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Abstract

Stochastic convex optimization, where the objective is theexpectation of a random convex function,
is an important and widely used method with numerous applications in machine learning, statistics, op-
erations research and other areas. We study the complexity of stochastic convex optimization given only
statistical query(SQ) access to the objective function. We show that well-known and popular meth-
ods, including first-order iterative methods and polynomial-time methods, can be implemented using
only statistical queries. For many cases of interest we derive nearly matching upper and lower bounds
on the estimation (sample) complexity including linear optimization in the most general setting. We
then present several consequences for machine learning, differential privacy and proving concrete lower
bounds on the power of convex optimization based methods.

A new technical ingredient of our work is SQ algorithms for estimating the mean vector of a distri-
bution over vectors inRd with optimal estimation complexity. This is a natural problem and we show
that our solutions can be used to get substantially improvedSQ versions of Perceptron and other online
algorithms for learning halfspaces.
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Información y Coordinación en Redes (ICM/FIC P10-024F) at Universidad de Chile.

http://arxiv.org/abs/1512.09170v1


1 Introduction

In stochastic convex optimization the goal is to minimize a convex functionF (x) = Ew[f(x,w)] over
a convex setK ⊂ R

d, wherew is a random variable distributed according to some distribution D over
domainW and eachf(x,w) is convex inx. The optimization is based on i.i.d. samplesw1, w2, . . . , wn of
w. Numerous central problems in machine learning and statistics are special cases of this general setting
with a vast literature devoted to techniques for solving variants of this problem (e.g.[84, 79]). It is usually
assumed thatK is “known” to the algorithm (or in some cases given via a sufficiently strong oracle) and
the key challenge is understanding how to cope with estimation errors arising from the stochastic nature of
information aboutF (x).

Here we consider the complexity of solving stochastic convex minimization problems by a restricted
class of algorithms, referred to asstatistical (query) algorithms. Statistical query (SQ) algorithms, defined
by Kearns [55] in the context of PAC learning and by Feldman etal. [36] for general problems on inputs
sampled i.i.d. from distributions, are algorithms that canbe implemented using estimates of the expectation
of any given function on a sample drawn randomly from the input distributionD instead of direct access
to random samples. Such access is abstracted using astatistical query oraclethat given a query function
φ : W → [−1, 1] returns an estimate ofEw[φ(w)] within some toleranceτ . We will refer to the number
of samples sufficient to estimate the expectation of each query of a SQ algorithm with some fixed constant
confidence as itsestimation complexity(often1/τ2) and the number of queries as itsquery complexity.

Reducing data access to estimation of simple expectations has a variety of useful properties. First, a
SQ algorithm can be used to automatically derive an algorithm with additional useful properties such as
noise-tolerance [55], differential-privacy [15, 54], distributed computation [20, 5], evolvability [33, 34] and
generalization in adaptive data analysis [32]. This leads to the general question of which analyses can be
decomposed in this way and what are the overheads of doing so (as compared to using the samples in an
unrestricted way).

The second important property of statistical algorithms isthat it is possible to prove information-
theoretic lower bounds on the complexity of any statisticalalgorithm that solves a given problem. From
this perspective, statistical algorithms for solving stochastic convex optimization allow one to convert an
optimization algorithm into a lower bound on using convex optimization to solve the problem. For many
problems in machine learning and computer science, convex optimization gives state-of-the-art results and
therefore lower bounds against such techniques are a subject of significant research interest. Indeed, in re-
cent years this area has been particularly active with majorprogress made on several long-standing problems
(e.g.[38, 77, 66, 57]). It should be pointed out that the resultinglower bounds areconcretein the sense that
they are structural results that do not rely on any oracles (see Section 6.4 for more details).

One of the most successful approaches for solving convex programs in theory and practice is iterative
first-order methods, namely techniques that rely on updating the current pointxt using the gradient ofF at
xt. It can be immediately observed that for everyx, ∇F (x) = Ew[∇f(x,w)] and hence it is sufficient to
estimate expected gradients to some sufficiently high accuracy in order to implement such algorithms (we
are only seeking an approximate optimum anyway). The accuracy corresponds to the number of samples
(or estimation complexity) and is the key measure of complexity for SQ algorithms. However, to the best
of our knowledge, the estimation complexity for specific SQ implementations of first-order methods has
not been previously addressed. This is in contrast to the rich and nuanced understanding of the sample and
computational complexity of solving such problems given unrestricted access to samples.

1.1 Overview of Results

In this work we give SQ algorithms for a number of the commonlyconsidered stochastic convex optimiza-
tion problems. We also prove that in a range of settings our implementations achieve nearly optimal bounds.
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The key new technical ingredients are algorithms for estimating the mean vector of a distribution over vec-
tors inRd, a natural problem of independent interest. We then demonstrate several applications of our results
to obtain new algorithms and lower bounds.

1.1.1 Linear optimization via mean estimation

We start with the linear optimization case which is a naturalspecial case and also the basis of our im-
plementations of first-order methods. In this settingW ⊆ R

d and f(x,w) = 〈x,w〉. HenceF (x) =
〈x, w̄〉, wherew̄ = Ew[w]. This reduces the problem to finding a sufficiently accurate estimate ofw̄.
Specifically, for a given error parameterε, it is sufficient to find a vector̃w, such that for everyx ∈ K,
|〈x, w̄〉− 〈x, w̃〉| ≤ ε. Given such an estimatẽw, we can solve the original problem with error of at most2ε
by solvingminx∈K〈x, w̃〉.

An obvious way to estimate the high-dimensional mean using SQs is to simply estimate each of the
coordinates of the mean vector using a separate SQ: that isE[wi/Bi], where[−Bi, Bi] is the range of
wi. Unfortunately, even in the most standard setting, where both K andW areℓ2 unit balls, this method
requires accuracy that scales with1/

√
d (or estimation complexity that scales linearly withd). In contrast,

bounds obtained using samples are dimension-independent making this SQ implementation unsuitable for
high-dimensional applications. Estimation of high-dimensional means for various distributions is (arguably)
an even more basic question than stochastic optimization; yet we are not aware of any prior analysis of its
statistical query complexity. In particular, SQ implementation of all algorithms for learning halfspaces
(including the most basic Perceptron) require estimation of high-dimensional means but known analyses
rely on inefficient coordinate-wise estimation (e.g.[17, 14, 4]).

Here we aim to address the high-dimensional mean estimationproblem in detail and, specifically, to
investigate whether the SQ estimation complexity is different from sample complexity of the problem. The
first challenge here is that even the sample complexity of mean estimation depends in an involved way on
the geometry ofK andW and in this generality is not fully understood (cf. [71]). We therefore focus our
attention on the most commonly studied setting, whereK is a unit ball inℓp norm andW is the unit ball in
ℓq norm forp ∈ [1,∞] and1/p + 1/q = 1 (general radii can be reduced to this setting by scaling). This
is equivalent to requiring that‖w̃ − w̄‖q ≤ ε for a random variablew supported on the unitℓq ball and we
refer to it asℓq mean estimation. The sample complexity ofℓq mean estimation depends both onq and the
relationship betweend andε. We describe the known bounds in Table 1.1.1 (we are not awareof a reference
stating the bounds in this form for allq. They are implicit in the literature and we provide the details in
Appendix B.) These bounds are tight (up to constants) and areall achieved by using the empirical mean of
the samples to estimatēw.

In a nutshell, we give tight (up to a polylogarithmic ind factor) bounds on the SQ complexity ofℓq
mean estimation for allq ∈ [1,∞]. These bounds match (up to a polylogarithmic ind factor) the sample
complexity of the problem. These upper bounds are based on several different algorithms.

• For q = ∞ coordinate-wise estimation gives the desired guarantees.

• For q = 2 we show that Kashin’s representation of vectors introducedby Lyubarskii and Vershynin
[65] can be used to obtain optimal (up to a constant) estimation complexity ofO(1/ε2) with just
2d non-adaptive queries. We also give a randomized algorithm based on estimating the truncated
coefficients of the mean in a randomly rotated basis. The algorithm has slightly worseO(log(1/ε)/ε2)
estimation complexity but its analysis is simpler and self-contained.

• Forq ∈ (2,∞) we use decomposition of the samples intolog d “rings” in which non-zero coefficients
have low dynamic range. For each ring we combineℓ2 andℓ∞ estimation to ensure low error inℓq
and optimal estimation complexity.
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q SQ estimation complexity Sample

Upper Bound Lower bound complexity

[1, 2) O

(

min

{

d
2
q −1

ε2
,
(

log d
ε

)p
})

Ω̃

(

min

{

d
2
q−1

ε2
, 1
εp log d

})

Θ

(

min

{

d
2
q−1

ε2
, 1
εp

})

2 O(1/ε2) Ω̃(1/(ε2 log d)) Θ(1/ε2)

(2,∞) O((log d/ε)2) Ω(1/ε2) Θ(1/ε2)

∞ O(1/ε2) Ω(1/ε2) Θ(log d/ε2)

Table 1: Bounds onℓq mean estimation and linear optimization overℓp ball. Upper bounds use at most
3d log d queries. Lower bounds apply to all algorithms using poly(d/ε) queries.

• For q ∈ [1, 2) there are two regimes. One of the upper bounds is obtained viaa reduction toℓ2 case
(which introduces ad dependent factor). For the second regime we again use a decomposition into
“rings” of low dynamic range. For each “ring” we use coordinate-wise estimation and then sparsify
the estimate by removing small coefficients. The analysis ofthis algorithm is fairly delicate and
requires using statistical queries in which accuracy takesinto account the variance of the random
variable (modeled by VSTAT oracle from [36]).

The nearly tight lower bounds are proved using the techniquerecently introduced in [37]. We prove it for
the (potentially simpler) linear optimization problem. Weremark that lower bounds on sample complexity
do not imply lower bounds on estimation complexity since a SQalgorithm can use many adaptively chosen
queries.

We then consider the case of generalK with W = conv(K∗,−K∗) (which corresponds to normalizing
the range of linear functions in the support of the distribution). Here we show that for any polytopeW the
estimation complexity is stillO(1/ε2) but the number of queries grows linearly with the number of faces.
More generally, the estimation complexity ofO(d/ε2) can be achieved for anyK. The algorithm relies on
knowing John’s ellipsoid [49] forW and therefore depends onK. Designing a single algorithm that given
a sufficiently strong oracle forK (such as a separation oracle) can achieve the same estimation complexity
for all K is an interesting open problem. This upper bound is nearly tight since even forW being theℓ1 ball
we give a lower bound of̃Ω(d/ε2).

1.1.2 Gradient descent and friends

The analysis of the linear case above gives us the basis for tackling first-order optimization methods for the
general convex case. That is, we can now obtain an estimate ofthe expected gradient at each iteration but we
still need to ensure that estimation errors from different iterations do not accumulate. Luckily, for this we
can build on the study of the performance of first-order methods with inexact oracles. Methods of this type
have a long history (e.g.[72, 82]), however some of our methods of choice have only been studied recently.

We study the traditional setups of convex optimization: non-smooth, smooth and strongly convex. For
the two first classes of problems algorithms use global approximation of the gradient on the feasible domain,
which is undesirable in general; however, for the strongly convex case we can show that an oracle introduced
by Devolder et al. [25] only requireslocal approximation of the gradient, which leads to improved estima-
tion complexity bounds. We note that smoothness and strong convexity are required only for the expected
objective and not necessarily for each function in the support of the distribution.
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For the non-smooth case we analyze and apply the classic mirror-descent method [68], for the smooth
case we rely on the analysis by d’Aspremont [23] of an inexactvariant of Nesterov’s accelerated method
[69], and for the strongly convex case we use the recent results by Devolder et al. [24] on the inexact dual
gradient method. We summarize our results for theℓ2 norm in Table 1.1.2. Our results for the mirror-descent
and Nesterov’s algorithm apply in more general settings (e.g.,ℓp norms): we refer the reader to Section 4 for
the detailed statement of results. In Section 4.3 we also demonstrate and discuss the implications of our
results for the well-studied generalized linear regression problems.

Objective
Inexact gradient

method
Query complexity

Estimation
complexity

Non-smooth Mirror-descent O
(

d ·
(

L0R
ε

)2
)

O
(

(

L0R
ε

)2
)

Smooth Nesterov O

(

d ·
√

L1R2

ε

)

O
(

(

L0R
ε

)2
)

Strongly convex
non-smooth

Dual gradient O
(

d · L2
0

εκ log
(

L0R
ε

)

)

O
(

L2
0

εκ

)

Strongly
convex smooth

Dual gradient O
(

d · L1
κ log

(

L1R
ε

))

O
(

L2
0

εκ

)

Table 2: Upper bounds for inexact gradient methods in the stochasticℓ2-setup. HereR is the Euclidean
radius of the domain,L0 is the Lipschitz constant of all functions in the support of the distribution.L1 is
the Lipschitz constant of the gradient andκ is the strong convexity parameter for the expected objective.

1.1.3 Optimization of bounded-range functions

The estimation complexity bounds obtained for gradient descent-based methods depend polynomially on
the norm of the gradient of each function in the support ofW and the rad ius ofK (unless the functions
are strongly convex). In some cases such bounds are not explicitly available (or too large) and instead we
have a bound on the range off(x,w) for all w ∈ W andx ∈ K. This is a natural setting for stochastic
optimization (and statistical algorithms, in particular)since even estimating the value of a given solutionx
with high probability and any desired accuracy from samplesrequires some assumptions about the range of
most functions.

A bound on range, say|f(x,w)| ≤ 1 for simplicity, implies that for everyx, a single SQ for query func-
tion f(x,w) with toleranceτ gives the valuẽF (x) such that|F (x) − F̃ (x)| ≤ τ . This, by definition is the
τ -approximate value (or zero-order) oracle forF (x). It was proved by Nemirovsky and Yudin [68] and also
by Grötschel et al. [42] (who refer to such oracle asweak evaluation oracle) thatτ -approximate value ora-
cle suffices toε-minimizeF (x) overK with running time and1/τ being polynomial ind, 1/ε, log(R1/R0),
whereBd

2(R0) ⊆ K ⊆ Bd
2(R1).1 The analysis in [68, 42] is relatively involved and does not provide explicit

bounds onτ .
Nemirovsky and Yudin [68] also prove that even linear optimization overℓ2 ball of radius 1 with a

τ -approximate value oracle requiresτ = Ω̃(ε/d) for any polynomial-time algorithm. Together with our
results this implies that aτ -approximate value oracle is strictly weaker than STAT(τ).

Here we observe that a simple extension of the random walk approach of Kalai and Vempala [51] and
Lovász and Vempala [62] can be used with any(ε/d)-approximate value oracle forF (x) to ε-optimize in
polynomial time. This approach was also (independently) used in a recent work of Belloni et al. [9] who
provide a detailed analysis of the running time and query complexity.

1Naturally, assuming some conditions on access toK such as a membership or a separation oracle. See Thm. 2.2.15 in [60] for
a discussion.
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We are not constrained to the value information and we give a more efficient algorithm for this setting
that is based on the center-of-gravity method and a generalization of our gradient estimation technique to
asymmetric bodies. The algorithm usesO(d2 log(1/ε)) queries of estimation complexityO(d2/ε2). The
reason generalization to asymmetric bodies is necessary isthat in the previous analysis the assumptions
imply that gradients have bounded norm over−K and, in particular, over some symmetric body that contains
K. While the exact center-of-gravity method is not computationally efficient, we show that the approximate
version introduced by Bertsimas and Vempala [12] suffices for our purposes.

1.2 Applications

We now highlight several applications of our results. Additional results can be easily derived in a variety of
other contexts that rely on statistical queries (such as evolvability [90], adaptive data analysis [32, 31] and
distributed data analysis [20]).

