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Abstract. The concept of counter-cryptanalysis and a collision detec-
tion algorithm that detects whether a given single message was con-
structed using a cryptanalytic collision attack on MD5 or SHA-1 was
presented by Stevens at CRYPTO 2013 [Ste13a]. It was shown that col-
lision detection is not only possible but also practical and a reference im-
plementation was released. However, there is a significant cost: to detect
collision attacks against SHA-1 (respectively MD5) costs the equivalent
of hashing the message 15 (respectively 224) times.
In this paper we present a significant performance improvement for col-
lision detection based on the new concept of unavoidable conditions. Un-
avoidable conditions are conditions that are necessary for all feasible
attacks in a certain attack class. As such they can be used to quickly
test whether a message block may have been constructed using an at-
tack from that class and significantly reduce the cost of more expensive
collision detection operations. While necessary and sufficient conditions
for an attack can be easily and manually derived, significant care must
be taken in determining unavoidable conditions. To prevent adversaries
aware of counter-cryptanalysis to easily bypass this improved collision
detection with a carefully chosen variant attack, it is crucial that the
used conditions are truly unavoidable by considering all feasible variant
attacks in the same attack class. We provide a formal model for unavoid-
able conditions for collision attacks on MD5-like compression functions.
Furthermore, based on a conjecture solidly supported by the current
state of the art, we show how we can determine such unavoidable con-
ditions for SHA-1. We have implemented the improved SHA-1 collision
detection using such unavoidable conditions and which is about 16 times
faster than without our unavoidable condition improvements. We have
measured that overall our implemented SHA-1 with collision detection
is only a factor 1.96 slower on average than SHA-1.

Keywords: SHA-1, hash function, counter-cryptanalysis, signature forgery,
unavoidable conditions

1 Introduction

Cryptographic hash functions, computing a small fixed-size hash value for a given
message of arbitrary length, are a crucial cryptographic primitive that are used
to secure countless systems and applications. A key cryptographic requirement



is that it should be computationally infeasible to find collisions: two distinct
messages with the same hash value. Industry’s previous de facto choices MD5
and SHA-1 are both based on the Merkle-Damg̊ard construction [Mer89, Dam89]
that iterates a compression function that updates a fixed-size internal state called
the chaining value (CV) with fixed-size pieces of the input message.

In 2004, MD5 was completely broken and real collisions were presented by
Wang et al.[WFLY04, WY05]. Their collision attack consisted of two so-called
near-collision attacks on MD5’s compression function where the first introduces a
difference in the chaining value and the second eliminates this difference again.
Hence, these so-called identical-prefix collisions had a limitation that the two
colliding messages need to be identical before and after these near-collision
blocks. So-called chosen-prefix collisions for MD5 were introduced by Stevens
et al.[SLdW07] that allowed arbitrary different prefixes. Irrefutable proof that
hash function collisions indeed form a realistic and significant threat to Inter-
net security was presented at CRYPTO 2009 by Stevens et al. [SSA+09]. More
proof of the threat posed by collision attacks appeared in 2012 when it was found
that the supermalware Flame (e.g., see [Kas12]) also exploited an unpublished
MD5 chosen-prefix collision attack to create a digital signature forgery to craft
malicious windows updates [Ste13a].

SHA-1, designed by NSA and standardized by NIST [NIS95], is also weak
and was theoretically broken in 2005 with a collision attack with an estimated
complexity of 269 SHA-1 calls presented by Wang et al.[WYY05]. With real col-
lisions for full SHA-1 yet of reach, there have been efforts at producing collisions
for reduced versions of SHA-1: 64 steps [CR06] (with a cost of 235 SHA-1 calls),
70 steps [CMR07] (cost 244 SHA-1), 73 steps [Gre10] (cost 250.7 SHA-1), the
last being 75 steps [GA11] (cost 257.7 SHA-1) from 2011. The cost of collisions
for SHA-1 was improved to 261 SHA-1 calls at EUROCRYPT 2013 [Ste13b],
together with a near-collision attack with cost 257.5 and a chosen-prefix collision
attack with cost 277.1 SHA-1 calls, that remains the current state-of-the-art.
Other recent efforts focused on finding freestart collisions for SHA-1, i.e., col-
lisions for its compression function, with a 76-step freestart collision [KPS15]
(cost 250 SHA-1) and very recently a freestart collision for full SHA-1 [SKP15].
Even though there have been public cryptanalytic efforts breaking 64-bit secu-
rity levels, these were based on the significantly lower cost/performance ration
of dedicated hardware and straightforward computations. These cryptanalytic
attacks are algorithms with many small computations and many branches and
therefore significantly less suited for dedicated hardware. However, [SKP15] in-
deed shows one can make efficient use of graphics cards (GPUs) and that the
cost of collisions for SHA-1 can be significantly lower than previously thought:
about $120K to rent GPU-enabled servers on Amazon EC2 [SKP15].

1.1 Collision detection

At CRYPTO 2013, Stevens introduced a Collision Detection algorithm that
given any single message can detect whether it was constructed – together with
an unknown sibling message – using a cryptanalytic collision attack on MD5 or
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SHA-1 [Ste13a]. It is based on two critical properties of all known cryptanalytic
collision attacks on MD5 and SHA-1, namely, they strongly depend on the use of
trivial differences δWSi in some intermediate states WSi,WS

′
i of the compression

function, and there only select few differences δB for the message blocks B,B′

that allow feasible attacks.
Collision detection detects near-collision attacks against MD5’s or SHA-1’s

compression function for a given message by ‘jumping’ from the current com-
pression function evaluation CVout = Compress(CVin, B) to a presumed related
compression function evaluation CV ′out = Compress(CV ′in, B

′). The presumed
related compression function evaluation can be fully reconstructed using the
message block differences δB and the difference δWSi for some intermediate
state WSi after step i of the compression function. Those differences directly
imply values for B′ and WS′i which are sufficient to compute the related input
chaining value CV ′in and thereby also the related output chaining value CV ′out.
This reconstruction from the middle of the related compression function eval-
uation is called a recompression. A collision attack necessarily requires a final
near-collision attack with CV ′out = CVout, which can be detected in this manner.

For MD5 and SHA-1 one thus distinguishes many attack classes that each
are described by the message block difference δB, step i and intermediate state
difference δWSi. In the case of SHA-1 each attack class depends entirely on the
so-called disturbance vector (DV). In either case, for every block of the given
message, each attack class requires another compression function evaluation.
With the 223 known attack classes for MD5, MD5 collision detection costs a
factor 224 more than MD5. SHA-1 collision detection costs a factor 15 more
than SHA-1 given the original proposed list of 14 most threatening disturbance
vectors.

2 Our contributions

In this paper we present a significant run-time performance improvement to
collision detection. This improvement is based on a new concept in cryptanalysis,
namely unavoidable conditions, which are conditions that are necessary for all
feasible attacks within a certain class of attacks. We provide a formal framework
of unavoidable conditions for collision attacks on MD5-like compression functions
that can be used to show that indeed conditions are unavoidable, and we show
how they can be used to speed up collision detection.

