. In het bij-
zonder wordt aangetoond dat deze laatste grootheid positief is en kleiner wordt
als j —i toeneemt, hetgeen op intuitieve gronden ook verwacht mag worden.
Hoofdstuk 2 wordt afgesloten met de analyse van een uitbreiding van het
basismodel waarin de verdeling van de bedieningsduur van een klant algemeen
is en afhangt van het aantal keren dat een klant reeds bediend is. De analyse
van dit model is beperkt tot het bepalen van gemiddelde verblijftijden.

In hoofdstuk 3 wordt aangetoond hoe de verblijftijdresultaten voor het
M/M/1 feedbackmodel, via de eerder geschetste limiet procedure, leiden tot
resultaten voor de verblijftijd in het M/G/1 PS model. We geven o.a. de
afleidingen voor het gemiddelde, de variantie en de Laplace-Stieltjes
transformatie van de verblijftijd. Het blijkt dat deze nieuwe benadering van de
analyse van het M/G/1 PS model veel inzicht geeft in een aantal bekende
eigenschappen van de verblijftijd. De laatste paragraaf van hoofdstuk 3 is
gewijd aan de analyse van een M/G/1 processor sharing model met feedback
(PSFB) waarin de terugkeerkansen constant zijn. Uit de resultaten voor het
M/M/1 feedbackmodel en m.b.v. de limiet procedure worden nieuwe resulta-
ten afgeleid voor de correlatiecoéfficienten van de opeenvolgende (parti€le)
verblijftijden van een klant in dit PSFB model.

In hoofdstuk 4 worden enige benaderingsformules ontwikkeld voor het
tweede moment van de verblijftijdverdeling in het M/G/1 PS model. De
reden hiervoor is dat de in hoofdstuk 3 verkregen exacte uitdrukkingen in het
algemeen alleen numeriek kunnen worden ge€valueerd en bovendien afhanke-
lijk zijn van de verdeling van de bedieningsduur (die in de praktijk slechts
zelden bekend is). De benaderingen hangen slechts af van de eerste twee
momenten van de bedieningsduurverdeling. Ze zijn voornamelijk gebaseerd op
enkele nieuwe asymptotische resultaten en op simpele exacte uitdrukkingen
voor een aantal specificke bedieningsduurverdelingen. De benaderingsresulta-
ten worden uitgebreid getest aan de hand van (deels numeriek verkregen)
exacte resultaten. Tenslotte wordt een verfijnder benadering afgeleid door ook
het derde moment van de bedieningsduurverdeling erbij te betrekken.

In hoofdstuk 5 worden enige één-bediende wachtrijmodellen bestudeerd
waarin naast de ‘gewone’ klanten een vast aantal permanente klanten in het
systeem aanwezig is; de permanente klanten keren na iedere bediening terug
naar het einde van de wachtrij. Centraal staat de vraag: wat is de invloed van
de aanwezigheid van deze permanente klanten op de rijlengte en verblijftijd
van de gewone klanten? Deze vraag wordt eerst beantwoord voor het M/G/1
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(first-come-first-served) model met permanente klanten. Daarna wordt het
M/M/1 feedbackmodel met permanente klanten geanalyseerd. Het blijkt dat
voor dit laatste model de aanwezigheid van K permanente klanten leidt tot een
verblijftijdverdeling die de (K +1)-voudige convolutie is van die voor het
oorspronkelijke model (zonder permanente klanten). Een soortgelijk resultaat
wordt afgeleid voor de verblijftijd in het M/G/1 PS model met permanente
klanten.
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