1.2.1 Online Learning of Halfspaces using SQs

Our high-dimensional mean estimation algorithms allow us to revisit SQ implementations of online algo-
rithms for learning halfspaces, such as the classic Perceptron and Winnow algorithms. These algorithms
are based on updating the weight vector iteratively using incorrectly classified examples. The convergence
analysis of such algorithms relies on some notion of margin by which positive examples can be separated
from the negative ones.

A natural way to implement such an algorithm using SQs is to use the mean vector of all positive (or
negative) counterexamples to update the weight vector. By linearity of expectation, the true mean vector is
still a positive (or correspondingly, negative) counterexample and it still satisfies the same margin condition.
This approach was used by Bylander [17] and Blum et al. [14] toobtain algorithms tolerant to random
classification noise for learning halfspaces and by Blum et al. [15] to obtain a private version of Perceptron.
The analyses in these results use the simple coordinate-wise estimation of the mean and incur an additional
factord in their sample complexity. It is easy to see that to approximately preserve the marginγ it suffices
to estimate the mean of some distribution over anℓq ball with ℓq error ofγ/2. We can therefore plug our
mean estimation algorithms to eliminate the dependence on the dimension from these implementations (or
in some cases have only logarithmic dependence). In particular, the estimation complexity of our algorithms
is essentially the same as the sample complexity of PAC versions of these online algorithms. Note that
such improvement is particularly important since Perceptron is usually used with a kernel (or in other high-
dimensional space) and Winnow’s main property is the logarithmic dependence of its sample complexity on
the dimension.

We note that a variant of the Perceptron algorithm referred to as Margin Perceptron outputs a halfspace
that approximately maximizes the margin [3]. This allows itto be used in place of the SVM algorithm. Our
SQ implementation of this algorithm gives an SVM-like algorithm with estimation complexity ofO(1/γ2),
whereγ is the (normalized) margin. This is the same as the sample complexity of SVM (cf. [79]). Further
details of this application are given in Sec. 6.1.

1.2.2 Lower Bounds

The statistical query framework provides a natural way to convert algorithms into lower bounds. For many
problems over distributions it is possible to prove information-theoretic lower bounds against statistical
algorithms that are much stronger than known computationallower bounds for the problem. A classical
example of such problem is learning of parity functions withnoise (or, equivalently, finding an assignment
that maximizes the fraction of satisfied XOR constraints). This implies that any algorithm that can be
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implemented using statistical queries with complexity below the lower bound cannot solve the problem. If
the algorithm relies solely on some structural property of the problem, such as approximation of functions
by polynomials or computation by a certain type of circuit, then we can immediately conclude a lower bound
for that structural property. This indirect argument exploits the power of the algorithm and hence can lead
to results which are hard to derive directly.

One inspiring example of this approach comes from using the statistical query algorithm for learning
halfspaces [14]. The structural property it relies on is linear separability. Combined with the exponential
lower bound for learning parities [55] it immediately implies that there is no mapping from{−1, 1}d toR

N

which makes parity functions linearly separable for anyN ≤ N0 = 2Ω(d). Subsequently, and apparently
unaware of this technique, Forster [39] proved a2Ω(d) lower bound on the sign-rank (also known as the
dimension complexity) of the Hadamard matrix which is exactly the same result (in [81] the connection
between these two results is stated explicitly). His proof relies on a sophisticated and non-algorithmic
technique and is considered a major breakthrough in provinglower bounds on the sign-rank of explicit
matrices.

Convex optimization algorithms rely on existence of convexrelaxations for problem instances that (ap-
proximately) preserve the value of the solution. Therefore, given a SQ lower bound for a problem, our
algorithmic results can be directly translated into lower bounds for convex relaxations of the problem. At
a high level, assume that we are dealing with a problem of (approximately) findingminz∈Z

1
n

∑

i≤n vi(z)
given a sequence of real-valued functions(vi)

n
i=1 from some collection of functionsV over a domainZ.

These functions are not restricted and could represent a loss of the solution given byz on a point represented
by vi or whether an assignment represented byz satisfies a constraint represented byvi. Further, assume that
we are given a lower bound on the SQ complexity ofε-approximating Val(D)

.
= minz∈Z Ev∼D[v(z)] for

an unknown distributionD from some (known) collection of distributionsD overV . Now, assume that for a
set of convex functionsF overK ⊆ R

d, stochastic optimization overK for distributions supported onF can
be solved with accuracyε/2 by a SQ algorithm with complexity below the given lower bound. This implies
there does not exist a mappingT : V → F such that for allD ∈ D, |Val(D)−minx∈KEv∼D[(T (v))(x)]| <
ε/2. Canonical LP/SDP relaxations of constraint satisfactionproblems andsurrogate lossconvex relax-
ations used in machine learning are instances of mappings with such property (or other form of approxi-
mation). We defer the formal statement of this result and some concrete corollaries based on lower bounds
from [37] to Section 6.4.

1.2.3 Differential Privacy

In local orrandomized-responsedifferential privacy the users provide the analyst with differentially private
versions of their data points. Any analysis performed on such data is differentially private so, in effect, the
data analyst need not be trusted. Such algorithms have been studied and applied for privacy preservation
since at least the work of Warner [92]. While there exists a large and growing literature on mean estimation
and convex optimization with (global) differential privacy (e.g.[19, 29, 7]), these questions have been only
recently and partially addressed for the more stringent local privacy. Using simple estimation of statistical
queries with local differential privacy by Kasiviswanathan et al. [54] we directly obtain a variety of corol-
laries for locally differentially private mean estimationand optimization. Some of them, including mean
estimation forℓ2 andℓ∞ norms and their implications for gradient and mirror descent algorithms are known
via specialized arguments [26, 27]. Our corollaries for mean estimation achieve the same bounds up to
logarithmic ind factors. We also obtain corollaries for more general mean estimation problems and results
for optimization that, to the best of our knowledge, were notpreviously known.

An additional implication in the context of differentiallyprivate data analysis is to the problem of releas-
ing answers to multiple queries over a single dataset. A longline of research has considered this question
for linear or countingqueries which for a datasetS ⊆ Wn and functionφ : W → [0, 1] output an estimate
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of 1
n

∑

w∈S φ(w) (see [29] for an overview). In particular, it is known that anexponential inn number of
such queries can be answered differentially privately evenwhen the queries are chosen adaptively [76, 46]
(albeit the running time is linear in|W|). Recently, Ullman [89] has considered the question of answering
convex minimizationqueries which ask for an approximate minimum of a convex program taking a data
point as an input averaged over the dataset. For several convex minimization problems he gives algorithms
that can answer an exponential number of convex minimization queries. It is easy to see that the problem
considered by Ullman [89] is a special case of our problem by taking the input distribution to be uniform
over the points inS. A statistical query for this distribution is equivalent toa counting query and hence our
algorithms effectively reduce answering of convex minimization queries to answering of counting queries.
As a corollary we strengthen and substantially generalize the results in [89].

Details of these applications appear in Sections 6.2 and 6.3.

1.3 Related work

The SQ framework was introduced by Kearns [55], who showed how to derive PAC learning algorithms
robust to random classification noise from SQ algorithms. Closely related concepts are linear statistical
functionals studied in statistics (e.g. [93]) and the learning-by-distances model of Ben-David et al. [10].
Blum et al. [15] show how to implement a SQ algorithm withdifferential privacy[30] and Kasiviswanathan
et al. [54] additionally show a simulation preserving more stringent local differential privacy. This connec-
tion has been used to get privacy-preserving algorithms in anumber of additional contexts [5, 4].

Chu et al. [20] show that empirical estimation of expectations can be automatically parallelized on multi-
core architectures and give many examples of popular machine learning algorithms that can be sped up using
this approach. SQ algorithms can be used to derive algorithms in Valiant’s (2009) model of evolvability
[33, 34]. In this context, Valiant [91] shows that the weak evaluation oracle from [42] can be implemented
in the model of evolvability thereby obtaining polynomial-time evolution algorithms for stochastic convex
optimization (albeit without any specific bounds). More recently, in a line of work initiated by Dwork et al.
[32], SQs have been used as a basis for understanding generalization in adaptive data analysis [32, 47, 31,
86, 8].

The first lower bound for SQ algorithms was given by Kearns [55] for the problem of learning parity
functions. Blum et al. [13] described a general technique for the analysis of the complexity of PAC learning
using SQs based on the notion of SQ dimension. Subsequently,similar techniques were developed for more
general learning settings and more recently for general problems over distributions [83, 35, 88, 36, 37].
Using these techniques, strong lower bounds for a number of fundamental problems in machine learning
theory were obtained (such as PAC learning of juntas [13] andagnostic learning of monomials [35]) as well
as for stochastic versions of several classical problems incomputer science (including planted bi-clique [36]
and planted satisfiability [37]).

There is long history of research on the complexity of convexoptimization with access to some type
of oracle (e.g.[68, 16, 45]) with a lot of renewed interest due to applications in machine learning (e.g.[73,
1]). In particular, a number of works study robustness of optimization methods to errors by considering
oracles that provide approximate information aboutF and its (sub-)gradients [23, 25]. Our approach to
getting statistical query algorithms for stochastic convex optimization is based in large part on implementing
different approximate first-order oracles by a SQ oracle. This allows us to use known insights and results to
derive SQ algorithms (and, naturally, the reduction can be used similarly to derive new algorithms).

A common way to model stochastic optimization is via a stochastic oracle for the objective function
[68]. Such oracle is assumed to return a random variable whose expectation is equal to the exact value of
the function and/or its gradient (most commonly the random variable is Gaussian or has bounded variance).
Analyses of such algorithms (most notably the Stochastic Gradient Descent (SGD)) are rather different
from ours although in both cases linearity and robustness properties of first-order methods are exploited. In
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most settings we consider, estimation complexity of our SQ agorithms is comparable to sample complexity
of solving the same problem using an appropriate version of SGD (which is, in turn, often known to be
optimal). On the other hand lower bounds for stochastic oracles (e.g.[1]) have a very different nature and it
is impossible to obtain superpolynomial lower bounds on thenumber of oracle calls (such as those we prove
in Section 3.2).

In a recent (and independent) work Steinhardt et al. [85] have established a number of relationships
between learning with SQs and learning with several types ofrestrictions on memory and communication.
Among other results, they proved an unexpected upper bound on memory-bounded sparse least-squares
regression by giving a SQ algorithm for the problem. Their algorithm is based on inexact mirror-descent
over theℓ1-ball and is a special case of our more general analysis (in optimization overℓ1 ball, ℓ∞ estimation
of gradients suffices bypassing the difficulties associatedwith other norms). Our results can be used to derive
bounds of this type for other learning problems.

2 Preliminaries

For integern ≥ 1 let [n]
.
= {1, . . . , n}. Typically, d will denote the ambient space dimension, andn

will denote number of samples. Random variables are denotedby bold letters, e.g.,w, U. We denote the
indicator function of an eventA (i.e., the function taking value zero outside ofA, and one onA) by 1{A}.

For i ∈ [d] we denote byei thei-th basis vector inRd. Given a norm‖ · ‖ onR
d we denote the ball of

radiusR > 0 by Bd
‖·‖(R), and the unit ball byBd

‖·‖. We also recall the definition of the norm dual to‖ · ‖,

‖w‖∗ .
= sup‖x‖≤1〈w, x〉, where〈·, ·〉 is the standard inner product ofRd.

For a convex body (i.e., compact convex set with nonempty interior) K ⊆ R
d we define its polar as

K∗ = {w ∈ R
d : 〈w, x〉 ≤ 1 ∀x ∈ K}, and we have that(K∗)∗ = K. Any origin-symmetric convex body

K ⊂ R
d (i.e.,K = −K) defines a norm‖ · ‖K as follows:‖x‖K = infα>0{α | x/α ∈ K}, andK is the unit

ball of ‖ · ‖K. It is easy to see that the norm dual to‖ · ‖K is ‖ · ‖K∗
.

Our primary case of interest corresponds toℓp-setups. Given1 ≤ p ≤ ∞, we consider the normed

spaceℓdp
.
= (Rd, ‖ · ‖p), where for a vectorx ∈ R

d, ‖x‖p .
=
(

∑

i∈[d] |xi|p
)1/p

. ForR ≥ 0, we denote by

Bd
p(R) = Bd

‖·‖p(R) and similarly for the unit ball,Bd
p = Bd

p(1). We denote the conjugate exponent ofp as
q, meaning that1/p+ 1/q = 1; with this, the norm dual to‖ · ‖p is the norm‖ · ‖q. In all definitions above,
when clear from context, we will omit the dependence ond.

We consider problems of the form

F ∗ .
= min

x∈K

{

F (x)
.
= E

w
[f(x,w)]

}

, (1)

whereK is a convex body inRd, w is a random variable defined over some domainW, and for each
w ∈ W, f(·, w) is convex and subdifferentiable onK. For an approximation parameterε > 0 the goal is
to find x ∈ K such thatF (x) ≤ F ∗ + ε, and we call any suchx an ε-optimal solution. We denote the
probability distribution ofw by D and refer to it as the input distribution. For convenience wewill also
assume thatK contains the origin.

Statistical Queries. The algorithms we consider here have access to a statisticalquery oracle for the input
distribution. For most of our results a basic oracle introduced by Kearns [55] that gives an estimate of the
mean with fixed tolerance will suffice. We will also rely on a stronger oracle that captures estimation of the
mean of a random variable from samples more accurately and was introduced in [36].
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Definition 2.1. LetD be a distribution over a domainW, τ > 0 andn be an integer. A statistical query
oracle STATD(τ) is an oracle that given as input any functionφ : W → [−1, 1], returns some value
v such that|v − Ew∼D[φ(w)]| ≤ τ . A statistical query oracle VSTATD(n) is an oracle that given as

input any functionφ : W → [0, 1] returns some valuev such that|v − p| ≤ max

{

1
n ,

√

p(1−p)
n

}

, where

p
.
= Ew∼D[φ(w)]. We say that an algorithm isstatistical query(or, for brevity, just SQ) if it does not have

direct access ton samples from the input distributionD, but instead makes calls to a statistical query oracle
for the input distribution.

Clearly VSTATD(n) is at least as strong as STATD(1/
√
n) (but no stronger than STATD(1/n)). Query

complexity of a statistical algorithm is the number of queries it uses. Theestimation complexityof a statis-
tical query algorithm using VSTATD(n) is the valuen and for an algorithm using STAT(τ) it is n = 1/τ2.
Note that the estimation complexity corresponds to the number of i.i.d. samples sufficient to simulate the
oracle for a single query with at least some positive constant probability of success. However it is not nec-
essarily true that the whole algorithm can be simulated using O(n) samples since answers to many queries
need to be estimated. Answeringm fixed (or non-adaptive) statistical queries can be done usingO(logm·n)
samples but when queries depend on previous answers the bestknown bounds requireO(

√
m · n) samples

(see [32] for a detailed discussion). This also implies thata lower bound on sample complexity of solving a
problem does not directly imply lower bounds on estimation complexity of a SQ algorithm for the problem.

Whenever that does not make a difference for our upper boundson estimation complexity, we state
results for STAT to ensure consistency with prior work in theSQ model. All our lower bounds are stated
for the stronger VSTAT oracle. One useful property of VSTAT is that it only pays linearly when estimating
expectations of functions conditioned on a rare event:

Lemma 2.2. For any functionφ : X → [0, 1], input distributionD and conditionA : X → {0, 1} such that
pA

.
= Prx∼D[A(x) = 1] ≥ α, let p

.
= Ex∼D[φ(x) ·A(x)]. Then queryφ(x) ·A(x) to VSTAT(n/α) returns

a valuev such that|v − p| ≤ pA√
n

.

Proof. The valuev returned by VSTAT(n/α) on queryφ(x)·A(x) satisfies:|v−p| ≤ min

{

α
n ,

√

p(1−p)α
n

}

.

Note thatp = E[φ(x)A(x)] ≤ Pr[A(x) = 1] = pA. Hence|v − p| ≤ pA√
n

.