Furthermore, we present a conjecture that SHA-1 collision attacks based on
a disturbance vector may not deviate from the prescribed local collisions for
steps 35 up to 65 to remain feasible. As the current state of art on SHA-1
collision attacks is entirely based on disturbance vectors (and for compelling
reasons) and published collision attacks only deviate from local collisions in the
first 20 steps or the last 5 steps (75 up to 79), the current state of art solidly
supports this conjecture with a safe margin. Based on this conjecture, we show
how we can efficiently determine such unavoidable conditions for the known
cryptanalytic attack classes on SHA-1. Moreover, we show how we can exploit
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a significant overlap of unavoidable conditions between DVs that allows a more
efficient checking of unavoidable bit conditions for many disturbance vectors
simultaneously.

Collision detection uses recompressions, i.e., evaluations of the compression
function starting from an intermediate state to uniquely determine the input and
output chaining value for a given message block. Collision detection requires a
recompression for each tested DV for each message block of a given message.
Unavoidable bit conditions allow a significant improvement to collision detec-
tion by very quickly checking the unavoidable bit conditions per DV and only
performing a recompression when all unavoidable bit conditions for that DV are
satisfied.

We have implemented the improved SHA-1 collision detection using unavoid-
able conditions which checks 32 DVs (twice as many as previous work). The im-
proved collision detection is about 16 times faster than without our unavoidable
condition improvements. We have measured that overall our improved SHA-1
collision detection is only a factor 1.96 slower on average than SHA-1.

The remainder of our paper is organized as follows. In Sect. 3 we treat the
formal concept of unavoidable conditions and their practical applications. How
to determine them for known attack classes against SHA-1 and to maximize
the overlap between the sets of unavoidable conditions between DVs is covered
in Sect. 4. In Sect. 5 we disclose more specific details about our open-source
implementation, in particular with regards how to efficiently check unavoidable
bit conditions. We discuss performance aspects in Sect. 6.

3 Unavoidable conditions

3.1 Model

Necessary and/or sufficient bit conditions are a very useful tool for hash function
cryptanalysis as laid out by Wang et al.[WY05]. In effect they reduce the problem
of finding a message block pair that conforms to a differential path to the problem
of finding a message block for which the bit conditions are satisfied. As well as
reducing cost from computations over two compression function evaluations to
only one compression function evaluation, such conditions allows more effective
use of early stop techniques and advanced message modification techniques.

We define unavoidable conditions as conditions that are necessary for all fea-
sible attacks in a certain attack class. While necessary and sufficient conditions
for an attack can be easily and manually derived, significant care must be taken
in determining unavoidable conditions. It may be possible to simply choose other
conditions for a variant attack, such variant attacks are then not detected any-
more. In order to prevent adversaries aware of counter-cryptanalysis to easily
bypass this improved collision detection with a carefully chosen variant attack,
it is crucial that the used conditions are truly unavoidable by considering all
feasible variant attacks in the same attack class. We more formally define attack
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classes and such unavoidable conditions in a framework that we use to find un-
avoidable conditions for SHA-1 that are shown to be necessary for all feasible
attacks within an attack class.

Our attack class definition in Definition 1 below is rather general but captures
the functionality of many collision attacks variants (collision attack, pseudo-
collision attack, near-collision attack) against compression functions: i.e., algo-
rithms that output a pair of compression function inputs. Our general definition
does not describe what the input or output differences should look like or, e.g.,
whether it requires specific values for CV1 and CV2. Instead such details are
abstracted away as properties of specific attack classes.

Definition 1 (Compression function attack class). For N,M ∈ N+, let
H : {0, 1}N × {0, 1}M → {0, 1}N be a compression function, then a class of
attacks C against H is a set of (randomized) algorithms A that produce a tuple
(CV1, B1, CV2, B2) ∈ {0, 1}N × {0, 1}M × {0, 1}N × {0, 1}M as output.

We model an unavoidable condition for an attack class as a predicate over
pairs (CV,B) of a chaining value and message block. Such a predicate is called
an unavoidable condition if and only if it holds for all possible (CV1, B1) and
(CV2, B2) that may be output by any attack in the attack class.

Definition 2 (Unavoidable condition). For N,M ∈ N+, let H : {0, 1}N ×
{0, 1}M → {0, 1}N be a compression function and C be an attack class against H.
Let u : {0, 1}N×{0, 1}M → {false, true} be a non-trivial predicate over compres-
sion function inputs. Then u is called an unavoidable condition for attack class
C if and only if for all A ∈ C and for all possible outputs (CV1, B1, CV2, B2)← A
it holds that u(CV1, B1) = true and u(CV2, B2) = true.

3.2 Speeding up collision detection

Let S be a set of attack classes. For each attack class C ∈ S let sC = (δB, i, δWSi)
be the associated message block difference, step i and difference for the interme-
diate state after step i as given in [Ste13a]. Also, let UC be a set of unavoidable
conditions for each C ∈ S.

For each compression function evaluation during the hashing of a given mes-
sage, collision detection will perform a recompression for every attack class C ∈ S.
Such a recompression is rather costly as it results in that the overall cost of col-
lision detection is a factor |S| more than only computing the hash.

If for compression function input (CV,B) and for a given attack class C
at least one unavoidable condition u ∈ UC is not satisfied then by definition
(CV,B) cannot be output by any attack A ∈ C (i.e., (CV1, B1) = (CV,B) or
(CV2, B2) = (CV,B) as in Definition 1). As an attack from C has been ruled out,
a recompression for C is unnecessary and can be skipped. Alg. 1 is the improved
collision detection that uses unavoidable conditions as preconditions before a
performing a recompression. If the unavoidable conditions can be evaluated very
quickly in comparison to the recompression, e.g., comparing whether two bits are
equal/unequal in the internal state of the compression function, then a significant
speed improvement can be achieved.
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Algorithm 1: Improved collision detection

Let H : {0, 1}N × {0, 1}M → {0, 1}N , IV ∈ {0, 1}N be an MD5-like compression
function consisting of I reversible steps and a feed-forward. Let S be a set of
attack classes s = (δB, i, δWSi) and Us a set of unavoidable conditions for each
s ∈ S. The algorithm below returns True when a near-collision attack was
detected and False otherwise.
Given padded message P = P1|| . . . ||Pn consisting of n blocks Pj ∈ {0, 1}M do:

1. Let CV0 = IV and do the following for j = 1, . . . , n:
(a) Evaluate CVj = H(CVj−1, Pj) and store intermediate working states WSi

after each step i = 0, . . . , I − 1 of H.
(b) For each s = (δB, i, δWSi) ∈ S do:

i. If u(CVj−1, Pj) = false for some u ∈ Us then skip steps ii.–vi.
ii. Determine P ′j = Pj + δB, WS′i = WSi + δWSi

iii. Compute steps i, i− 1, . . . , 0 of H backwards to determine CV ′j−1

iv. Compute steps i+ 1, . . . , I − 1 forwards to determine WS′I−1

v. Determine CV ′j from CV ′j−1 and WS′I−1 (Davies-Meyer feed-forward)
vi. If CV ′j = CVj return True