Note that one would need to use STAT(α/
√
n) to obtain a valuev with the same accuracy ofpA√

n
(since

pA can be as low asα). This corresponds to estimation complexity ofn/α2 vs.n/α for VSTAT.

3 Stochastic Linear Optimization and Vector Mean Estimation

We start by considering stochastic linear optimization, that is instances of the problem

min
x∈K

{E
w
[f(x,w)]}

in whichf(x,w) = 〈x,w〉. From now on we will use the notation̄w
.
= Ew[w].

For normalization purposes we will assume that the random variablew is supported onW = {w | ∀x ∈
K, |〈x,w〉| ≤ 1}. Note thatW = conv(K∗,−K∗) and if K is origin-symmetric thenW = K∗. More
generally, ifw is supported onW andB

.
= supx∈K, w∈W{|〈x,w〉|} then optimization with errorε can be

reduced to optimization with errorε/B over the normalized setting by scaling.
We first observe that for an origin-symmetricK, stochastic linear optimization with errorε can be solved

by estimating the mean vectorE[w] with errorε/2 measured inK∗-norm and then optimizing a deterministic
objective.
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Observation 3.1. Let W be an origin-symmetric convex body andK ⊆ W∗. Let minx∈K{F (x)
.
=

E[〈x,w〉]} be an instance of stochastic linear optimization forw supported onW. Let w̃ be a vector
such that‖w̃ − w̄‖W ≤ ε/2. Let x̃ ∈ K be such thatF (x̃) ≤ minx∈K〈w̃, x〉 + ξ. Then for allx ∈ K,
F (x̃) ≤ F (x) + ε+ ξ.

Proof. Note thatF (x) = 〈x, w̄〉 and letx̄ = argminx∈K〈x, w̄〉. The condition‖w̃ − w̄‖W ≤ ε/2 implies
that for everyx ∈ W∗, |〈x, w̃ − w̄〉| ≤ ε/2. Therefore, for everyx ∈ K,

F (x̃) = 〈x̃, w̄〉 ≤ 〈x̃, w̃〉+ ε/2 ≤ 〈x̄, w̃〉+ ε/2 + ξ ≤ 〈x̄, w̄〉+ ε+ ξ ≤ 〈x, w̄〉+ ε+ ξ = F (x) + ε+ ξ.

The mean estimation problem overW in norm‖ · ‖ is the problem in which, given an error parameterε
and access to a distributionD supported overW, the goal is to find a vector̃w such that‖Ew∼D[w]− w̃‖ ≤
ε. We will be concerned primarily with the case whenW is the unit ball of‖ · ‖ in which case we refer to it
as‖ · ‖ mean estimation or mean estimation overW.

We also make a simple observation that if a norm‖ · ‖A can be embedded via a linear map into a norm
‖ · ‖B (possibly with some distortion) then we can reduce mean estimation in‖ · ‖A to mean estimation in
‖ · ‖B .

Lemma 3.2. Let ‖ · ‖A be a norm overRd1 and ‖ · ‖B be a norm overRd2 that for some linear map
T : Rd1 → R

d2 satisfy:∀w ∈ R
d1 , a · ‖Tw‖B ≤ ‖w‖A ≤ b · ‖Tw‖B . Then mean estimation in‖ · ‖A with

error ε reduces to mean estimation in‖ · ‖B with error a
2bε (or error a

b ε whend1 = d2).

Proof. Suppose there exists an statistical algorithmA that for any input distribution supported onB‖·‖B
computes̃z ∈ R

d2 satisfying‖z̃ −Ez[z]‖B ≤ a
2bε.

LetD be the target distribution onRd1, which is supported onB‖·‖A . We useA on the image ofD by T ,
multiplied bya. That is, we replace each queryφ : Rd2 → R of A with queryφ′(w) = φ(a · Tw). Notice
that by our assumption,‖a · Tw‖B ≤ ‖w‖A ≤ 1. Let ỹ be the output ofA divided bya. By linearity, we
have that‖ỹ − T w̄‖B ≤ 1

2bε. Let w̃ be any vector such that‖ỹ − T w̃‖B ≤ 1
2bε. Then,

‖w̃ − w̄‖A ≤ b‖T w̃ − T w̄‖B ≤ b‖ỹ − T w̃‖B + b‖ỹ − T w̄‖B ≤ ε.

Note that ifd1 = d2 thenT is invertible and we can usẽw = T−1ỹ.

Remark 3.3. The reduction of Lemma 3.2 is computationally efficient whenthe following two tasks can be
performed efficiently: computingTw for any inputw, and givenz ∈ R

d2 such that there existsw′ ∈ R
d1

with ‖z − Tw′‖B ≤ δ, computingw such that‖z − Tw‖B ≤ δ + ξ, for some precisionξ = O(δ).

An immediate implication of this is that if the Banach-Mazurdistance between unit balls of two norms
W1 andW2 is r then mean estimation overW1 with error ε can be reduced to mean estimation overW2

with errorε/r.

3.1 ℓq Mean Estimation

We now consider stochastic linear optimization overBd
p and the correspondingℓq mean estimation problem.

We first observe that forq = ∞ the problem can be solved by directly using coordinate-wisestatistical
queries with toleranceε. This is true since each coordinate has range[−1, 1] and for an estimatẽw obtained
in this way we have‖w̃ − w̄‖∞ = maxi{|w̃i −E[wi]} ≤ ε.

Theorem 3.4.ℓ∞ mean estimation problem with errorε can be efficiently solved usingd queries to STAT(ε).
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A simple application of Theorem 3.4 is to obtain an algorithmfor ℓ1 mean estimation. Assume thatd is
a power of two and letH be the orthonormal Hadamard transform matrix (ifd is not a power of two we can
first pad the input distribution to toRd′ , whered′ = 2⌈log d⌉ ≤ 2d). Then it is easy to verify that for every
w ∈ R

d, ‖Hw‖∞ ≤ ‖w‖1 ≤
√
d‖Hw‖∞. By Lemma 3.2 this directly implies the following algorithm:

Theorem 3.5. ℓ1 mean estimation problem with errorε can be efficiently solved using2d queries to
STAT(ε/

√
2d).

We next deal with an important case ofℓ2 mean estimation. It is not hard to see that using statistical
queries for direct coordinate-wise estimation will require estimation complexity ofΩ(d/ε2). We describe
two algorithms for this problem with (nearly) optimal estimation complexity. The first one relies on so
called Kashin’s representations introduced by Lyubarskiiand Vershynin [65]. The second is a simpler but
slightly less efficient method based on truncated coordinate-wise estimation in a randomly rotated basis.

3.1.1 ℓ2 Mean Estimation via Kashin’s representation

A Kashin’s representation is a representation of a vector inan overcomplete linear system such that the
magnitude of each coefficient is small (more precisely, within a constant of the optimum) [65]. Such repre-
sentations, also referred to as “democratic”, have a variety of applications including vector quantization and
peak-to-average power ratio reduction in communication systems (cf. [87]). We show that existence of such
representation leads directly to SQ algorithms forℓ2 mean estimation.

We start with some requisite definitions.

Definition 3.6. A sequence(uj)Nj=1 ⊆ R
d is a tight frame2 if for all w ∈ R

d,

‖w‖22 =
N
∑

j=1

|〈w, ui〉|2.

The redundancy of a frame is defined asλ
.
= N/d ≥ 1.

An easy to prove property of a tight frame (see Obs. 2.1 in [65]) is that for every frame representation
w =

∑N
j=1 aiui it holds that

∑N
j=1 a

2
i ≤ ‖w‖22.

Definition 3.7. Consider a sequence(uj)Nj=1 ⊆ R
d andw ∈ R

d. An expansionw =
∑N

i=1 aiui such that

‖a‖∞ ≤ K√
N
‖w‖2 is referred to as a Kashin’s representation ofw with levelK.

Theorem 3.8([65]). For all λ = N/d > 1 there exists a tight frame(uj)Nj=1 ⊆ R
d in which everyw ∈ R

d

has a Kashin’s representation ofw with levelK for some constantK depending only onλ. Moreover, such
a frame can be computed in (randomized) polynomial time.

The existence of such frames follows from Kashin’s theorem [53]. Lyubarskii and Vershynin [65] show
that any frame that satisfies a certain uncertainty principle (which itself is implied by the well-studied Re-
stricted Isometry Property) yields a Kashin’s representation for all w ∈ R

d. In particular, various random
choices ofuj ’s have this property with high probability. Given a vectorw, a Kashin’s representation ofw
for levelK can be computed efficiently (whenever it exists) by solving aconvex program. For frames that
satisfy the above mentioned uncertainty principle a Kashin’s representation can also be found using a simple
algorithm that involveslog(N) multiplications of a vector by each ofuj ’s. Other algorithms for the task are
discussed in [87].

2In [65] complex vector spaces are considered but the resultsalso hold in the real case.

11



Theorem 3.9. For everyd there is an efficient algorithm that solvesℓ2 mean estimation problem (overBd
2)

with error ε using2d queries to STAT(Ω(ε)).

Proof. For N = 2d let (uj)Nj=1 ⊆ R
d be a frame in which everyw ∈ R

d has a Kashin’s representation
of w with level K = O(1) (as implied by Theorem 3.8). For a vectorw ∈ R

d let a(w) ∈ R
N denote

the coefficient vector of some specific Kashin’s representation of w (e.g.that computed by the algorithm in
[65]). Let w be a random variable supported onBd

2 and letāj
.
= E[a(w)j ]. By linearity of expectation,

w̄ = E[w] =
∑N

j=1 ājuj .

For eachj ∈ [N ], let φj(w)
.
=

√
N
K · a(w)j . Let ãj denote the answer of STAT(ε/K) to queryφj

multiplied by K√
N

. By the definition of Kashin’s representation with levelK, the range ofφj is [−1, 1] and,

by the definition of STAT(ε/K), we have that|āj − ãj| ≤ ε√
N

for everyj ∈ [N ]. Let w̃
.
=
∑N

j=1 ãjuj .
Then by the property of tight frames mentioned above,

‖w̄ − w̃‖2 =

∥

∥

∥

∥

∥

∥

N
∑

j=1

(āj − ãj)uj

∥

∥

∥

∥

∥

∥

2

≤

√

√

√

√

N
∑

j=1

(āj − ãj)2 ≤ ε.

3.1.2 ℓ2 Mean Estimation using a Random Basis

We now show a simple to analyze randomized algorithm that achieves dimension independent estimation
complexity forℓ2 mean estimation. The algorithm will use coordinate-wise estimation in a randomly and
uniformly chosen basis. We show that for such a basis simply truncating coefficients that are too large will,
with high probability, have only a small effect on the estimation error.

More formally, we define the truncation operation as follows. For a real valuez anda ∈ R
+, let

ma(z) :=







z if |z| ≤ a
a if z > a

−a if z < −a.

For a vectorw ∈ R
d we definema(w) as the coordinate-wise application ofma to w. For ad × d matrix

U we definemU,a(w)
.
= U−1ma(Uw) and definerU,a(w)

.
= w −mU,a(w). The key step of the analysis is

the following lemma:

Lemma 3.10. LetU be an orthogonal matrix chosen uniformly at random anda > 0. For everyw, with
‖w‖2 = 1, E[‖rU,a(w)‖22] ≤ 4e−da2/2.

Proof. Notice that‖rU,a(w)‖2 = ‖Uw − ma(Uw)‖2. It is therefore sufficient to analyze‖u −ma(u)‖2
for u a random uniform vector of length 1. Letr

.
= u−ma(u). For eachi,

E[r2i ] =

∫ ∞

0
2t Pr[|ri| > t] dt =

∫ ∞

0
2t {Pr[ri > t] +Pr[ri < −t]} dt

=

∫ ∞

0
4t Pr[ri > t] dt =

∫ ∞

0
4t Pr[ui − a > t] dt

= 4

{
∫ ∞

0
(t+ a)Pr[ui > t+ a] dt− a

∫ ∞

0
Pr[ui > t+ a] dt

}

≤ 4
e−da2/2

d
,
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where we have used the symmetry ofri and concentration on the unit sphere. From this we obtainE[‖r‖22] ≤
4e−da2/2, as claimed.

From this lemma is easy to obtain the following algorithm.

Theorem 3.11.There is an efficient randomized algorithm that solves theℓ2 mean estimation problem with
error ε and success probability1− δ usingO(d log(1/δ)) queries to STAT(Ω(ε/ log(1/ε))).

Proof. Letw be a random variable supported onBd
2 . For an orthonormald× d matrixU , and fori ∈ [d], let

φU,i(w) = (ma(Uw))i/a (for somea to be fixed later). Letvi be the output of STAT(ε/[2
√
da]) for query

φU,i : W → [−1, 1], multiplied bya. Now, letw̃U,a
.
= U−1v, and letw̄U,a

.
= E[mU,a(w)]. This way,

‖w̄ − w̃U,a‖2 ≤ ‖w̄ − w̄U,a‖2 + ‖w̄U,a − w̃U,a‖2
≤ ‖w̄ − w̄U,a‖2 + ‖E[ma(Uw)]− v‖2
≤ ‖w̄ − w̄U,a‖2 + ε/2.

Let us now bound the norm ofv
.
= w̄ − w̄U,a whereU is a randomly and uniformly chosen orthonormal

d× d matrix. By Chebyshev’s inequality:

Pr[‖v‖2 ≥ ε/2] ≤ 4
E[‖v‖22]

ε2
≤ 16 exp(−da2/2)

ε2
.

Notice that to bound the probability above byδ we may choosea =
√

2 ln(16/(δε2))/d. Therefore,
the queries above require querying STAT(ε/[2

√

2 ln(16/δε2)]), and they guarantee to solve theℓ2 mean
estimation problem with probability at least1− δ.

Finally, we can remove the dependence onδ in STAT queries by confidence boosting. Letε′ = ε/3 and
δ′ = 1/8, and run the algorithm above with errorε′ and success probability1 − δ′ for U1, . . . ,Uk i.i.d.
random orthogonal matrices. If we definẽw1, . . . , w̃k the outputs of the algorithm, we can compute the
(high-dimensional) mediañw, namely the point̃wj whose medianℓ2 distance to all the other points is the
smallest. It is easy to see that (e.g.[68, 48])

Pr[‖w̃ − w̄‖2 > ε] ≤ e−Ck,

whereC > 0 is an absolute constant.
Hence, as claimed, it suffices to choosek = O(log(1/δ)), which means usingO(d log(1/δ)) queries to

STAT(Ω(ε/ log(1/ε)), to obtain success probability1− δ.

3.1.3 ℓq Mean Estimation for q > 2

We now demonstrate that by using the results forℓ∞ andℓ2 mean estimation we can get algorithms forℓq
mean estimation with nearly optimal estimation complexity.

The idea of our approach is to decompose each point into a sum of at mostlog d points each of which has
a small “dynamic range” of non-zero coordinates. This property ensures a very tight relationship between
the ℓ∞, ℓ2 andℓq norms of these points allowing us to estimate their mean withnearly optimal estimation
complexity. More formally we will rely on the following simple lemma.

Lemma 3.12. For anyx ∈ R
d and any two0 < p < r:

1. ‖x‖r ≤ ‖x‖1−p/r
∞ · ‖x‖p/rp ;

2. Leta = mini∈[d]{xi | xi 6= 0}. Then‖x‖p ≤ a1−r/p · ‖x‖r/pr .
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Proof. 1.

‖x‖rr =
d
∑

i=1

|xi|r ≤
d
∑

i=1

‖x‖r−p
∞ · |xi|p = ‖x‖r−p

∞ · ‖x‖pp

2.

‖x‖rr =
d
∑

i=1

|xi|r ≥
d
∑

i=1

ar−p · |xi|p = ar−p · ‖x‖pp.

Theorem 3.13.For anyq ∈ (2,∞) andε > 0, ℓq mean estimation with errorε can be solved using3d log d
queries to STAT(ε/ log(d)).