2. Return False

4 Application to SHA-1

4.1 Notation

SHA-1 is defined using 32-bit words X = (xi)
31
i=0 ∈ {0, 1}32 that are identified

with elements X =
∑31
i=0 xi2

i of Z/232Z (for addition and subtraction). A binary
signed digit representation (BSDR) for X ∈ Z/232Z is a sequence Z = (zi)

31
i=0 ∈

{−1, 0, 1}32 for which X =
∑31
i=0 zi2

i. We use the following notation: Z[i] = zi,
RL(Z, n) and RR(Z, n) (cyclic left and right rotation), w(Z) (Hamming weight),

σ(Z) = X =
∑31
i=0 ki2

i ∈ Z/232Z.

In collision attacks we consider two related messages M and M ′. For any
variable X related to the SHA-1 calculation of M , we use X ′ to denote the
corresponding variable for M ′. Furthermore, for such a ‘matched’ variable X ∈
Z/232Z we define δX = X ′ −X and ∆X = (X ′[i]−X[i])31i=0.

4.2 SHA-1’s compression function

The input for SHA-1’s Compress consists of an intermediate hash value CVin =
(a, b, c, d, e) of five 32-bit words and a 512-bit message block B. The 512-bit
message block B is partitioned into 16 consecutive 32-bit strings which are in-
terpreted as 32-bit words W0, W1, . . . ,W15 (using big-endian), and expanded to
W0, . . . ,W79 as follows:

Wt = RL(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16, 1), for 16 ≤ t < 80. (1)
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We describe SHA-1’s compression function Compress in an ‘unrolled’ version.
For each step t = 0, . . . , 79 it uses a working state consisting of five 32-bit words
Qt, Qt−1, Qt−2, Qt−3 and Qt−4 and calculates a new state word Qt+1. The
working state is initialized before the first step as

(Q0, Q−1, Q−2, Q−3, Q−4) = (a, b, RR(c, 30), RR(d, 30), RR(e, 30)).

For t = 0, 1, . . . , 79 in succession, Qt+1 is calculated as follows:

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

Qt+1 = Ft +ACt +Wt +RL(Qt, 5) +RL(Qt−4, 30).
(2)

These 80 steps are grouped in 4 rounds of 20 steps each. Here, ACt is the
constant 5a82799916, 6ed9eba116, 8f1bbcdc16 or ca62c1d616 for the 1st, 2nd,
3rd and 4th round, respectively. The non-linear function ft(X,Y, Z) is defined
as (X ∧Y )⊕ (X ∧Z), X ⊕Y ⊕Z, (X ∧Y )∨ (Z ∧ (X ∨Y )) or X ⊕Y ⊕Z for
the 1st, 2nd, 3rd and 4th round, respectively. Finally, the output intermediate
hash value CVout is determined as:

CVout = (a+Q80, b+Q79, c+RL(Q78, 30), d+RL(Q77, 30), e+RL(Q76, 30)).

4.3 Local collisions and the disturbance vector

In 1998, Chabaud and Joux [CJ98] constructed a collision attack on SHA-0,
SHA-1’s withdrawn predecessor, based on local collisions. A local collision over
6 steps for SHA-0 and SHA-1 consists of a disturbance δQt+1 = 2b created in
some step t by a message word bit difference δWt = 2b. This disturbance is
corrected over the next five steps, so that after those five steps no differences
occur in the five working state words. They were able to interleave many of these
local collisions such that the message word differences (∆Wt)

79
t=0 conform to the

message expansion (cf. Eq. 1). For more convenient analysis, they consider the
disturbance vector which is a non-zero vector (DVt)

79
t=0 conform to the message

expansion where every ‘1’-bit DVt[b] marks the start of a local collision based
on the disturbance δWt[b] = ±1. We denote by (DWt)

79
t=0 the message word

bit differences without sign (i.e., DWt = W ′t ⊕ Wt) for a disturbance vector
(DVt)

79
t=0:

DWt :=
⊕

(i,r)∈R

RL(DVt−i, r), R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)}

Note that for each step one uses differences δWt instead of DWt. We say that
a message word difference δWt is compatible with DWt if there are coefficients
c0, . . . , c31 ∈ {−1, 1} such that δWt =

∑31
j=0 cj · DWt[j]. The set Wt of all

compatible message word differences given DWt is defined as:

Wt :=
{
σ(X)

∣∣ BSDR X, X[i] ∈ {−DWt[i],+DWt[i]}, i ∈ {0, . . . , 31}
}

(3)

As for bit position 31 it holds that −231 ≡ 231 mod 232, only the signing of bits
0, . . . , 30 affect the resulting δWt. In fact for every δWt ∈ Wt it holds that the
coefficient ci ∈ {−1, 1} for every bit position i ∈ {0, . . . , 30} with DWt[i] = 1 is
uniquely determined.
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4.4 Disturbance vector classes

Manuel [Man11] has classified previously found interesting disturbance vectors
into two classes. A disturbance vector from the first class denoted by I(K, b) is
defined by DVK = . . . = DVK+14 = 0 and DVK+15 = 2b. Similarly, a distur-
bance vector from the second class denoted by II(K, b) is defined by DVK+1 =
DVK+3 = RL(231, b) andDVK+15 = 2b andDVK+i = 0 for i ∈ {0, 2, 4, 5, . . . , 14}.
For both classes, the remaining DV0, . . . , DVK−1 and DVK+16, . . . , DV79 are de-
termined through the (reverse) message expansion relation (Eq. 1).

4.5 Unavoidable conditions

The literature on collision attacks against SHA-1 (e.g., see [WYY05, PRR05,
MP05, JP05, CR06, MPRR06, CMR07, YSN+07, Coc07, YIN+08, Gre10, Man11,
Ste13b]) consists entirely of attacks based on combinations of local collisions as
prescribed by a disturbance vector. This is a common property and for a com-
pelling reason: it is the only known way to construct differential paths with
message word differences compatible with the message expansion relation. Even
then it seems that out of 2512 possible disturbance vectors there are only a few
tens of disturbance vectors suitable for cryptanalytic attacks.

In the first number of steps and the last few steps attacks can deviate from
the DV-prescribed local collisions without a significant impact in the complexity.
On the contrary, it is an important technique to use a specially crafted differen-
tial path for the first number of steps to allow arbitrary chaining value differences
to be used in combination with the disturbance vector as introduced by Wang et
al.[WYY05]. Also, for the last few steps there may be higher probability differ-
ential steps as shown in [Ste13b]. However, deviating from DV-prescribed local
collisions towards the middle becomes very costly very quickly as the resulting
avalanche of perturbations will result a significant increase of the attack com-
plexity. Hence, for the steps in the middle it remains unavoidable to use the
DV-prescribed local collisions, which has led us to the following conjecture:

Conjecture 1. Over steps [35, 65) it is unavoidable to use the DV-prescribed local
collisions: deviating from the DV over these steps will result in an avalanche that
will significantly increase the attack complexity.