Proof. Let k
.
= ⌊log(d)/q⌋ − 2. Forw ∈ R

d, andj = 0, . . . , k we define

Rj(w)
.
=

d
∑

i=1

eiwi1{2−(j+1)<|wi|≤2−j},

andR∞(w)
.
=
∑d

i=1 eiwi1{|wi|≤2−(k+1)}. It is easy to see that ifw ∈ Bq thenw =
∑k

j=0Rj(w) +R∞(w).

Furthermore, observe that‖Rj(w)‖∞ ≤ 2−j , and by Lemma 3.12,‖Rj(w)‖2 ≤ 2−(j+1)(1−q/2). Finally, let
w̄j = E[Rj(w)], andw̄∞ = E[R∞(w)].

Let ε′
.
= 22/q−3ε/(k + 1). For each levelj = 0, . . . , k, we perform the following queries:

• By using2d queries to STAT(Ω(ε′)) we obtain a vector̃w2,j such that‖w̃2,j − w̄j‖2 ≤ 2(
q
2
−1)(j+1)ε′.

For this, simply observe thatRj(w)/[2(
q
2
−1)(j+1)] is supported onBd

2 , so our claim follows from
Theorem 3.9.

• By usingd queries to STAT(ε′) we obtain a vector̃w∞,j such that‖w̃∞,j − w̄j‖∞ ≤ 2−jε′. For this,
notice thatRj(w)/[2−j ] is supported onBd

∞ and appeal to Theorem 3.4.

We consider the following feasibility problem, which is always solvable (e.g., bȳwj)

‖w̃∞,j − w‖∞ ≤ 2−jε′, ‖w̃2,j − w‖2 ≤ 2(
q
2
−1)(j+1)ε′.

Notice that this problem can be solved easily (we can minimize ℓ2 distance tow̃2,j with the ℓ∞ constraint
above, and this minimization problem can be solved coordinate-wise), so let̃wj be a solution. By the triangle
inequality,w̃j satisfies‖w̃j − w̄j‖∞ ≤ 2−j(2ε′), and‖w̃j − w̄j‖2 ≤ 2(

q
2
−1)(j+1)(2ε′).

By Lemma 3.12,

‖w̃j − w̄j‖q ≤ ‖w̃j − w̄j‖2/q2 · ‖w̃j − w̄j‖1−2/q
∞ ≤ 2(1−2/q)(j+1) 2−j(1−2/q)(2ε′) = ε/[2(k + 1)].

Next we estimatēw∞. Since2−(k+1) = 2−⌊ln d/q⌋+1 ≤ 4d−1/q , by usingd queries to STAT(ε/8) we
can estimate each coordinate ofw̄∞ with accuracyε/[2d1/q ] and obtainw̃∞ satisfying‖w̃∞ − w̄∞‖q ≤
d1/q‖w̃∞ − w̄∞‖∞ ≤ ε/2. Let noww̃ = [

∑k
j=0 w̃

j ] + w̃∞. We have,

‖w̃ − w̄‖q ≤
k
∑

j=0

‖w̃j − w̄j‖q + ‖w̃∞ − w̄∞‖q ≤ (k + 1)
ε

2(k + 1)
+

ε

2
= ε.
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3.1.4 ℓq Mean Estimation for q ∈ (1, 2)

Finally, we consider the case whenq ∈ (1, 2). Here we get the nearly optimal estimation complexity via
two bounds.

The first bound follows from the simple fact that for allw ∈ R
d, ‖w‖2 ≤ ‖w‖q ≤ d1/q−1/2‖w‖2.

Therefore we can reduceℓq mean estimation with errorε to ℓ2 mean estimation with errorε/d1/q−1/2 (this
is a special case of Lemma 3.2 with the identity embedding). Using Theorem 3.9 we then get the following
theorem.

Theorem 3.14. For q ∈ (1, 2) and everyd there is an efficient algorithm that solvesℓq mean estimation
problem with errorε using2d queries to STAT(Ω(d1/2−1/qε)).

It turns out that for largeε better sample complexity can be achieved using a different algorithm. Achiev-
ing (nearly) optimal estimation complexity in this case requires the use of VSTAT oracle. (The estimation
complexity for STAT is quadratically worse. That still gives an improvement over Theorem 3.14 for some
range of values ofε.) In in the case ofq > 2, our algorithm decompose each point into a sum of at most
log d points each of which has a small “dynamic range” of non-zero coordinates. For each component we
can then use coordinate-wise estimation with an additionalzeroing of coordinates that are too small. Such
zeroing ensures that the estimate does not accumulate largeerror from the coordinates where the mean of
the component itself is close to 0.

Theorem 3.15. For anyq ∈ (1, 2) andε > 0, theℓq mean estimation problem can be solved with errorε
using2d log d queries to VSTAT((16 log(d)/ε)p).

Proof. Givenw ∈ Bq we consider its positive and negative parts:w = w+−w−, wherew+ .
=
∑d

i=1 eiwi1{wi≥0}
andw− .

= −∑d
i=1 eiwi1{wi<0}. We again rely on the decomposition ofw into “rings” of dynamic range 2,

but now for its positive and negative parts. Namely,w =
∑k

j=0[Rj(w
+)−Rj(w

−)]+[R∞(w+)−R∞(w−)],

wherek
.
= ⌊log(d)/q⌋−2, Rj(w)

.
=
∑d

i=1 eiwi1{2−(j+1)<|wi|≤2−j} andR∞(w)
.
=
∑d

i=1 eiwi1{|wi|≤2−k−1}.

Letw be a random variable supported onBd
q . Let ε′

.
= ε/(2k+3). For each levelj = 0, . . . , k, we now

describe how to estimatew+,j = E[Rj(w
+)] with accuracyε′. The estimation is essentially just coordinate-

wise use of VSTAT with zeroing of coordinates that are too small. Let v′i be the value returned by VSTAT(n)
for queryφi(w) = 2j · (Rj(w

+))i, wheren = (ε′/8)−p ≤ (16 log(d)/ε)p. Note that2j · (Rj(w
+))i ∈ [0, 1]

for all w andj. Further, letvi = v′i · 1{|v′i|≥2/n}. We start by proving the following decomposition of the
error ofv.

Lemma 3.16. Let u
.
= 2j · w+,j , andz

.
= u − v. Then‖z‖qq ≤ ‖u<‖qq + n−q/2 · ‖u>‖q/2q/2, whereu<i =

ui · 1{ui<4/n} andu>i = ui · 1{ui≥1/n} and for all i.

Proof. For every indexi ∈ [d] we consider two cases. The first case is whenvi = 0. By the definition ofvi,
we know thatv′i < 2/n. This implies thatui = 2j E[(Rj(w

+))i] < 4/n. This is true since, otherwise (when
ui ≥ 4/n), by the guarantees of VSTAT(n), we would have|v′i − ui| ≤

√

ui
n andv′i ≥ ui −

√

ui
n ≥ 2/n.

Therefore in this case,ui = u<i andzi = ui − vi = u<i .
In the second casevi 6= 0. In this case we have thatv′i ≥ 2/n. This implies thatui ≥ 1/n. This is true

since, otherwise (whenui < 1/n), by the guarantees of VSTAT(n), we would have|v′i − ui| ≤
√

ui
n and

v′i ≤ ui +
1
n < 2/n. Therefore in this case,ui = u>i andzi = ui − v′i. By the guarantees of VSTAT(n),

|zi| = |u>i − v′i| ≤ max

{

1
n ,

√

u>
i
n

}

=

√

u>
i
n .

The claim now follows since by combining these two cases we get |zi|q ≤ (u<i )
q +

(

u>
i
n

)q/2
.
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We next observe that by Lemma 3.12, for everyw ∈ Bd
q ,

‖Rj(w
+)‖1 ≤ (2−j−1)1−q‖Rj(w

+)‖qq ≤ (2−j−1)1−q.

This implies that

‖u‖1 = 2j ·
∥

∥

∥w+,j
∥

∥

∥

1
= 2j ·

∥

∥E[Rj(w
+)]
∥

∥

1
≤ 2j · (2−j−1)1−q = 2(j+1)q−1. (2)

Now by Lemma 3.12 and eq.(2), we have

‖u<‖qq ≤
(

4

n

)q−1

· ‖u<‖1 = n1−q · 2(j+3)q−3. (3)

Also by Lemma 3.12 and eq.(2), we have

‖u>‖q/2q/2 ≤
(

1

n

)q/2−1

· ‖u>‖1 ≤ n1−q/2 · 2(j+1)q−1. (4)

Substituting eq. (3) and eq. (4) into Lemma 3.16 we get

‖z‖qq ≤ ‖u<‖qq + n−q/2 · ‖u>‖q/2q/2 ≤ n1−q ·
(

2(j+3)q−3 + 2(j+1)q−1
)

≤ n1−q · 2(j+3)q.

Let w̃+,j .
= 2−jv. We have

∥

∥

∥
w+,j − 2−jv

∥

∥

∥

q
= 2−j · ‖z‖q ≤ 23 · n1/q−1 = ε′.

We obtain an estimate ofw−,j in an analogous way. Finally, to estimate,w̄∞ .
= E[R∞(w)] we observe

that 2−k−1 ≤ 21−⌊log(d)/q⌋ ≤ 4d−1/q. Now using VSTAT(1/(4ε′)2) we can obtain an estimate of each
coordinate ofw̄∞ with accuracyε′ · d−1/q. In particular, the estimatẽw∞ obtained in this way satisfies
‖w̄∞ − w̃∞‖q ≤ ε′.

Now let w̃ =
∑k

j=0(w̃
+,j − w̃−,j) + w̃∞. Each of the estimates hasℓq error of at mostε′ = ε/(2k +3)

and therefore the total error is at mostε.

3.1.5 General Convex Bodies

Next we consider mean estimation and stochastic linear optimization for convex bodies beyondℓp-balls. A
first observation is that Theorem 3.4 can be easily generalized to origin-symmetric polytopes. The easiest
way to see the result is to use the standard embedding of the origin-symmetric polytope norm intoℓ∞ and
appeal to Lemma 3.2.

Corollary 3.17. Let W be an origin-symmetric polytope with2m facets. Then mean estimation overW
with error ε can be efficiently solved usingm queries to STAT(ε/2).

In the case of an arbitrary origin-symmetric convex bodyW ⊆ R
d, we can reduce mean estimation over

W to ℓ2 mean estimation using the John ellipsoid. Such an ellipsoidE satisfies the inclusions1√
d
E ⊆ W ⊆ E

and any ellipsoid is linearly isomorphic to a unitℓ2 ball. Therefore appealing to Lemma 3.2 and Theorem
3.9 we have the following.

Theorem 3.18.LetW ⊆ R
d an origin-symmetric convex body. Then the mean estimation problem overW

can be solved using2d queries to STAT(Ω(ε/
√
d)).
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By Observation 3.1, for an arbitrary convex bodyK, the stochastic linear optimization problem overK
reduces to mean estimation overW .

= conv(K∗,−K∗). This leads to a nearly-optimal (in terms of worst-
case dimension dependence) estimation complexity. A matching lower bound for this task will be proved in
Corollary 3.22.

A drawback of this approach is that it depends on knowledge ofthe John ellipsoid forW, which is, in
general, cannot be computed efficiently (e.g.[11]). However, ifK is a polytope with a polynomial number of
facets, thenW is an origin-symmetric polytope with a polynomial number ofvertices, and the John ellipsoid
can be computed in polynomial time [56]. From this, we conclude that

Corollary 3.19. Then there exists an efficient algorithm that given as input the vertices of an origin-
symmetric polytopeW ⊆ R

d solves the mean estimation problem overW using2d queries to STAT(Ω(ε/
√
d)).

The algorithm runs in time polynomial in the number of vertices.

3.2 Lower Bounds

We now prove lower bounds for stochastic linear optimization over theℓp unit ball and consequently also
for ℓq mean estimation. We do this using the technique from [37] that is based on bounding the statistical
dimension with discrimination norm. Thediscrimination normof a set of distributionsD′ relative to a
distributionD is denoted byκ2(D′,D) and defined as follows:

κ2(D′,D)
.
= max

h:X→R,‖h‖D=1

{

E
D′∼D′

[∣

∣

∣

∣

E
D′

[h] −E
D
[h]

∣

∣

∣

∣

]}

,

where the norm ofh overD is ‖h‖D =
√

ED[h2(x)] andD′ ∼ D′ refers to choosingD′ randomly and
uniformly from the setD′.

Let B(D,D) denote the decision problem in which given samples from an unknown input distribution
D′ ∈ D ∪ {D} the goal is to output1 if D′ ∈ D and 0 ifD′ = D.

Definition 3.20 ([36]). For κ > 0, domainX and a decision problemB(D,D), let t be the largest integer
such that there exists a finite set of distributionsDD ⊆ D with the following property: for any subset
D′ ⊆ DD, where|D′| ≥ |DD|/t, κ2(D′,D) ≤ κ. Thestatistical dimension with discrimination normκ of
B(D,D) is t and denoted bySDN(B(D,D), κ).

The statistical dimension with discrimination normκ of a problem over distributions gives a lower bound
on the complexity of any statistical algorithm.

Theorem 3.1([36]). LetX be a domain andB(D,D) be a decision problem over a class of distributions
D onX and reference distributionD. For κ > 0, let t = SDN(B(D,D), κ). Any randomized statistical
algorithm that solvesB(D,D) with probability≥ 2/3 requirest/3 calls to VSTAT(1/(3 · κ2)).

We now reduce a simple decision problem to stochastic linearoptimization over theℓp unit ball. Let
E = {ei | i ∈ [d]} ∪ {−ei | i ∈ [d]}. Let the reference distributionD be the uniform distribution overE.
For a vectorv ∈ [−1, 1]d, let Dv denote the following distribution: picki ∈ [d] randomly and uniformly,
then pickb ∈ {−1, 1} randomly subject to the expectation being equal tovi and outputb · ei. By definition,
Ew∼Dv [w] = 1

dv. FurtherDv is supported onE ⊂ Bd
q .

For q ∈ [1, 2], α ∈ [0, 1] and everyv ∈ {−1, 1}d, d1/q−1 · v ∈ Bd
p and〈d1/q−1v,Ew∼Dαv [w]〉 = α ·

d1/q−1. At the same time for the reference distributionD and everyx ∈ Bd
p, we have that〈x,Ew∼D[w]〉 =

0. Therefore to optimize with accuracyε = αd1/q−1/2 it is necessary distinguish every distribution inDα

from D, in other words to solve the decision problemB(Dα,D).
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Lemma 3.21. For anyr > 0, 2Ω(r) queries to VSTAT(d/(rα2)) are necessary to solve the decision problem
B(Dα,D) with success probability at least2/3.

Proof. We first observe that for any functionh : Bd
1 → R,

E
Dαv

[h]−E
D
[h] =

α

2d

∑

i∈[d]
vi · (h(ei)− h(−ei)). (5)

Let β =
√

∑

i∈[d](h(ei)− h(−ei))2. By Hoeffding’s inequality we have that for everyr > 0,

Pr
v∼{−1,1}d





∣

∣

∣

∣

∣

∣

∑

i∈[d]
vi · (h(ei)− h(−ei))

∣

∣

∣

∣

∣

∣

≥ r · β



 ≤ 2e−r2/2.

This implies that for every setV ⊆ {−1, 1}d such that|V| ≥ 2d/t we have that

Pr
v∼V





∣

∣

∣

∣

∣

∣

∑

i∈[d]
vi · (h(ei)− h(−ei))

∣

∣

∣

∣

∣

∣

≥ r · β



 ≤ t · 2e−r2/2.

From here a simple manipulation (see Lemma A.4 in [79]) implies that

E
v∼V





∣

∣

∣

∣

∣

∣

∑

i∈[d]
vi · (h(ei)− h(−ei))

∣

∣

∣

∣

∣

∣



 ≤
√
2(2 +

√
ln t) · β ≤

√

2 log t · β.

Note that

β ≤
√

∑

i∈[d]
2h(ei)2 + 2h(−ei)2 =

√
2d · ‖h‖D.