As published collision attacks only deviate from local collisions in the first 20
steps or the last 5 steps (75 up to 79) for reasons already mentioned, the current
state of art solidly supports our conjecture with a safe margin. In fact we have
considered taking a large range of steps in Conjecture 1, however the increase in
number of unavoidable conditions only results in a slight performance increase.
In the end we opted for a larger safety margin instead of a slight performance
increase.

Based on our Conjecture 1, we propose to protect against attack classes
based on disturbance vectors that use the prescribed local collisions over steps
[35, 65). This restriction allows us to determine unavoidable conditions over all
non-zero probability differential paths over steps 35 up to 65 that adhere to the
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disturbance vector. We propose to use unavoidable message bit relations that
control the signs of bits in the ∆Wt. These message bit relations are used in
attacks to ensure that, e.g., adjacent active bits collapse to a single bit difference,
or that two bits have opposing sign to cancel differences (the perturbation of
each local collision). Looking at SHA-1 attacks, these message bit relations are
all of the form Wi[a] ⊕ Wj [b] = c or Wi[a] = c, hence this specific form of
unavoidable conditions can be checked very efficiently. But as noted before, one
cannot simply use the necessary conditions of one attack, it is important to prove
which of those message bit relations are necessary for all feasible attacks. We
will refer to such unavoidable message bit relations as unavoidable bit conditions
or UBC s. The method we can use to determine the UBCs for each disturbance
vector is described below.

4.6 Using Joint-Local Collision Analysis

To determine the UBCs for a given disturbance vector, we will need to work
with the set of all possible DV-based differential paths over steps [35, 65). Some
bits Wt[i] of the expanded message words Wt are uniquely determined for any
given differential path. If we map a differential path to a vector of values for
these uniquely determined bits Wt[i] then we can look at the affine vector space
generated by the images of all possible DV-based differential paths. This affine
vector space can be represented by a system of linear equations over those mes-
sage bits. The system of linear equations can itself be viewed as linear space (of
equations) and we will use its row-reduced form as our initial UBCs. It follows
that if an expanded message does not satisfy all UBCs for a given DV then there
does not exist a possible DV-based differential path over steps [35, 65).

To efficiently compute UBCs we will use techniques introduced in [Ste13b]
that exploit redundancies between differential paths, although we will present
our method at a higher level using notation taken from [Ste13b]: Let Qt be the
set of all allowed differences ∆Qt given (DVi)

79
i=0:

Qt :=
{

BSDR Y
∣∣∣ σ(Y )=σ(Z),
Z[i]∈{−DVt−1[i],DVt−1[i]}, i=0,...,31

}
.

A differential path P over steps t ∈ [35, 65) is given as

P = ((∆Qt)
64+1
t=35−4, (∆Ft)

64
t=35, (δWt)

64
t=35),

with correct differential steps for t ∈ [35, 65):

σ(∆Qt+1) = σ(RL(∆Qt, 5)) + σ(RL(∆Qt−4, 30)) + σ(∆Ft) + δWt. (4)

The success probability Pr[P] of a differential path P is defined as the probability

that the given path P holds exactly for uniformly-randomly chosen Q̂35−4, . . . , Q̂35

and Ŵ35, . . . , Ŵ64 and where the other variables are computed as defined in
SHA-1’s compression function (cf. [Ste13b]). Then the set of all possible DV-
based differential paths over steps [35, 65) that we will use is defined as:

D[35,65) :=
{
P̂
∣∣ ∆Q̂i ∈ Qi, δŴj ∈ Wj , Pr[P̂] > 0

}
9



Let P ∈ D[35,65) and let δW35, . . . , δW64 be the message word differences.
Let t ∈ [35, 65) and let It ⊆ {0, . . . , 30} be the set of bit positions 0 ≤ i ≤ 30

such that DWt[i] = 1. As δWt ∈ Wt, we have that δWt =
∑31
i=0 ci ·DWt[i] with

c0, . . . , c31 ∈ −1, 1 (Eq. 3). We use the fact that the coefficients ci with i ∈ It
are uniquely determined. This implies values for the bits Wt[i] with i ∈ It as:

– if ci = 1 then ∆Wt[i] = 1 ·DWt = 1 thus Wt[i] = 0 and W ′t [i] = 1;
– if ci = −1 then ∆Wt[i] = −1 ·DWt = −1 thus Wt[i] = 1 and W ′t [i] = 0;

Hence, given P ∈ D[35,65) for t ∈ [35, 65) and i ∈ It the value of Wt[i] is known.
Let X = ((t, i) | t ∈ [35, 65) ∧ i ∈ It) be a vector of all (t, i) for which the value
of Wt[i] is known given P ∈ D[35,65) and let R = |X| be the length of X. Then
we can define a mapping that maps differential paths to a vector over F2 of the
message bits Wt[i] that are known:

µ : D[35,65) → FR2 : P 7→ (Wt[i]|(t, i) = X[r])Rr=1

And we can look at the smallest affine vector space V that encapsulates the image
µ(D[35,65)) of D[35,65). Although V is uniquely determined, its representation
V = o+ < v1, . . . , vn > with an origin o and generating vectors v1, . . . , vn is not
unique. Let Po ∈ D[35,65) be a fixed differential path, then we compute V as:

o = µ(Po), ∀P ∈ D[35,65) : vP = µ(P)− o.

Using linear algebra we can determine an equivalent description of V as a system
of equations over bits Wt[i] with (t, i) ∈ X. This system of linear equations can
be viewed as a linear space itself, and we use its row reduced form which consists
entirely of equations over 2 message bits of the form Wi[a]⊕Wj [b] = c.

For our improved SHA-1 collision detection implementation we have selected
the 32 disturbance vectors with lowest estimated cost as in [Ste13b]. This is more
than the 14 disturbance vectors intially suggested in [Ste13a], but using UBCs
we could simply add protection against more DVs with very low extra cost. We
ended up at 32 DVs as our UBC checking algorithm uses a 32-bit integer to hold
a mask where each bit is associated with a DV and represents whether the UBCs
of that DV are all fulfilled. The 32 disturbance vectors with number of UBCs in
parentheses are given in Tbl. 1. The full listing of UBCs for these DVs is given
in Sect. A.