For a set of distributionsD′ ⊆ Dα of size at least2d/t, let V ⊆ {−1, 1}d be the set of vectors in{−1, 1}d
associated withD′. By eq.(5) we have that

E
D′∼D′

[∣

∣

∣

∣

E
D′

[h]−E
D
[h]

∣

∣

∣

∣

]

=
α

2d
E

v∼V





∣

∣

∣

∣

∣

∣

∑

i∈[d]
vi · (h(ei)− h(−ei))

∣

∣

∣

∣

∣

∣





≤ α

2d
2
√

d log t · ‖h‖D = α
√

log t/d · ‖h‖D .

By Definition 3.20, this implies that for everyt > 0, SDN(B(Dα,D), α
√

log t/d) ≥ t. By Theorem 3.1
that for anyr > 0, 2Ω(r) queries to VSTAT(d/(rα2)) are necessary to solve the decision problemB(Dα,D)
with success probability at least2/3.

To apply this lemma with our reduction we setα = 2εd1−1/q . Note thatα must be in the range[0, 1] so
this is possible only ifε < d1/q−1/2. Hence the lemma gives the following corollary:

Corollary 3.22. For anyε ≤ d1/q−1/2 andr > 0, 2Ω(r) queries to VSTAT(d2/q−1/(rε2)) are necessary to
find anε-optimal solution to the stochastic linear optimization problem overBd

p with success probability at
least2/3. The same lower bound holds forℓq mean estimation with errorε.
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Observe that this lemma does not cover the regime whenq > 1 andε ≥ d1/q−1/2 = d−1/p/2. We
analyze this case via a simple observation that for everyd′ ∈ [d], Bd′

p andBd′
q can be embedded intoBd

p

andBd
q respectively in a trivial way: by addingd − d′ zero coordinates. Also the mean of the distribution

supported on such an embedding ofBd′
q certainly lies inside the embedding. In particular, ad-dimensional

solutionx can be converted back to ad′-dimensional solutionx′ without increasing the value achieved by
the solution. Hence lower bounds for optimization overBd′

p imply lower bounds for optimization overBd
p.

Therefore for anyε ≥ d−1/p/2, let d′ = (2ε)−p (ignoring for simplicity the minor issues with rounding).
Now Corollary 3.22 applied tod′ implies that2Ω(r) queries to VSTAT((d′)2/q−1/(rε2)) are necessary for
stochastic linear optimization. Substituting the value ofd′ = (2ε)−p we get(d′)2/q−1/(rε2) = 22−p/(rεp)
and hence we get the following corollary.

Corollary 3.23. For anyq > 1, ε ≥ d1/q−1/2 andr > 0, 2Ω(r) queries to VSTAT(1/(rεp)) are necessary
to find anε-optimal solution to the stochastic linear optimization problem overBd

p with success probability
at least2/3. The same lower bound holds forℓq mean estimation with errorε.

These lower bounds are not tight whenq > 2. In this case a lower bound ofΩ(1/ε2) (irrespective of
the number of queries) follows from a basic property of VSTAT: no query to VSTAT(n) can distinguish
between two input distributionsD1 andD2 if the total variation distance betweenDn

1 andDn
2 is smaller

than some (universal) positive constant [36].

4 Gradient Descent and Friends

We now describe approaches for solving convex programs by SQalgorithms that are based on the broad
literature of inexact gradient methods. We will show that some of the standard oracles proposed in these
works can be implemented by SQs; more precisely, by estimation of the mean gradient. This reduces the
task of solving a stochastic convex program to a polynomial number of calls to the algorithms for mean
estimation from Section 3.

For the rest of the section we use the following notation. LetK be a convex body in a normed space
(Rd, ‖·‖), and letW be a parameter space (notice we make no assumptions on this set). Unless we explicitly
state it,K is not assumed to be origin-symmetric. LetR

.
= maxx,y∈K ‖x − y‖/2, which is the‖ · ‖-radius

of K. For a random variablew supported onW we consider the stochastic convex optimization problem
minx∈K {F (x)

.
= Ew[f(x,w)]} , where for allw ∈ W, f(·, w) is convex and subdifferentiable onK.

Givenx ∈ K, we denote∇f(x,w) ∈ ∂f(x,w) an arbitrary selection of a subgradient;3 similarly for F ,
∇F (x) ∈ ∂F (x) is arbitrary.

Let us make a brief reminder of some important classes of convex functions. We say a subdifferentiable
convex functionf : K → R is in the class

• F(K, B) of B-bounded-range functions if for allx ∈ K, |f(x)| ≤ B.

• F0
‖·‖(K, L0) of L0-Lipschitz continuous functions w.r.t.‖ · ‖, if for all x, y ∈ K, |f(x) − f(y)| ≤

L0‖x− y‖; this implies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L0‖y − x‖. (6)

• F1
‖·‖(K, L1) of functions withL1-Lipschitz continuous gradient w.r.t.‖ · ‖, if for all x, y ∈ K,

‖∇f(x)−∇f(y)‖∗ ≤ L1‖x− y‖; this implies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L1

2
‖y − x‖2. (7)

3We omit some necessary technical conditions,e.g.measurability, for the gradient selection in the stochastic setting. We refer
the reader to [74] for a detailed discussion.
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• S‖·‖(K, κ) of κ-strongly convex functions w.r.t.‖ · ‖, if for all x, y ∈ K

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ κ

2
‖y − x‖2. (8)

4.1 SQ Implementation of Approximate Gradient Oracles

Here we present two classes of oracles previously studied inthe literature, together with SQ algorithms for
implementing them.

Definition 4.1 (Approximate gradient [23]). LetF : K → R be a convex subdifferentiable function. We say
that g̃ : K → R

d is anη-approximate gradientof F overK if for all u, x, y ∈ K

|〈g̃(x)−∇F (x), y − u〉| ≤ η. (9)

Observation 4.2. LetK0
.
= {x−y | x, y ∈ K} (which is origin-symmetric by construction), let furthermore

‖ · ‖K0 be the norm induced byK0 and ‖ · ‖K0∗
its dual norm. Notice that under this notation,(9) is

equivalent to‖g̃(x) − ∇F (x)‖K0∗
≤ η. Therefore, ifF (x) = Ew[f(x,w)] satisfies for allw ∈ W,

f(·, w) ∈ F0
‖·‖K0

(K, L0) then implementing aη-approximate gradient reduces to mean estimation in‖·‖K0∗

with error η/L0.

Definition 4.3 (Inexact Oracle [25, 24]). LetF : K → R be a convex subdifferentiable function. We say
that (F̃ (·), g̃(·)) : K → R×R

d is afirst-order(η,M, µ)-oracleof F overK if for all x, y ∈ K
µ

2
‖y − x‖2 ≤ F (y)− [F̃ (x)− 〈g̃(x), y − x〉] ≤ M

2
‖y − x‖2 + η. (10)

An important feature of this oracle is that the error for approximating the gradient isindependent of
the radius. This observation was established by Devolder et al. [24], and the consequences for statistical
algorithms are made precise in the following lemma.

Lemma 4.4. Letη > 0, 0 < κ ≤ L1 and assume that for allw ∈ W, f(·, w) ∈ F(K, B)∩F0
‖·‖(K, L0) and

F (·) = Ew[f(·,w)] ∈ S‖·‖(K, κ) ∩ F1
‖·‖(K, L1). Then implementing a first-order(η,M, µ)-oracle (where

µ = κ/2 andM = 2L1) for F reduces to mean estimation in‖ · ‖∗ with error
√
ηκ/[2L0], plus a single

query to STAT(Ω(η/B)). Furthermore, for a first-order method that does not requirevalues ofF , the latter
query can be omitted.

If we remove the assumptionF ∈ F1
‖·‖(K, L1) we can instead use the upper boundM = 2L2

0/η.

Proof. We first observe that we can obtain an approximate zero-orderoracle forF with errorη by a single
query to STAT(Ω(η/B)). In particular, we can obtain a valuêF (x) such that|F̂ (x) − F (x)| ≤ η/4, and
then use as approximation

F̃ (x) = F̂ (x)− η/2.

This way|F (x) − F̃ (x)| ≤ |F (x) − F̂ (x)| + |F̂ (x) − F̃ (x)| ≤ 3η/4, and alsoF (x) − F̃ (x) = F (x) −
F̂ (x)+η/2 ≥ η/4. Finally, observe that for any gradient method that does notrequire access to the function
value we can skip the estimation ofF̃ (x), and simply replace it byF (x)− η/2 in what comes next.

Next, we prove that an approximate gradientg̃(x) satisfying

‖∇F (x)− g̃(x)‖∗ ≤ √
ηκ/2 ≤

√

ηL1/2, (11)

suffices for a(η, µ,M)-oracle, where,µ = κ/2, M = 2L1. For convenience, we refer to the first inequality
in (10) as thelower boundand the second as theupper bound.
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Lower bound. SinceF is κ-strongly convex, and by the lower bound onF (x)− F̃ (x)

F (y) ≥ F (x) + 〈∇F (x), y − x〉+ κ

2
‖x− y‖2

≥ F̃ (x) + η/4 + 〈g̃(x), y − x〉+ 〈∇F (x)− g̃(x), y − x〉+ κ

2
‖x− y‖2.

Thus to obtain the lower bound it suffices prove that for ally ∈ R
d,

η

4
+ 〈∇F (x)− g̃(x), y − x〉+ µ

2
‖x− y‖2 ≥ 0. (12)

In order to prove this inequality, notice that among ally’s such that‖y − x‖ = t, the minimum of the
expression above is attained when〈∇F (x) − g̃(x), y − x〉 = −t‖∇F (x) − g̃(x)‖∗. This leads to the one
dimensional inequality

η

4
− t‖∇F (x)− g̃(x)‖∗ +

µ

2
t2 ≥ 0,

whose minimum is attained att = ‖∇F (x)−g̃(x)‖∗
µ , and thus has minimum valueη/4−‖∇F (x)−g̃(x)‖2∗/(2µ).

Finally, this value is nonnegative by assumption, proving the lower bound.

Upper bound. SinceF hasL1-Lipschitz continuous gradient, and by the bound on|F (x)− F̃ (x)|

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L1

2
‖y − x‖2

≤ F̃ (x) +
3η

4
+ 〈g̃(x), y − x〉+ 〈∇F (x)− g̃(x), y − x〉+ L1

2
‖x− y‖2.

Now we show that for ally ∈ R
d

L1

2
‖y − x‖2 − 〈∇F (x)− g̃(x), y − x〉+ η

4
≥ 0.

Indeed, minimizing the expression above iny shows that it suffices to have‖∇F (x) − g̃(x)‖2∗ ≤ ηL1/2,
which is true by assumption.

Finally, combining the two bounds above we get that for ally ∈ K

F (y) ≤ [F̃ (x) + 〈g̃(x), y − x〉] + M

2
‖y − x‖2 + η,

which is precisely the upper bound.

As a conclusion, we proved that in order to obtaing̃ for a (η,M, µ)-oracle it suffices to obtain an ap-
proximate gradient satisfying (11), which can be obtained by solving a mean estimation problem in‖ · ‖∗
with error

√
ηκ/[2L0]. This together with our analysis of the zero-order oracle proves the result.

Finally, if we remove the assumptionF ∈ F1
‖·‖(K, L1) then from (6) we can prove that for allx, y ∈ K

F (y)− [F (x) + 〈∇F (x), y − x〉] ≤ L2
0

η
‖x− y‖2 + η

4
,

whereM = 2L2
0/η. This is sufficient for carrying out the proof above, and the result follows.
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4.2 Classes of Convex Minimization Problems

We now use known inexact convex minimization algorithms together with our SQ implementation of ap-
proximate gradient oracles to solve several classes of stochastic optimization problems. We will see that
in terms of estimation complexity there is no significant gain from the non-smooth to the smooth case;
however, we can significantly reduce the number of queries byacceleration techniques.

On the other hand, strong convexity leads to improved estimation complexity bounds: The key insight
here is that only a local approximation of the gradient around the current query point suffices for methods,
as a first order(η,M, µ)-oracle is robust to crude approximation of the gradient at far away points from
the query (see Lemma 4.4). We note that both smoothness and strong convexity are required only for the
objective function and not for each function in the support of the distribution. This opens up the possibility
of applying this algorithm without the need of adding a strongly convex term pointwise –e.g.in regularized
linear regression– as long as the expectation is strongly convex.

4.2.1 Non-smooth Case: The Mirror-Descent Method

Before presenting the mirror-descent method we give some necessary background on prox-functions. We
assume the existence of a subdifferentiabler-uniformly convex function (where2 ≤ r < ∞) Ψ : K → R+

w.r.t. the norm‖ · ‖, i.e., that satisfies4 for all x, y ∈ K

Ψ(y) ≥ Ψ(x) + 〈∇Ψ(x), y − x〉+ 1

r
‖y − x‖r. (13)

We will assume w.l.o.g. thatinfx∈KΨ(x) = 0.
The existence ofr-strongly convex functions holds in rather general situations [71], and, in particular,

for finite-dimensionalℓdp spaces we have explicit constructions forr = min{2, p} (see Appendix A for
details). LetDΨ(K)

.
= supx∈KΨ(x) be theprox-diameter ofK w.r.t.Ψ.

We define the prox-function (a.k.a. Bregman distance) atx ∈ int(K) asVx(y) = Ψ(y) − Ψ(x) −
〈∇Ψ(x), y − x〉. In this case we say the prox-function is based onΨ proximal setup. Finally, notice that by
(13) we haveVx(y) ≥ 1

r‖y − x‖r.

For the first-order methods in this section we will assumeK is such that for any vectorx ∈ K and
g ∈ R

d the proximal problemmin{〈g, y − x〉 + Vx(y) : y ∈ K} can be solved efficiently. For the case
Ψ(·) = ‖ · ‖22 this corresponds to Euclidean projection, but this type of problems can be efficiently solved in
more general situations [68].

The first class of functions we study isF0
‖·‖(K, L0). We propose to solve problems in this class by

the mirror-descent method [68]. This is a classic method forminimization of non-smooth functions, with
various applications to stochastic and online learning. Although simple and folklore, we are not aware of a
reference on the analysis of the inexact version with proximal setup based on ar-uniformly convex function.
Therefore we include its analysis here.

Mirror-descent uses a prox functionVx(·) based onΨ proximal setup. The method starts querying a
gradient at pointx0 = argminx∈KΨ(x), and given a responsẽgt

.
= g̃(xt) to the gradient query at pointxt

it will compute its next query point as

xt+1 = argmin
y∈K

{α〈g̃t, y − xt〉+ Vxt(y)}, (14)

which corresponds to a proximal problem. The output of the method is the average of iterates̄xT
.
=

1
T

∑T
t=1 x

t.

4We have normalized the function so that the constant ofr-uniform convexity is 1.
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Theorem 4.5. LetF ∈ F0
‖·‖(K, L0) andΨ : K → R be anr-uniformly convex function. Then the inexact

mirror-descent method withΨ proximal setup, step sizeα = 1
L0

[rDΨ(K)/T ]1−1/r , and anη-approximate
gradient forF overK, guarantees afterT steps an accuracy

F (x̄T )− F ∗ ≤ L0

(

rDΨ(K)

T

)1/r

+ η.

Proof. We first state without proof the following identity for prox-functions (for example, see (5.3.20) in
[11]): for all x, x′ andu in K

Vx(u)− Vx′(u)− Vx(x
′) = 〈∇Vx(x

′), u− x′〉.

On the other hand, the optimality conditions of problem (14)are

〈αg̃t +∇Vxt(xt+1), u− xt+1〉 ≥ 0, ∀u ∈ K.