4.7 Exploiting overlapping conditions between DVs

As disturbance vectors within each type I or II are all shifted and rotated ver-
sions of each other, disturbance vectors may have local collisions at the same
positions and therefore may have some overlap in unavoidable bit conditions. In
this section we try to maximize the number of UBCs shared between DVs. In the
previous section we analyzed 32 disturbance vectors and found 7 to 15 UBCs per
DV with a total of 373 UBCs. The UBCs for each DV are in a row-reduced form
and this already leads to a significant overlap of UBCs: the 373 UBCs consist of
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Table 1. SHA-1 DV selection and number of UBCs

I(43,0) (11 UBCs) I(44,0) (12 UBCs) I(45,0) (12 UBCs) I(46,0) (11 UBCs)
I(46,2) (7 UBCs) I(47,0) (12 UBCs) I(47,2) (7 UBCs) I(48,0) (14 UBCs)
I(48,2) (7 UBCs) I(49,0) (13 UBCs) I(49,2) (8 UBCs) I(50,0) (14 UBCs)
I(50,2) (8 UBCs) I(51,0) (15 UBCs) I(51,2) (10 UBCs) I(52,0) (14 UBCs)

II(45,0) (11 UBCs) II(46,0) (11 UBCs) II(46,2) (7 UBCs) II(47,0) (14 UBCs)
II(48,0) (15 UBCs) II(49,0) (14 UBCs) II(49,2) (9 UBCs) II(50,0) (14 UBCs)
II(50,2) (9 UBCs) II(51,0) (14 UBCs) II(51,2) (9 UBCs) II(52,0) (15 UBCs)
II(53,0) (14 UBCs) II(54,0) (14 UBCs) II(55,0) (14 UBCs) II(56,0) (14 UBCs)

only 263 unique UBCs. E.g., UBC W39[4] ⊕W42[29] = 0 is shared among DVs
I(45,0), I(49,0) and II(48,0).

To minimize the amount of unique UBCs we use a greedy selection algorithm
to rebuild the set of UBCs per DV. Starting at an empty set of UBCs for each
DV, our greedy algorithm in each step first determines UBCs that each maximize
the number of DVs it belongs to but is not covered so far. It rates each of those
UBC first based on weight (minimal weight prefered), second based on number
of active bit positions (fewer bit positions prefered) and finally on the gap j − i
between the first Wi and the last Wj in the UBC. It selects the best rated UBC
and adds that to UBC sets of the DVs it belongs to but is not covered so far.
Finally, it will output a new set of UBCs for each DV that is equivalent to the
original set of UBCs, but for which there is significantly more overlap between
the UBC sets.

The output of improved sets of UBCs of our greedy selection algorithm for
the 32 DVs and original 373 UBCs found in the previous section can be found
in Sect. A. Using this approach we have further reduced the number of unique
UBCs from 263 to 156, where each new UBC belongs up to 7 DVs.

In Sect. 5.1 we further comment on the implementation of this greedy al-
gorithm that immediately outputs optimized C code for verifying UBCs for all
32 DVs simultaneously. This optimized C code is verified against a straightfor-
ward simple implementation using the original sets of 373 UBCs as described in
Sect. 5.2.

5 Implementation

This section describes the implementation of the UBC check in the SHA-1
Collision detection library. An anonymized version for review purposes only is
available at [Ano15]. This release contains the collision detection library that
can be used in other software in the directory ’lib’, the ‘src’ directory con-
tains a modified sha1sum command line tool that uses the library. Both can
be built by calling ‘make’ in the parent directory, additionally a special version
‘sha1dcsum partialcoll’ is also included that specifically detects example colli-
sions against reduced-round SHA-1 (as no full round SHA-1 collisions have been
found yet.) Furthermore, in the directory ‘tools’ we provide the following:
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– the original listing of UBCs per DV (directory ‘data/3565’);
– an example partial collision for SHA-1 (file ‘test/sha1 reducedsha coll.bin’);
– the greedy selection algorithm from Sect. 4.7 that optimizes the UBC sets

and outputs optimized code (directory ‘parse bitrel’), see Sect. 5.1;
– a program that verifies the optimized C code with optimized UBC sets

against manually-verifiable C code (directory ‘ubc check test’), see Sect. 5.2;

In Sect. 6 we discuss expected and measured performance of our improved SHA-1
collision detection.

5.1 Parse Bit Relations

This section describes the parse_bitrel program that implements the greedy
selection algorithm described in Sect. 4.7 and generates source code for an opti-
mized UBC check.

The greedy algorithm using the input UBC sets in directory ‘data/3565’
outputs improved UBC-sets for the DVs that have significant overlap. Another
equivalent perspective is looking at the unique UBCs and the set of DVs each
unique UBC belongs to, Sect. A lists the improved UBCs in this manner. The
program parse bitrel uses this perspective to generate optimized source code
for a function ubc_check which given an expanded message will return a mask
of which DVs had all their UBCs satisfied.

As noted in Sect. 4.6 we have selected 32 disturbance vectors. Thus keeping
track for which disturbance vectors a recompression is necessary conveniently
fits in a 32 bit integer mask C. Each bit position in C will be associated with a
particular DV T(k, b), where T represents the type I or II, and we have a named
constant of the form DV_T_K_B_bit that will have only that bit set. Initially C

will have all bits set and for each UBC that is not satisfied we will set bits to 0
at the bit positions of the DVs the UBC belongs to.

The UBCs for SHA-1 are of the form Wi[a] ⊕ Wj [b] = c as described in
Sect. 4.6. The outcome of this condition is translated into a mask with all bits
set or all bits cleared using the following C-code:

M=0-(((W[i]>>a)^(W[j]>>b))&1) if c = 1
M=(((W[i]>>a)^(W[j]>>b))&1)-1 if c = 0

Note that in both of these cases, if UBC is satisfied then M results in a value
with all bits set (−1 in 2’s complement) and 0 otherwise.

Say the UBC belongs to multiple disturbance vectors DV_T1_K1_B1_bit,
DV_T2_K2_B2_bit, . . ., DV_TN_KN_BN_bit, then a mask is formed that has all
other bits belonging to other DVs set to 0. This mask will be OR’ed into the
mask M above to force bits to the value 1 for all bit positions associated with
DVs not belonging to this unique UBC:

M | ~(DV_T1_K1_B1_bit | DV_T2_K2_B2_bit | ... | DV_TN_KN_BN_bit).

In effect, only the bit positions for DVs the unique UBC belongs to can be 0
which they will be if and only if the unique UBC is not satisfied. Hence, this last
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mask will be AND’ed into the variable C to conditionally clear the bits associated
with these DVs if the UBC is not satisfied. For example, the following clause is
one of the clauses generated by the parse_bitrel:

C &= ((((W[46]>>4)^(W[49]>>29))&1)-1) |

~( DV_I_46_0_bit | DV_I_48_0_bit | DV_I_50_0_bit |

DV_I_52_0_bit | DV_II_50_0_bit | DV_II_55_0_bit );

The ubc_check function thus consists of initializing the variable C and state-
ments for each unique UBC to update C as described above. The parse bitrel

program combines these clauses into a bit-wise AND of all the individual state-
ments and generates the ubc check function. The above example works for all
cases. However, we can produce slightly better statements with fewer operations
in certain cases which are omitted here, but can be found in the public source
code.

5.2 UBCCheckTest: Correctness testing

This section describes the program ubc check test for correctness testing. The
above program parse bitrel will output optimized C-code for ubc check that
will verify all UBCs and output a mask whose bits mark whether a recompres-
sion for a particular DV is needed. For testing purposes one would like to have
many test cases to run it on, however there are no SHA-1 example collisions
at all. Hence, great care must be taken to ensure code correctness of the colli-
sion detection library. For this purpose we let parse_bitrel also output C-code
for a function ubc_check_verify that will be equivalent to ubc_check but will
be based on the original non-improved UBC-sets and use straightforward code
that can be manually verified for correctness. After manual verification we know
ubc_check_verify to be correct.

To ensure that ubc_check is correct we test its functional equivalence to the
correct ubc_check_verify. As each individual UBC statement depends on only
2 expanded message bits Wi[a] and Wi[b], if an error exists it will trigger with
probability at least 0.25 for random values. Unfortunately, such an error may be
masked by other UBCs not being satisfied and forcing the bit positions in C with
possible errors to 0 anyway. To ensure any error will reveal itself, we feed 224

random inputs to both ubc_check and ubc_check_verify and verify whether
their outputs are identical. As the highest number of UBCs of a DV is 15, if an
error is located in the code of one of these UBCs we can still expect that out of
the 224 samples we will have approximately 210 cases where all other UBCs for
this DV are satisfied. In these cases the output bit for this DV of ubc check and
ubc check verify equals the output for the target UBC and the error will be
exposed with probability at least 0.25 for each of these 210 cases. The probability
that an error with probability at least 0.25 will not occur in 210 random inputs
is at most 0.751024 ≈ 2−425.

13



Table 2. Comparison of the performance of SHA-1’s compression function and our
ubc check function. Units given in number of single message block operations per
second. ubc check takes 72% to 101% of the time of SHA1Compress.

SHA1Compress ubc_check

gcc x86-64 4.217e06 5.451e06 (0.77×)
msvc x86-64 3.624e06 4.689e06 (0.77×)
msvc x86-32 3.099e06 4.326e06 (0.72×)
gcc arm 5.504e05 5.448e05 (1.01×)

6 Performance expectations and measurements

In this section we discuss the expected performance increase and we compare
some measured speeds. We have compiled and tested the code on different com-
piler and processor technologies. The performance of the implementation was
compiled with both GCC (gcc) and the Microsoft Visual Studio C++ compiler
(msvc), when compiled with gcc the code was run on Ubuntu 14.04 and when
compiled with msvc the code was run on windows 8.1. For gcc and msvc both
x86-32 and x86-64, the code was run on an Intel Xeon L5520 running at 2.26GHz.
For gcc arm, the code was run on a Raspberry Pi 2 running Raspbian with a
ARM Cortex-A7 running at 900Mhz.

The performance numbers below vary a bit between different compiler and
processor technologies due to different available processor instructions and differ-
ent compiler optimizations. Such variances for a given platform could be elim-
inated using assembly code, however such code is very hard to maintain and
therefore not considerated for our project. Due to these variances the shown
results should be taken as indicative speed improvements for other compilers
and/or compiler optimization flags and/or processors.

Using UBCs, we will only do a recompress for a given DV if all its UBCs are
satisfied. Let S be the set of DVs and Udv be the set of UBCs for dv ∈ S. Then
the probability pdv that a random message block satisfies all UBCs associated
with dv ∈ S is pdv = 2−|Udv|. Hence, the expected cost of the recompressions for
dv ∈ S is pdv × n× SHA1Compress, where n is the number of message blocks for
a given message, or equivalently pdv × SHA-1.

The expected total cost of all recompressions for a given message of n message
blocks is therefore

(∑
dv∈S pdv

)
×SHA-1. For the 32 selected disturbance vectors

given in Tbl. 1 together with their number of UBCs, we found that
∑
dv∈S pdv ≈

0.0495.
Therefore using UBCs we have reduced the cost of recompressions from 32×

SHA-1 to ≈ 0.0495× SHA-1, a speed improvement of a factor of about 646. Also,
this implies that on average we can expect to do one recompression about every
20.2 message blocks. However, the total cost of collision detection includes the
cost of SHA-1 as well as the cost of verifying the UBCs.

We have measured the cost of ubc_check in comparison to SHA1Compress in
function calls per second in Tbl. 2. These figures were determined by measuring
the time of 226 function calls on already prepared random inputs. The relative
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Table 3. Performance numbers for message block computations of the SHA-1 Message
Digest algorithm, units given in number of 2KiB messages hashed per second. Collision
detection using UBCs is 1.59 to 1.96 times slower than SHA-1, however without using
UBCs collision detection is 21.68 to 36.36 times slower than SHA-1.

SHA-1 SHA-1 DC UBC Check SHA-1 DC no UBC Check

gcc x86-64 1.095e05 5.574e04 (1.96×) 3.567e03 (30.69×)
msvc x86-64 1.035e05 6.515e04 (1.59×) 2.848e03 (36.35×)
msvc x86-32 8.500e04 4.346e04 (1.96×) 2.642e03 (32.17×)
gcc arm 1.368e04 7.054e03 (1.94×) 6.311e02 (21.68×)

performance ratio ubc check/ SHA1Compress is given in parentheses. We have
measured that ubc check takes about 72% to 101% of the time of SHA1Compress
depending on the platform. Let denote this ratio as u then we can expect that the
total cost of collision detection using UBCs is approximately (1 + u+ 0.0495)×
SHA-1. Hence, this leads to an estimated cost factor of about 1.77 to 2.06 of
collision detection relative to the original SHA-1. Note that we expect the actual
figures to be slightly lower as both the cost of the recompressions and the cost
of ubc check are expressed relatively to SHA1Compress and not to SHA-1 which
actually includes some more overhead. This shows that the UBC check almost
completely eliminates the amount of time doing full disturbance vector checks
and the performance loss is purely spent by time in the ubc check function itself.
Thus using UBCs we expect collision detection to be possible in around double
the time it takes to compute a single hash digest. Overall the relative timings of
ubc check shows that we can expect drastic speedups from using unavoidable
conditions.

The analysis of the internal operations of the SHA-1 hash and collision de-
tection ignores a great deal of overhead that the algorithm may incur. So it is
necessary to do a more detailed performance analysis of the full collision detec-
tion algorithm. The scaling of this algorithm does not depend on the length of
the input varying. So a reference timing for hashing random 2 kilobyte messages
was used. This number was chosen because it is representative of the order of
magnitude of bytes that must be hashed while verifying a single RSA certifi-
cate. Tbl. 3 shows the overall function calls per second count for random 2KiB
messages. We timed the original SHA-1 without collision detection, SHA-1 with
collision detection with the UBC optimizations, and finally SHA-1 with collision
detection but without using UBCs. The presented timings were determined by
running the measured function on an already prepared random input in a loop
with 512 iterations, and averaging these timings for 128 different random inputs.
Note that these are preliminary performance numbers and have limited precision
and more accurate numbers will be provided in later drafts of this paper.