Let u ∈ K be an arbitrary vector, and lets be such that1/r + 1/s = 1. Sinceg̃t is aη-approximate
gradient,

α[F (xt)− F (u)] ≤ α〈∇F (xt), xt − u〉
≤ α〈g̃t, xt − u〉+ αη

= α〈g̃t, xt − xt+1〉+ α〈g̃t, xt+1 − u〉+ αη

≤ α〈g̃t, xt − xt+1〉 − 〈∇Vxt(xt+1), xt+1 − u〉+ αη

= α〈g̃t, xt − xt+1〉+ Vxt(u)− Vxt+1(u)− Vxt(xt+1) + αη

≤ [α〈g̃t, xt − xt+1〉 − 1

r
‖xt − xt+1‖r] + Vxt(u)− Vxt+1(u) + αη

≤ 1

s
‖αg̃t‖s∗ + Vxt(u)− Vxt+1(u) + αη,

where we have used all the observations above, and the last step holds by Fenchel’s inequality.
Let us chooseu such thatF (u) = F ∗, thus by definition of̄xT and by convexity off

αT [F (x̄T )− F ∗] ≤
T
∑

t=1

α[F (xt)− F ∗] ≤ (αL0)
s

s
T +DΨ(K) + αTη.

and sinceα = 1
L0

(

rDΨ(K)
T

)1/s
we obtainF (x̄T )− F ∗ ≤ L0

(

rDΨ(K)
T

)1/r
+ η.

We can readily apply the result above to stochastic convex programs in non-smoothℓp settings.

Definition 4.6 (ℓp-setup). Let 1 ≤ p ≤ ∞, L0, R > 0, andK ⊆ Bd
p(R) be a convex body. We define as

the (non-smooth)ℓp-setup the family of problemsminx∈K{F (x)
.
= Ew[f(x,w)]}, where for allw ∈ W,

f(·, w) ∈ F0
‖·‖p(K, L0).

In the smoothℓp-setup we additionally assume thatF ∈ F1
‖·‖p(K, L1).

From constructions ofr-uniformly convex functions forℓp spaces, withr = min{2, p} (see Appendix
A), we know that there exists an efficiently computable Prox functionΨ (i.e. whose value and gradient can
be computed exactly, and thus problem (14) is solvable for simple enoughK). The consequences in terms
of estimation complexity are summarized in the following corollary, and proved in Appendix C.
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Corollary 4.7. The stochastic optimization problem in the non-smoothℓp-setup can be solved with accuracy
ε by:

• If p = 1, usingO

(

d log d ·
(

L0R

ε

)2
)

queries to STAT

(

ε

4L0R

)

;

• If 1 < p < 2, usingO

(

d log d · 1

(p− 1)

(

L0R

ε

)2
)

queries to STAT

(

Ω

(

ε

[log d]L0R

))

;

• If p = 2, usingO

(

d ·
(

L0R

ε

)2
)

queries to STAT

(

Ω

(

ε

L0R

))

;

• If 2 < p < ∞, usingO

(

d log d · 4p
(

L0R

ε

)p)

queries to VSTAT

((

64L0R log d

ε

)p)

.

4.2.2 Smooth Case: Nesterov Accelerated Method

Now we focus on the class of functions whose expectation has Lipschitz continuous gradient. For simplicity,
we will restrict the analysis to the case where the Prox function is obtained from a strongly convex function,
i.e., r-uniform convexity withr = 2. We utilize a known inexact variant of Nesterov’s accelerated method
[69].

Theorem 4.8([23]). LetF ∈ F1
‖·‖(K, L1), and letΨ : K → R+ be a1-strongly convex function w.r.t.‖ · ‖.

Let (xt, yt, zt) be the iterates of the accelerated method withΨ proximal setup, and where the algorithm
has access to anη-approximate gradient oracle forF overK. Then,

F (yT )− F ∗ ≤ L1DΨ(K)

T 2
+ 3η.

The consequences for the smoothℓp-setup, which are straightforward from the theorem above and Ob-
servation 4.2, are summarized below, and proved in AppendixD.

Corollary 4.9. Any stochastic convex optimization problem in the smoothℓp-setup can be solved with ac-
curacyε by:

• If p = 1, usingO

(

d
√
log d ·

√

L1R
2

ε

)

queries to STAT

(

ε

12L0R

)

;

• If 1 < p < 2, usingO

(

d log d · 1√
p− 1

√

L1R
2

ε

)

queries to STAT

(

Ω

(

ε

[log d]L0R

))

;

• If p = 2, usingO

(

d ·
√

L1R
2

ε

)

queries to STAT

(

Ω

(

ε

L0R

))

.

4.2.3 Strongly Convex Case

Finally, we consider the classS‖·‖(K, κ) of strongly convex functions. We further restrict our attention to
the Euclidean case, i.e.,‖ · ‖ = ‖ · ‖2. There are two main advantages of having a strongly convex objective:
On the one hand, gradient methods in this case achieve linearconvergence rate, on the other hand we will
see that estimation complexity is independent of the radius. Let us first make precise the first statement: It
turns out that with a(η,M, µ)-oracle we can implement the inexact dual gradient method [24] achieving
linear convergence rate. The result is as follows
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Theorem 4.10([24]). LetF : K → R be a subdifferentiable convex function endowed with a(η,M, µ)-
oracle overK. Letyt be the sequence of averages of the inexact dual gradient method, then

F (yT )− F ∗ ≤ MR2

2
exp

(

− µ

M
(T + 1)

)

+ η.

The results in [24] indicate that the accelerated method canalso be applied in this situation, and it
does not suffer from noise accumulation. However, the accuracy requirement is more restrictive than for
the primal and dual gradient methods. In fact, the required accuracy for the approximate gradient isη =
O(ε

√

µ/M); although this is still independent of the radius, it makes estimation complexity much more
sensitive to condition number, which is undesirable.

An important observation of the dual gradient algorithm is that it does not require function values (as
opposed to its primal version). This together with Lemma 4.4.

Corollary 4.11. The stochastic convex optimization problemminx∈K{F (x)
.
= Ew[f(x,w)]}, whereF ∈

S‖·‖2(K, κ) ∩ F1
‖·‖2(K, L1), and for allw ∈ W, f(·, w) ∈ F0

‖·‖2(K, L0), can be solved to accuracyε > 0

usingO

(

d · L1

κ
log

(

L1R

ε

))

queries to STAT(Ω(
√
εκ/L0)).

Without the assumptionF ∈ F1
‖·‖2(K, L1) the problem can be solved to accuracyε > 0 by using

O

(

d · L
2
0

εκ
log

(

L0R

ε

))

queries to STAT(Ω(
√
εκ/L0)).

4.3 Applications to Generalized Linear Regression

We conclude this section with a comparison of the bounds obtained by statistical query inexact first-order
methods with some state-of-the-art error bounds for linearregression problems. To be precise, we compare
sample complexity of obtaining excess errorε (with constant success probability or in expectation) withthe
estimation complexity of the SQ oracle for achievingε accuracy. It is worth noticing though that these two
quantities are not directly comparable, as an SQ algorithm performs a (polynomial) number of queries to the
oracle. However, this comparison shows that our results roughly match what can be achieved via samples.

We consider thegeneralized linear regressionproblem: Given a normed space(Rd, ‖ · ‖), letW ⊆ R
d

be the input space, andR be the output space. Let(w, z) ∼ D, whereD is an unknown target distribution
supported onW × R. The objective is to obtain a linear predictorx ∈ K that predicts the outputs as a
function of the inputs coming fromD. Typically, K is prescribed by desirable structural properties of the
predictor,e.g.sparsity or low norm. The parameters determining complexity are given by bounds on the
predictor and input space:K ⊆ B‖·‖(R) andW ⊆ B‖·‖∗(W ). Under these assumptions we may restrict the
output space to[−M,M ], whereM = RW .

The prediction error is measured using aloss function. For a functionℓ : R × R → R+, letting
f(x, (w, z)) = ℓ(〈w, x〉, z), we seek to solve the stochastic convex programminx∈K{F (x) = E(w,z)∼D[f(x, (w, z))]}.
We assume thatℓ(·, z) is convex for everyz in the support ofD. A common example of this problem is the
(random design) least squares linear regression, whereℓ(z′, z) = (z′ − z)2.

Non-smooth case: We assume that for everyz in the support ofD, ℓ(·, z) ∈ F0
|·|([−M,M ], Lℓ,0). To

make the discussion concrete, let us consider theℓp-setup,i.e. ‖ · ‖ = ‖ · ‖p. Hence the Lipschitz constant
of our stochastic objectivef(·, (w, z)) = ℓ(〈w, ·〉, z) can be upper bounded asL0 ≤ Lℓ,0 · W . For this
setting Kakade et al. [50] show that the sample complexity ofachieving excess errorε > 0 with constant

success probability isn = O

(

(

Lℓ,0WR
ε

)2
ln d

)

when p = 1; andn = O

(

(

Lℓ,0WR
ε

)2
(q − 1)

)

for
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1 < p ≤ 2. Using Corollary 4.7 we obtain that the estimation complexity of solving this problem using our
SQ implementation of the mirror-descent method gives the same up to (at most) a logarithmic ind factor.

Kakade et al. [50] do not provide sample complexity bounds for p > 2, however since their approach is
based on Rademacher complexity (see Appendix B for the precise bounds), the bounds in this case should
be similar to ours as well.

Strongly convex case: Let us now consider a generalized linear regression with regularization. Here

f(x, (w, z)) = ℓ(〈w, x〉, z) + λ · Φ(x),

whereΦ : K → R is a 1-strongly convex function andλ > 0. This model has a variety of applications in
machine learning, such as ridge regression and soft-marginSVM. For the non-smooth linear regression inℓ2

setup (as described above), Shalev-Shwartz et al. [80] provide a sample complexity bound ofO
(

(Lℓ,0W )2

λε

)

(with constant success probability). Note that the expected objective is2λ-strongly convex and therefore,
applying Corollary 4.11, we get the same (up to constant factors) bounds on estimation complexity of solving
this problem by SQ algorithms.

5 Optimization of Bounded-Range Functions

The estimation complexity bounds obtained for gradient descent-based methods depend polynomially either
on the the Lipschitz constantL0 and the radiusR of K (unless the functions are strongly convex). In some
cases such bounds are not explicitly available (or too large) and instead we know that the range of functions
in the support of the distribution is bounded, that is,max(x,y∈K, v,w∈W)(f(x, v)− f(y,w)) ≤ 2B for some
B. Without loss of generality we may assume that for allw ∈ W, f(·, w) ∈ F(K, B).

5.1 Random walks

We first show that a simple extension of the random walk approach of Kalai and Vempala [51] and Lovász
and Vempala [62] can be used to address this setting. One advantage of this approach is that to optimizeF it
requires only access to approximate values ofF (such an oracle is also referred to as approximate zero-order
oracle). Namely, aτ -approximate value oracle for a functionF is the oracle that for everyx in the domain
of F , returns valuev such that|v − F (x)| ≤ τ .

We note that the random walk based approach was also (independently5) used in a recent work of Belloni
et al. [9]. Their work includes an optimized and detailed analysis of this approach and hence we only give a
brief outline of the proof here.

Theorem 5.1.There is an algorithm that with probability at least2/3, given any convex programminx∈K F (x)
in R

d where∀x ∈ K, |F (x)| ≤ 1 and K is given by a membership oracle with the guarantee that
Bd
2(R0) ⊆ K ⊆ Bd

2(R1), outputs anε-optimal solution in time poly(d, 1ε , log (R1/R0)) using poly(d, 1ε )
queries to(ε/d)-approximate value oracle.

Proof. Let x∗ = argminx∈K F (x) andF ∗ = F (x∗). The basic idea is to sample from a distribution that
has most of its measure on points withF (x) ≤ F ∗ + ε. To do this, we use the random walk approach as
in [51, 62] with a minor extension. The algorithm performs a random walk whose stationary distribution
is proportional togα(x) = e−αF (x), with g(x) = e−F (x). Each step of the walk is a function evaluation.
Noting thate−αF (x) is a logconcave function, the number of steps is poly(d, log α, β) to get a point from
a distribution within total variation distanceβ of the target distribution. Applying Lemma 5.1 from [62]

5The statement of our result and proof sketch were included bythe authors for completeness in the appendix of [37, v2].
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(which is based on Lemma 5.16 from [64]) withB = 2 to gα with α = 4(d+ ln(1/δ)/ε, we have (note that
α corresponds toam = 1

B (1 + 1/
√
n)m in that statement).

Pr[g(x) < e−ε · g(x∗)] ≤ δ

(

2

e

)d−1

. (15)

Therefore, the probability that a random pointx sampled proportionately togα(x) does not satisfyF (x) <
F ∗ + ε is at mostδ(2/e)d−1.

Now we turn to the extension, which arises because we can onlyevaluateF (x) approximately through
the oracle. We assume w.l.o.g. that the value oracle is consistent in its answers (i.e., returns the same value
on the same point). The value returned by the oracleF̃ (x) satisfies|F (x) − F̃ (x)| ≤ ε/d. The stationary
distribution is now proportional tõgα(x) = e−αF̃ (x) and satisfies

g̃α(x)

gα(x)
= e−α(F̃ (x)−F (x)) ≤ eα

ε
d ≤ e5. (16)

We now argue that with large probability, the random walk with the approximate evaluation oracle will
visit a pointx whereF has of value at mostF ∗ + ε. Assuming that a random walk gives samples from
a distribution (sufficiently close to being) proportional to g̃α, from property (16), the probability of the set
{x : g(x) > e−ε · g(x∗)} is at most a factor ofe10 higher than for the distribution proportional togα (given
in eq. (15)). Therefore with a small increase in the number ofsteps a random point from the walk will visit
the set whereF has value of at mostF ∗ + ε with high probability. Thus the minimum function value that
can be achieved is at mostF ∗ + ε+ 2ε/d.

Finally, we need the random walk to mix rapidly for the extension. Note thatF̃ (x) is approximately
convex,i.e. for anyx, y ∈ K and anyλ ∈ [0, 1], we have

F̃ (λx+ (1− λ)y) ≤ λF̃ (x) + (1− λ)F̃ (y) + 2ε/d. (17)

and thereforẽgα is a near-logconcave function that satisfies, for anyx, y ∈ K andλ ∈ [0, 1],

g̃α(λx+ (1− λ)y) ≥ e−2αε/d · g̃α(x)λg̃α(x)1−λ ≥ e−10 · g̃α(x)λg̃α(x)1−λ.

As a result, as shown by Applegate and Kannan [2], it admits anisoperimetric inequality that is weaker than
that for logconcave functions by a factor ofe10. For the grid walk, as analyzed by them, this increases the
convergence time by a factor of at moste20. The grid walk’s convergence also depends (logarithmically)
on the Lipshitz constant of̃gα. This dependence is avoided by the ball walk, whose convergence is again
based on the isoperimetric inequality, as well as on local properties, namely on the1-step distribution of the
walk. It can be verified that the analysis of the ball walk (e.g., as in [64]) can be adapted to near-logconcave
functions with an additional factor ofO(1) in the mixing time.

Going back to the stochastic setting, letF (x) = ED[f(x,w)]. If ∀w, f(·, w) ∈ F(K, B) then a single
queryf(x,w) to STAT(τ/B) is equivalent to a query to aτ -approximate value oracle forF (x).

Corollary 5.1. There is an algorithm that for any distributionD overW and convex programminx∈K{F (x)
.
=

Ew∼D[f(x,w)]} in R
d where∀w, f(·, w) ∈ F(K, B) andK is given by a membership oracle with the

guarantee thatBd
2(R0) ⊆ K ⊆ Bd

2(R1), with probability at least2/3, outputs anε-optimal solution in time
poly(d, Bε , log (R1/R0)) using poly(d, Bε ) queries to STAT(ε/(dB)).

We point out thatτ -approximate value oracle is strictly weaker than STAT(τ). This follows from a
simple result of Nemirovsky and Yudin [68, p.360] who show that linear optimization overBd

2 with τ -
approximate value oracle requiresτ = Ω(

√
log q · ε/d) for any algorithm usingq queries. Together with

our upper bounds in Section 3 this implies that approximate value oracle is weaker than STAT.
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5.2 Center-of-Gravity

An alternative and simpler technique to establish theO(d2B2/ε2) upper bound on the estimation complexity
for B-bounded-range functions is to use cutting-plane methods,more specifically, the classic center-of-
gravity method, originally proposed by Levin [58].

We introduce some notation. Given a convex bodyK, let x be a uniformly and randomly chosen point
from K. Let z(K)

.
= E[x] andA(K)

.
= E[(x − z(K))(x − z(K))T ] be the center of gravity and co-

variance matrix ofK respectively. We define the (origin-centered) inertial ellipsoid ofK asEK .
= {y :

yTA(K)−1y ≤ 1}.
The classic center-of-gravity method starts withG0 .

= K and iteratively computes a progressively
smaller body containing the optimum of the convex program. We call such a body alocalizer. Given a
localizerGt−1, for t ≥ 1, the algorithm computesxt = z(Gt−1) and defines the new localizer to be

Gt .
= Gt−1 ∩ {y ∈ R

d | 〈∇F (xt), y − xt〉 ≤ 0}.
It is known that that any halfspace containing the center of gravity of a convex body contains at least1/e of
its volume [44], that is vol(Gt) ≤ γ · vol(Gt−1), whereγ = 1 − 1/e. We call this property thevolumetric
guaranteewith parameterγ.

The first and well-known issue we will deal with is that the exact center of gravity ofGt−1 is hard to
compute. Instead, following the approach in [12], we will let xt be an approximate center-of-gravity. For
such an approximate center we will have a volumetric guarantee with somewhat larger parameterγ.

The more significant issue is that we do not have access to the exact value of∇F (xt). Instead will show
how to compute an approximate gradientg̃(xt) satisfying for ally ∈ Gt,

|〈g̃(xt)−∇F (xt), y − xt〉| ≤ η. (18)

Notice that this is a weaker condition than the one required by (9): first, we only impose the approximation
on the localizer; second, the gradient approximation is only at xt. These two features are crucial for our
results.

Condition (18) implies that for ally ∈ Gt−1 \Gt,

F (y) ≥ F (xt) + 〈∇F (xt), y − xt〉 ≥ F (xt) + 〈g̃(xt), y − xt〉 − η > F (xt)− η.

Therefore we will lose at mostη by discarding points inGt−1 \Gt.
Plugging this observation into the standard analysis of thecenter-of-gravity method (see,e.g.[67, Chap-

ter 2]) yields the following result.

Theorem 5.2. For B > 0, let K ⊆ R
d be a convex body, andF ∈ F(K, B). Let x1, x2, . . . and

g̃(x1), g̃(x2), . . . be a sequence of points and gradient estimates such that forG0
.
= K andGt .

= Gt−1∩{y ∈
R
d | 〈g̃(xt), y−xt〉 ≤ 0} for all t ≥ 1, we have a volumetric guarantee with parameterγ < 1 and condition

(18) is satisfied for some fixedη > 0. Let x̂T
.
= argmint∈[T ] F (xt), then

F (x̂T )−min
x∈K

F (x) ≤ γT/d · 2B + η .

In particular, choosingη = ε/2, andT = ⌈d log( 1γ ) log(4Bε )⌉ givesF (x̂T )−minx∈K F (x) ≤ ε.

We now describe how to compute an approximate gradient satisfying condition (18). We show that
it suffices to find an ellipsoidE centered atxt such thatxt + E is included inGt andGt is included in
xt + R · E . The first condition, together with the bound on the range of functions in the support of the
distribution, implies a bound on the ellipsoidal norm of thegradients. This allows us to use Theorem 3.9
to estimate∇F (xt) in the ellipsoidal norm. The second condition can be used to translate the error in the
ellipsoidal norm to the errorη overGt as required by condition (18). Formally we prove the following
lemma:
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Lemma 5.3. Let G ⊆ R
d be a convex body,x ∈ G, and E ⊆ R

d be an origin-centered ellipsoid that
satisfies

R0 · E ⊆ (G− x) ⊆ R1 · E .
GivenF (x) = Ew[f(x,w)] a convex function onG such that for allw ∈ W, f(·, w) ∈ F(K, B), we can

compute a vector̃g(x) satisfying(18) in polynomial time using2d queries to STAT
(

Ω
(

η
[R1/R0]B

))

.

Proof. Let us first bound the norm of the gradients, using the norm induced by the ellipsoidE .

‖∇f(x,w)‖E = sup
y∈E

〈∇f(x,w), y〉 ≤ 1

R0
sup
y∈G

〈∇f(x,w), y − x〉

≤ 1

R0
sup
y∈G

[f(y,w)− f(x,w)] ≤ 2B

R0
.

Next we observe that for any vectorg̃,

sup
y∈G

〈∇F (x)− g̃, y − x〉 = R1 sup
y∈G

〈

∇F (x)− g̃,
y − x

R1

〉

≤ R1 sup
y∈E

〈∇F (x)− g̃, y〉

= R1 ‖∇F (x)− g̃‖E .

From this we reduce obtaining̃g(x) satisfying (18) to a mean estimation problem in an ellipsoidal
norm with errorR0η/[2R1B], which by Theorem 3.9 (with Lemma 3.2) can be done using2d queries to

STAT
(

Ω
(

η
[R1/R0]B

))

.

It is known that ifxt = z(Gt) then the inertial ellipsoid ofGt has the desired property with the ratio of
the radii beingd.

Theorem 5.4. [52] For any convex bodyG ⊆ R
d, EG (the inertial ellipsoid ofG) satisfies

√

d+ 2

d
· EG ⊆ (G− z(G)) ⊆

√

d(d + 2) · EG.

This means that estimates of the gradients sufficient for executing the exact center-of-gravity method
can be obtained using SQs with estimation complexity ofO(d2B2/ε2).

Finally, before we can apply Theorem 5.2, we note that instead of x̂T
.
= argmint∈[T ] F (xt) we can

computẽxT = argmint∈[T ] F̃ (xt) such thatF (x̃T ) ≤ F (x̂T )+ε/2. This can be done by usingT queries to

STAT(ε/[4B]) to obtainF̃ (xt) such that|F̃ (xt)−F (xt)| ≤ ε/4 for all t ∈ [T ]. Plugging this into Theorem
5.2 we get the following (inefficient) SQ version of the center-of-gravity method.

Theorem 5.5. LetK ⊆ R
d be a convex body, and assume that for allw ∈ W, f(·, w) ∈ F(K, B). Then

there is an algorithm that for every distributionD overW finds anε-optimal solution for the stochastic con-
vex optimization problemminx∈K{Ew∼D[f(x,w)]} usingO(d2 log(B/ε)) queries to STAT(Ω(ε/[Bd])).

5.2.1 Computational Efficiency

The algorithm described in Theorem 5.5 relies on the computation of the exact center of gravity and inertial
ellipsoid for each localizer. Such computation is#P-hard in general. We now describe a computationally
efficient version of the center-of-gravity method that is based on computation of approximate center of
gravity and inertial ellipsoid via random walks, an approach was first proposed by Bertsimas and Vempala
[12].

We first observe describe the volumetric guarantee that is satisfied by any cut through an approximate
center of gravity.
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Lemma 5.6. [12] For a convex bodyG ⊆ R
d, let z be any point s.t.‖z − z(G)‖EG = t. Then, for any

halfspaceH containingz,

Vol(G ∩H) ≥
(

1

e
− t

)

Vol(G).

From this result, we know that it suffices to approximate the center of gravity in the inertial ellipsoid
norm in order to obtain the volumetric guarantee.

Lovász and Vempala [63] show that for any convex bodyG given by a membership oracle, a point
x ∈ G andR0, R1 s.t. R0 · Bd

2 ⊆ (G − x) ⊆ R1 · Bd
2 , there is a sampling algorithm based on a random

walk that outputs points that are within statistical distanceα of the uniform distribution in time polynomial
in d, log(1/α), log(R1/R0). The current best dependence ond is d4 for the first random point andd3 for
all subsequent points [61]. Samples from such a random walk can be directly used to estimate the center of
gravity and the inertial ellipsoid ofG.

Theorem 5.7. [63] There is a randomized algorithm that for anyε > 0, 1 > δ > 0, for a convex bodyG
given by a membership oracle and a pointx s.t. R0 · Bd

2 ⊆ (G − x) ⊆ R1 · Bd
2 , finds a pointz and an

origin-centered ellipsoidE s.t. with probability at least1− δ, ‖z − z(G)‖EG ≤ ε andE ⊂ EG ⊂ (1 + ε)E .
The algorithm uses̃O(d4 log(R1/R0) log(1/δ)/ε

2) calls to the membership oracle.

We now show that an algorithm having the guarantees given in Theorem 5.5 can be implemented in time
poly(d,B/ε, log(R1/R0)). More formally,

Theorem 5.8. LetK ⊆ R
d be a convex body given by a membership oracle and a pointx s.t. R0 · Bd

2 ⊆
(G − x) ⊆ R1 · Bd

2 , and assume that for allw ∈ W, f(·, w) ∈ F(K, B). Then there is an algorithm that
for every distributionD overW finds anε-optimal solution for the stochastic convex optimization problem
minx∈K{Ew∼D[f(x,w)]} usingO(d2 log(B/ε)) queries to STAT(Ω(ε/[Bd])). The algorithm succeeds
with probability≥ 2/3 and runs in poly(d,B/ε, log(R1/R0)) time.

Proof. Let the initial localizer beG = K. We will prove the following by induction: For every step of the
method, ifG is the current localizer then a membership oracle forG can be implemented efficiently given a
membership oracle forK and we can efficiently computex ∈ G such that, with probability at least1− δ,

R′
0 · Bd

2 ⊆ G− x ⊆ R′
1 · Bd

2 , (19)

whereR′
1/R

′
0 ≤ max{R1/R0, 4d}. We first note that the basis of the induction holds by the assumptions

of the theorem. We next show that the assumption of the induction allows us to compute the desired approx-
imations to the center of gravity and the inertial ellipsoidwhich in turn will allow us to prove the inductive
step.

SinceG satisfies the assumptions of Theorem 5.7, we can obtain in polynomial time (with probability
1 − δ) an approximate centerz and ellipsoidE satisfying‖z − z(G)‖EG ≤ χ andE ⊆ EG ⊆ (1 + χ)E ,
whereχ

.
= 1/e − 1/3. By Lemma 5.6 and‖z − z(G)‖EG ≤ χ, we get that volumetric guarantee holds for

the next localizerG′ with parameterγ = 2/3.
Let us now observe that

(
√

(d+ 2)/d − χ) · E + z ⊆
√

(d+ 2)/d · EG + z(G) ⊆ G.

We only prove the first inclusion, as the second one holds by Theorem 5.4. Lety ∈ αE + z (where
α =

√

(d+ 2)/d − χ)). Now we have‖y − z(G)‖EG ≤ ‖y − z‖EG + ‖z − z(G)‖EG ≤ ‖y − z‖E + χ ≤
α+ χ =

√

(d+ 2)/d. Similarly, we can prove that

G− z ⊆
√

d(d+ 2) · EG + (z(G) − z) ⊆ (
√

d(d + 2) + χ) · EG ⊆ (1 + χ)(
√

d(d+ 2) + χ) · E .
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Denotingr0
.
=
√

(d+ 2)/d−χ andr1
.
= (1+χ)(

√

d(d + 2)+χ) we obtain thatr0 · E ⊆ G− z ⊆ r1 · E ,

wherer1
r0

=
(1+χ)(

√
d(d+2)+χ)√

(d+2)/d−χ
≤ 3

2d. By Lemma 5.3 this implies that using2d queries to STAT(Ω(ε/[Bd]))

we can obtain an estimatẽg of ∇F (z) that suffices for executing the approximate center-of-gravity method.
We finish the proof by establishing the inductive step. Let the new localizerG′ be defined asG after

removing the cut throughz given byg̃ and transformed by the affine transformation induced byz andE (that
is mappingz to the origin andE to Bd

2). Notice that after the transformationr0 · Bd
2 ⊆ G̃ ⊆ r1 · Bd

2 , where
G̃ denotesG after the affine transformation.G′ is obtained fromG̃ by a cut though the origin. This implies
thatG′ contains a ball of radiusr0/2 which is inscribed in the half ofr0 · Bd

2 that is contained inG′. Let x′

denote the center of this contained ball (which can be easilycomputed from̃g, z andE). It is also easy to
see that a ball of radiusr0/2+ r1 centered atx′ containsG′. HenceG′−x′ is sandwiched by two Euclidean
balls with the ratio of radii being(r1 + r0/2)/(r0/2) ≤ 4d. Also notice that since a membership oracle for
K is given and the number of iterations of this method isO(d log(4B/ε)) then a membership oracle forG′

can be efficiently computed.
Finally, choosing the confidence parameterδ inversely proportional to the number of iterations of the

method guarantees a constant success probability.

6 Applications

In this section we describe several applications of our results. We start by giving SQ implementation of
algorithms for learning halfspaces that eliminate the linear dependence on the dimension in previous work.
Then we obtain algorithms for high-dimensional mean estimation with local differential privacy that re-
derive and generalize existing bounds. We also give the firstalgorithm for solving general stochastic convex
programs with local differential privacy. Another immediate corollary of our results is a strengthening and
generalization of algorithms for answering sequences of convex minimization queries differentially privately
given in [89]. Finally, we show that our algorithms togetherwith lower bounds for SQ algorithms give lower
bounds against convex programs.

Additional applications in settings where SQ algorithms are used can be derived easily. For example,
our results immediately imply that an algorithm for answering a sequence of adaptively chosen SQs (such
as those given in [32, 31, 8] can be used to solve a sequence of adaptively chosen stochastic convex mini-
mization problems. This question that has been recently studied by Bassily et al. [8] and our bounds can be
easily seen to strengthen and generalize some of their results (see Sec. 6.3 for an analogous comparison).

6.1 Learning Halfspaces

We now use our high-dimensional mean estimation algorithmsto address the efficiency of SQ versions of
online algorithms for learning halfspaces (also known as linear threshold functions). A linear threshold
function is a Boolean function overRd described by a weight vectorw ∈ R

d together with a threshold
θ ∈ R and defined asfw,θ(x)

.
= sign(〈w, x〉 − θ).

Margin Perceptron: We start with the classic Perceptron algorithm [75, 70]. Forsimplicity, and without
loss of generality we only consider the case ofθ = 0. We describe a slightly more general version of the
Perceptron algorithm that approximately maximizes the margin and is referred to as Margin Perceptron [3].
The Margin Perceptron with parameterη works as follows. Initialize the weightsw0 = 0d. At roundt ≥ 1,
given a vectorxt and correct predictionyt ∈ {−1, 1}, if yt · 〈wt−1, xt〉 ≥ η, then we letwt = wt−1.
Otherwise, we updatewt = wt−1 + ytxt. The Perceptron algorithm corresponds to using this algorithm
with η = 0. This update rule has the following guarantee:
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Theorem 6.1([3]). Let (x1, y1), . . . , (xt, yt) be any sequence of examples inBd
2(R)×{−1, 1} and assume

that there exists a vectorw∗ ∈ Bd
2(W ) such that for allt, yt〈w∗, xt〉 ≥ γ > 0. LetM be the number of

rounds in which the Margin Perceptron with parameterη updates the weights on this sequence of examples.
ThenM ≤ R2W 2/(γ − η)2.

The advantage of this version over the standard Perceptron is that it can be used to ensure that the final
vectorwt separates the positive examples from the negative ones withmarginη (as opposed to the plain
Percetron which does not guarantee any margin). For example, by choosingη = γ/2 one can approximately
maximize the margin while only paying a factor4 in the upper bound on the number of updates. This means
that the halfspace produced by Margin-Perceptron has essentially the same properties as that produced by
the SVM algorithm.