As in the previous table the relative performance to SHA-1 is given in paren-
theses. For example, when compiled with gcc x86-64 the SHA-1 digest algorithm
with hash collision detection but without the UBC check optimizations takes
over 30 times the amount of time it takes to run the original digest algorithm.
While adding the UBC check allows the collision detection code to run in just
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under double the time. This table shows that while adding the straight forward
collision detection code increases the time of a SHA-1 computation by around
30 times, using the UBC check optimizations allows a SHA-1 computation with
collision detection to be run in just over double the time.
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A Unavoidable bit conditions

The tables below list the UBCs we have found in Sect. 4.6 and after processing
to exploit their overlap as in Sect. 4.7. Instead of listing DVs with their UBCs,
we list the UBCs together with the list of DVs they belong to.

Table 4: Overlapping unavoidable bit conditions

UBC List of DVs the UBC belongs to
W44[29]⊕W45[29] = 0 I(48,0) I(51,0) I(52,0) II(45,0) II(46,0) II(50,0) II(51,0)
W49[29]⊕W50[29] = 0 I(46,0) II(45,0) II(50,0) II(51,0) II(55,0) II(56,0)
W48[29]⊕W49[29] = 0 I(45,0) I(52,0) II(49,0) II(50,0) II(54,0) II(55,0)
W47[29]⊕W48[29] = 0 I(44,0) I(51,0) II(48,0) II(49,0) II(53,0) II(54,0)
W46[29]⊕W47[29] = 0 I(43,0) I(50,0) II(47,0) II(48,0) II(52,0) II(53,0)
W45[29]⊕W46[29] = 0 I(49,0) I(52,0) II(46,0) II(47,0) II(51,0) II(52,0)
W43[29]⊕W44[29] = 0 I(47,0) I(50,0) I(51,0) II(45,0) II(49,0) II(50,0)
W40[29]⊕W41[29] = 0 I(44,0) I(47,0) I(48,0) II(46,0) II(47,0) II(56,0)
W47[4]⊕W50[29] = 0 I(47,0) I(49,0) I(51,0) II(45,0) II(51,0) II(56,0)
W46[4]⊕W49[29] = 0 I(46,0) I(48,0) I(50,0) I(52,0) II(50,0) II(55,0)
W45[4]⊕W48[29] = 0 I(45,0) I(47,0) I(49,0) I(51,0) II(49,0) II(54,0)
W44[4]⊕W47[29] = 0 I(44,0) I(46,0) I(48,0) I(50,0) II(48,0) II(53,0)
W43[4]⊕W46[29] = 0 I(43,0) I(45,0) I(47,0) I(49,0) II(47,0) II(52,0)
W42[4]⊕W45[29] = 0 I(44,0) I(46,0) I(48,0) I(52,0) II(46,0) II(51,0)
W41[4]⊕W44[29] = 0 I(43,0) I(45,0) I(47,0) I(51,0) II(45,0) II(50,0)
W54[29]⊕W55[29] = 0 I(51,0) II(47,0) II(50,0) II(55,0) II(56,0)
W53[29]⊕W54[29] = 0 I(50,0) II(46,0) II(49,0) II(54,0) II(55,0)
W52[29]⊕W53[29] = 0 I(49,0) II(45,0) II(48,0) II(53,0) II(54,0)
W50[29]⊕W51[29] = 0 I(47,0) II(46,0) II(51,0) II(52,0) II(56,0)
W42[29]⊕W43[29] = 0 I(46,0) I(49,0) I(50,0) II(48,0) II(49,0)
W41[29]⊕W42[29] = 0 I(45,0) I(48,0) I(49,0) II(47,0) II(48,0)
W50[4]⊕W53[29] = 0 I(50,0) I(52,0) II(46,0) II(48,0) II(54,0)
W49[4]⊕W52[29] = 0 I(49,0) I(51,0) II(45,0) II(47,0) II(53,0)
W48[4]⊕W51[29] = 0 I(48,0) I(50,0) I(52,0) II(46,0) II(52,0)
W40[4]⊕W43[29] = 0 I(44,0) I(46,0) I(50,0) II(49,0) II(56,0)
W39[4]⊕W42[29] = 0 I(43,0) I(45,0) I(49,0) II(48,0) II(55,0)
W38[4]⊕W41[29] = 0 I(44,0) I(48,0) II(47,0) II(54,0) II(56,0)
W37[4]⊕W40[29] = 0 I(43,0) I(47,0) II(46,0) II(53,0) II(55,0)
W55[29]⊕W56[29] = 0 I(52,0) II(48,0) II(51,0) II(56,0)
W51[29]⊕W52[29] = 0 I(48,0) II(47,0) II(52,0) II(53,0)
W52[4]⊕W55[29] = 0 I(52,0) II(48,0) II(50,0) II(56,0)
W51[4]⊕W54[29] = 0 I(51,0) II(47,0) II(49,0) II(55,0)
W36[4]⊕W40[29] = 0 I(46,0) I(49,0) II(45,0) II(48,0)
W45[6]⊕W47[6] = 0 I(47,2) I(49,2) I(51,2)
W44[6]⊕W46[6] = 0 I(46,2) I(48,2) I(50,2)
W35[4]⊕W39[29] = 0 I(45,0) I(48,0) II(47,0)
W53[29]⊕W56[29] = 1 I(52,0) II(48,0) II(49,0)
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W51[29]⊕W54[29] = 1 I(50,0) II(46,0) II(47,0)
W50[29]⊕W52[29] = 1 I(49,0) I(51,0) II(45,0)
W49[29]⊕W51[29] = 1 I(48,0) I(50,0) I(52,0)
W48[29]⊕W50[29] = 1 I(47,0) I(49,0) I(51,0)
W47[29]⊕W49[29] = 1 I(46,0) I(48,0) I(50,0)
W46[29]⊕W48[29] = 1 I(45,0) I(47,0) I(49,0)
W45[29]⊕W47[29] = 1 I(44,0) I(46,0) I(48,0)
W44[29]⊕W46[29] = 1 I(43,0) I(45,0) I(47,0)
W40[4]⊕W42[4] = 1 I(44,0) I(46,0) II(56,0)
W39[4]⊕W41[4] = 1 I(43,0) I(45,0) II(55,0)
W38[4]⊕W40[4] = 1 I(44,0) II(54,0) II(56,0)
W37[4]⊕W39[4] = 1 I(43,0) II(53,0) II(55,0)
W41[1]⊕W42[6] = 1 I(48,2) II(46,2) II(51,2)
W40[1]⊕W41[6] = 1 I(47,2) I(51,2) II(50,2)
W39[1]⊕W40[6] = 1 I(46,2) I(50,2) II(49,2)
W36[1]⊕W37[6] = 1 I(47,2) I(50,2) II(46,2)
W58[29]⊕W59[29] = 0 II(51,0) II(54,0)
W57[29]⊕W58[29] = 0 II(50,0) II(53,0)
W56[29]⊕W57[29] = 0 II(49,0) II(52,0)
W48[6]⊕W50[6] = 0 I(50,2) II(46,2)
W47[6]⊕W49[6] = 0 I(49,2) I(51,2)
W46[6]⊕W48[6] = 0 I(48,2) I(50,2)
W43[6]⊕W45[6] = 0 I(47,2) I(49,2)
W42[6]⊕W44[6] = 0 I(46,2) I(48,2)
W50[6]⊕W51[1] = 0 I(50,2) II(46,2)
W47[6]⊕W48[1] = 0 I(47,2) II(51,2)
W46[6]⊕W47[1] = 0 I(46,2) II(50,2)
W42[6]⊕W43[1] = 0 II(46,2) II(51,2)
W41[6]⊕W42[1] = 0 I(51,2) II(50,2)
W40[6]⊕W41[1] = 0 I(50,2) II(49,2)
W56[4]⊕W59[29] = 0 II(52,0) II(54,0)
W55[4]⊕W58[29] = 0 II(51,0) II(53,0)
W54[4]⊕W57[29] = 0 II(50,0) II(52,0)
W53[4]⊕W56[29] = 0 II(49,0) II(51,0)
W39[4]⊕W43[29] = 0 I(52,0) II(51,0)
W38[4]⊕W42[29] = 0 I(51,0) II(50,0)
W37[4]⊕W41[29] = 0 I(50,0) II(49,0)
W35[3]⊕W39[28] = 0 I(51,0) II(47,0)
W63[0]⊕W64[5] = 1 I(48,0) II(48,0)
W62[0]⊕W63[5] = 1 I(47,0) II(47,0)
W61[0]⊕W62[5] = 1 I(46,0) II(46,0)
W60[0]⊕W61[5] = 1 I(45,0) II(45,0)
W56[29]⊕W59[29] = 1 II(51,0) II(52,0)
W48[29]⊕W55[29] = 1 I(51,0) I(52,0)
W36[4]⊕W38[4] = 1 II(52,0) II(54,0)
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W63[1]⊕W64[6] = 1 I(45,0) II(45,0)
W61[2]⊕W62[7] = 1 I(46,2) II(46,2)
W44[1]⊕W45[6] = 1 I(51,2) II(49,2)
W37[1]⊕W38[6] = 1 I(48,2) I(51,2)
W35[1]⊕W36[6] = 1 I(46,2) I(49,2)

Table 5: Remaining unavoidable bit conditions

UBC DV of UBC UBC DV of UBC
W59[29]⊕W60[29] = 0 II(52,0) W53[6]⊕W55[6] = 0 II(51,2)
W52[6]⊕W54[6] = 0 II(50,2) W51[6]⊕W53[6] = 0 II(49,2)
W49[6]⊕W51[6] = 0 I(51,2) W41[6]⊕W43[6] = 0 I(47,2)
W40[6]⊕W42[6] = 0 I(46,2) W37[1]⊕W37[6] = 0 I(51,2)
W55[6]⊕W56[1] = 0 II(51,2) W54[6]⊕W55[1] = 0 II(50,2)
W53[6]⊕W54[1] = 0 II(49,2) W51[6]⊕W52[1] = 0 I(51,2)
W49[6]⊕W50[1] = 0 I(49,2) W48[6]⊕W49[1] = 0 I(48,2)
W45[6]⊕W46[1] = 0 II(49,2) W39[6]⊕W40[1] = 0 I(49,2)
W57[4]⊕W59[29] = 0 II(55,0) W60[4]⊕W64[29] = 0 II(56,0)
W60[5]⊕W64[30] = 0 I(44,0) W59[4]⊕W63[29] = 0 II(55,0)
W59[5]⊕W63[30] = 0 I(43,0) W58[4]⊕W62[29] = 0 II(54,0)
W57[4]⊕W61[29] = 0 II(53,0) W44[3]⊕W48[28] = 0 II(56,0)
W44[4]⊕W48[29] = 0 II(56,0) W43[3]⊕W47[28] = 0 II(55,0)
W43[4]⊕W47[29] = 0 II(55,0) W42[3]⊕W46[28] = 0 II(54,0)
W42[4]⊕W46[29] = 0 II(54,0) W41[3]⊕W45[28] = 0 II(53,0)
W41[4]⊕W45[29] = 0 II(53,0) W40[3]⊕W44[28] = 0 II(52,0)
W40[4]⊕W44[29] = 0 II(52,0) W39[3]⊕W43[28] = 0 II(51,0)
W39[5]⊕W43[30] = 0 II(51,2) W38[3]⊕W42[28] = 0 II(50,0)
W38[5]⊕W42[30] = 0 II(50,2) W37[3]⊕W41[28] = 0 II(49,0)
W37[5]⊕W41[30] = 0 II(49,2) W36[3]⊕W40[28] = 0 II(48,0)
W35[5]⊕W39[30] = 0 I(51,2) W59[0]⊕W64[30] = 1 I(44,0)
W58[0]⊕W63[30] = 1 I(43,0) W58[29]⊕W61[29] = 1 II(53,0)
W55[29]⊕W58[29] = 1 II(50,0) W52[1]⊕W56[1] = 1 II(51,2)
W51[1]⊕W55[1] = 1 II(50,2) W50[1]⊕W54[1] = 1 II(49,2)
W47[1]⊕W51[1] = 1 II(46,2) W46[1]⊕W48[1] = 1 II(51,2)
W45[1]⊕W47[1] = 1 II(50,2) W43[1]⊕W51[1] = 1 I(50,2)
W42[1]⊕W50[1] = 1 I(49,2) W38[0]⊕W43[30] = 1 II(51,2)
W38[1]⊕W40[1] = 1 I(49,2) W38[4]⊕W39[4] = 1 I(52,0)
W37[0]⊕W42[30] = 1 II(50,2) W37[4]⊕W38[4] = 1 I(51,0)
W36[0]⊕W41[30] = 1 II(49,2) W36[4]⊕W37[4] = 1 I(50,0)
W63[2]⊕W64[7] = 1 I(48,2) W62[1]⊕W63[6] = 1 I(44,0)
W62[2]⊕W63[7] = 1 I(47,2) W61[1]⊕W62[6] = 1 I(43,0)
W39[30]⊕W44[28] = 1 II(52,0) W38[30]⊕W43[28] = 1 II(51,0)
W37[30]⊕W42[28] = 1 II(50,0) W36[30]⊕W41[28] = 1 II(49,0)
W35[30]⊕W40[28] = 1 II(48,0)
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