In PAC learning of halfspaces with margin assumption we are given random examples from a distribution
D overBd

2(R) × {−1, 1}. The distribution is assumed to be supported only on examples (x, y) that for
some vectorw∗ satisfyy〈w∗, x〉 ≥ γ. It has long been observed that a natural way to convert the Perceptron
algorithm to the SQ setting is to use the mean vector of all counterexamples with Perceptron updates [17, 14].
Namely, update using the example(x̄t, 1), wherex̄t = E(x,y)∼D[y · x | y〈wt−1,x〉 < η]. Naturally, by
linearity of the expectation, we have that〈wt−1, x̄t〉 < η and〈w∗, x̄t〉 ≥ γ, and also, by convexity, that
x̄t ∈ Bd

2(R). This implies that exactly the same analysis can be used for updates based on the mean
counterexample vector. Naturally, we can only estimatex̄t and hence our goal is to find an estimate that still
allows the analysis to go through. In other words, we need to use statistical queries to find a vectorx̃ which
satisfies the conditions above (at least approximately). The main difficulty here is preserving the condition
〈w∗, x̃〉 ≥ γ, since we do not knoww∗. However, by finding a vector̃x such that‖x̃− x̄t‖2 ≤ γ/(3W ) we
can ensure that

〈w∗, x̃〉 = 〈w∗, x̄t〉 − 〈w∗, x̄t − x̃〉 ≥ γ − ‖x̃− x̄t‖2 · ‖w∗‖2 ≥ 2γ/3.

We next note that conditions〈wt−1, x̃〉 < η and x̃ ∈ Bd
2(R) are easy to preserve. These are known and

convex constraints so we can always projectx̃ to the (convex) intersection of these two closed convex sets.
This can only decrease the distance tox̄t. This implies that, given an estimatẽx, such that‖x̃ − x̄t‖2 ≤
γ/(3W ) we can use Thm. 6.1 withγ′ = 2γ/3 to obtain an upper bound ofM ≤ R2W 2/(2γ/3 − η)2 on
the number of updates.

Now, by definition,

E
(x,y)∼D

[y · x | y〈wt−1,x〉 < η] =
E(x,y)∼D[y · x · 1{y〈wt−1,x〉<η}]

Pr(x,y)∼D[y〈wt−1,x〉 < η]
.

In PAC learning with errorε we can assume thatα
.
= Pr(x,y)∼D[y〈wt−1,x〉 < η] ≥ ε since otherwise

the halfspacefwt−1 is a sufficiently accurate hypothesis (that is classifies at least a1−ε fraction of examples
with margin at leastη). This implies that it is sufficient to find a vectorz̃ such that‖z̃ − z̄‖2 ≤ αγ/(3W ),
wherez̄ = E(x,y)∼D[y · x · 1{y〈wt−1,x〉<η}].

Now the distribution ony · x · 1{y〈wt−1,x〉<η} is supported onBd
2(R) and therefore using Theorem 3.9

we can get the desired estimate using2d queries to STAT(Ω(εγ/(RW ))). In other words, the estimation
complexity of this implementation of Margin Perceptron isO(RW/(εγ)2). We make a further observation
that the dependence of estimation complexity onε can be reduced from1/ε2 to1/ε by using VSTAT in place
of STAT. This follows from Lemma 2.2 which implies that we need to pay only linearly for conditioning on
1{y〈wt−1,x〉<η}. Altogether we get the following result which we for simplicity state forη = γ/2:

Theorem 6.2. There exists an efficient algorithmMargin-Perceptron-SQ that for everyε > 0 and dis-
tribution D overBd

2(R) × {−1, 1} that is supported on examples(x, y) such that for some vectorw∗ ∈
Bd
2(W ) satisfyy〈w∗, x〉 ≥ γ, outputs a halfspacew such thatPr(x,y)∼D[y〈w,x〉 < γ/2] ≤ ε. Margin-

Perceptron-SQ usesO(d(WR/γ)2) queries to VSTAT(O((WR/γ)2/ε)).
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The estimation complexity of our algorithm is the same as thesample complexity of the PAC learning
algorithm for learning large-margin halfspaces obtained via a standard online-to-batch conversion (e.g.[18]).
SQ implementation of Perceptron were used to establish learnability of large-margin halfspaces with random
classification noise [17] and to give a private version of Perceptron [15]. Perceptron is also the basis of SQ
algorithms for learning halfspaces that do not require a margin assumption [14, 28]. All previous analyses
that we are aware of used coordinate-wise estimation ofx̄ and resulted in estimation complexity bound of
O(d(WR/(γε)2). Perceptron and SVM algorithms are most commonly applied over a very large number
of variables (such as when using a kernel) and the dependenceof estimation complexity ond would be
prohibitive in such settings.

Online p-norm algorithms: The Perceptron algorithm can be seen as a member in the familyof online
p-norm algorithms [43] withp = 2. The other famous member of this family is the Winnow algorithm
[59] which corresponds top = ∞. For p ∈ [2,∞], a p-norm algorithm is based onp-margin assumption:
there existsw∗ ∈ Bd

q (R) such that for each example(x, y) ∈ Bd
p(R) × {−1, 1} we havey〈w∗, x〉 ≥ γ.

Under this assumption the upper bound on the number of updates is O((WR/γ)2) for p ∈ [2,∞) and
O(log d · (WR/γ)2) for p = ∞. Our ℓp mean estimation algorithms can be used in exactly the same way
to (approximately) preserve the margin in this case giving us the following extension of Theorem 6.2.

Theorem 6.3. For everyp ∈ [2,∞], there exists an efficient algorithmp-norm-SQ that for everyε > 0 and
distributionD overBd

p(R)×{−1, 1} that is supported on examples(x, y) that for some vectorw∗ ∈ Bd
q (W )

satisfyy〈w∗, x〉 ≥ γ, outputs a halfspacew such thatPr(x,y)∼D[y〈w,x〉 < 0] ≤ ε. For p ∈ [2,∞) p-
norm-SQ usesO(d log d(WR/γ)2) queries to VSTAT(O(log d(WR/γ)2/ε)) and forp = ∞ p-norm-SQ
usesO(d log d(WR/γ)2) queries to VSTAT(O((WR/γ)2/ε)).

It is not hard to prove that margin can also be approximately maximized for these more general algo-
rithms but we are not aware of an explicit statement of this inthe literature. We remark that to implement
the Winnow algorithm, the update vector can be estimated viastraightforward coordinate-wise statistical
queries.

Many variants of the Perceptron and Winnow algorithms have been studied in the literature and applied
in a variety of settings (e.g. [40, 78, 22]). The analysis inevitably relies on a margin assumption (and its
relaxations) and hence, we believe, can be implemented using SQs in a similar manner.

6.2 Local Differential Privacy

We now exploit the simulation of SQ algorithms by locally differentially private (LDP) algorithms [54] to
obtain new LDP mean estimation and optimization algorithms.

We first recall the definition of local differential privacy.In this model it is assumed that each data
sample obtained by an analyst is randomized in a differentially private way.

Definition 6.4. Anα-local randomizerR : W → Z is a randomized algorithm that satisfies∀w ∈ W and
z1, z2 ∈ Z, Pr[R(w) = z1] ≤ eα Pr[R(w) = z2]. AnLRD oracle for distributionD overW takes as an
input a local randomizerR and outputs a random valuez obtained by first choosing a random samplew
fromD and then outputtingR(w). An algorithm isα-local if it uses access only toLRD oracle. Further, if
the algorithm usesn samples such that samplei is obtained fromαi-randomizerRi then

∑

i∈[n] αi ≤ α.

The composition properties of differential privacy imply that anα-local algorithm isα-differentially
private [30].

Kasiviswanathan et al. [54] show that one can simulate STATD(τ) oracle with success probability1− δ
by anα-local algorithm usingn = O(log(1/δ)/(ατ)2) samples fromLRD oracle. This has the following
implication for simulating SQ algorithms.
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Theorem 6.5([54]). LetASQ be an algorithm that makes at mostt queries to STATD(τ). Then for every
α > 0 and δ > 0 there is anα-local algorithmA that usesn = O(t log(t/δ)/(ατ2)) samples fromLRD

oracle and produces the same output asASQ (for some answers of STATD(τ)) with probability at least
1− δ.

Kasiviswanathan et al. [54] also prove a converse of this theorem that usesn queries to STAT(Θ(e2αδ/n))
to simulaten samples of anα-local algorithm with probability1− δ. The high accuracy requirement of this
simulation implies that it is unlikely to give a useful SQ algorithm from an LDP algorithm.

Mean estimation: Duchi et al. [26] giveα-local algorithms forℓ2 mean estimation usingO(d/(εα)2)
samplesℓ∞ mean estimation usingO(d log d/(εα)2) samples (their bounds are for the expected errorε but
we can equivalently treat them as ensuring errorε with probability at least2/3). They also prove that these
bounds are tight. We observe that a direct combination of Thm. 6.5 with our mean estimation algorithms
implies algorithms with nearly the same sample complexity (up to constants forq = ∞ and up to aO(log d)
factor forq = 2). In addition, we can as easily obtain mean estimation results for other norms. For example
we can fill theq ∈ (2,∞) regime easily.

Corollary 6.6. For everyα andq ∈ [2,∞] there is anα-local algorithm forℓq mean estimation with error
ε and success probability of at least2/3 that usesn samples fromLRD where:

• For q = 2 andq = ∞, n = O(d log d/(αε)2).

• For q ∈ (2,∞), n = O(d log2 d/(αε)2).

Convex optimization: Duchi et al. [27] give locally private versions of the mirror-descent algorithm for
ℓ1 setup and gradient descent forℓ2 setup. Their algorithms achieve the guarantees of the (non-private)
stochastic versions of these algorithms at the expense of using O(d/α2) times more samples. For example
for the mirror-descent over theBd

1 the bound isO(d log d(RW/εα)2) samples.α-local simulation of our al-
gorithms from Sec. 4 can be used to obtainα-local algorithms for these problems. However such simulation
leads to an additional factor corresponding to the number ofiterations of the algorithm. For example for
mirror-descent inℓ1 setup we will obtain andO(d log d/α2 · (RW/ε)4) bound. At the same time our results
in Sec. 4 and Sec. 5 are substantially more general. In particular, our center-of-gravity-based algorithm
(Thm. 5.8) gives the firstα-local algorithm for stochastic convex bounded-range programs.

Corollary 6.7. Letα > 0, ε > 0. There is anα-local algorithm that for any convex bodyK given by a mem-
bership oracle with the guarantee thatBd

2(R0) ⊆ K ⊆ Bd
2(R1) and any convex programminx∈KEw∼D[f(x,w)]

in R
d, where∀w, f(·, w) ∈ F(K, B), with probability at least2/3, outputs anε-optimal solution to the pro-

gram in time poly(d, B
αε , log (R1/R0)) and usingn = Õ(d4B2/(ε2α2)) samples fromLRD.

We note that a closely related application is also discussedin [9]. It relies on the random walk-based
approximate value oracle optimization algorithm similar to the one we outlined in Sec. 5.1. Known op-
timization algorithms that use only the approximate value oracle require a substantially larger number of
queries than our algorithm in Thm. 5.8 and hence need a substantially larger number of samples to imple-
ment (specifically, for the setting in Cor. 6.7,n = Õ(d6.5B2/(ε2α2)) is implied by the algorithm given in
[9]).

6.3 Differentially Private Answering of Convex Minimization Queries

An additional implication in the context of differentiallyprivate data analysis is to the problem of releasing
answers to convex minimization queries over a single dataset that was recently studied by Ullman [89]. For
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a datasetS = (wi)ni=1 ∈ Wn, a convex setK ⊆ R
d and a family of convex functionsF = {f(·, w)}w∈W

overK, let qf (S)
.
= argminx∈K

1
n

∑

i∈[n] f(x,w
i). Ullman [89] considers the question of how to answer

sequences of such queriesε-approximately (that is by a point̃x such that1n
∑

i∈[n] f(x̃, w
i) ≤ qf (S) + ε).

We make a simple observation that our algorithms can be used to reduce answering of such queries to
answering of counting queries. Acountingquery for a data setS, query functionφ : W → [0, 1] and
accuracyτ returns a valuev such that|v − 1

n

∑

i∈[n] φ(w
i)| ≤ τ . A long line of research in differential

privacy has considered the question of answering counting queries (see [29] for an overview). In particular,
Hardt and Rothblum [46] prove that given a dataset of sizen ≥ n0 = O(

√

log(|W|) log(1/β) · log t/(ατ2)
it is possible to(α, β)-differentially privately answer any sequence oft counting queries with accuracyτ
(and success probability≥ 2/3).

Note that a convex minimization query is equivalent to a stochastic optimization problem whenD is
the uniform distribution over the elements ofS (denote it byUS). Further, aτ -accurate counting query is
exactly a statistical query forD = US . Therefore our SQ algorithms can be seen as reductions from convex
minimization queries to counting queries. Thus to answert convex minimization queries with accuracyε
we can use the algorithm for answeringt′ = tm(ε) counting queries with accuracyτ(ε), wherem(ε) is
the number of queries to STAT(τ(ε)) needed to solve the corresponding stochastic convex minimization
problems with accuracyε. The sample complexity of the algorithm for answering counting queries in [46]
depends only logarithmically ont. As a result, the additional price for such implementation is relatively
small since such algorithms are usually considered in the setting wheret is large andlog |W| = Θ(d).
Hence the counting query algorithm in [46] together with theresults in Corollary 4.7 immediately imply an
algorithm for answering such queries that strengthens quantitatively and generalizes results in [89].

Corollary 6.8. Let p ∈ [1, 2], L0, R > 0, K ⊆ Bd
p(R) be a convex body and letF = {f(·, w)}w∈W ⊂

F0
‖·‖p(K, L0) be a finite family of convex functions. LetQF be the set of convex minimization queries

corresponding toF . For anyα, β, ε, δ > 0, there exists an(α, β)-differentially private algorithm that, with
probability at least1− δ answers any sequence oft queries fromQF with accuracyε on datasets of sizen
for

n ≥ n0 = Õ

(

(L0R)2
√

log(|W|) · log t
ε2α

· polylog
(

d

βδ

)

)

.

For comparison, the results in [89] only consider thep = 2 case and the stated upper bound is

n ≥ n0 = Õ

(

(L0R)2
√

log(|W|) ·max{log t,
√
d}

ε2α
· polylog

(

1

βδ

)

)

.

Our bound is a significant generalization and an improvementby a factor of at least̃O(
√
d/ log t). Ullman

[89] also shows that for generalized linear regression one can replace the
√
d in the maximum byL0R/ε.

The bound in Corollary 6.8 also subsumes this improved bound(in most parameter regimes of interest).
Finally, in theκ-strongly convex case (withp = 2), plugging our bounds from Corollary 4.11 into the

algorithm in [46] we obtain that it suffices to use a dataset ofsize

n ≥ n0 = Õ

(

L2
0

√

log(|W|) · log(t · d · logR)

εακ
· polylog

(

1

βδ

)

)

.

The bound obtained by Ullman [89] for the same function classis

n0 = Õ

(

L2
0R
√

log(|W|)
εα

·max

{ √
d√
κε

,
R log t

ε

}

polylog

(

1

βδ

)

)

.
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Here our improvement over [89] is two-fold: We eliminate the
√
d factor and we essentially eliminate the

dependence onR (as in the non-private setting). We remark that our bound might appear incomparable to
that in [89] but is, in fact, stronger since it can be assumed thatκ ≥ ε/R2 (otherwise, bounds that do not
rely on strong convexity are better).

6.4 Lower Bounds

We now describe a generic approach to combining SQ algorithms for stochastic convex optimization with
lower bounds against SQ algorithms to obtain lower bounds against certain type of convex programs. These
lower bounds are for problems in which we are given a set of cost functions(vi)ni=1 from some collec-
tion of functionsV over a set of “solutions”Z and the goal is to (approximately) minimize or maximize
1
n

∑

i∈[n] vi(z) for z ∈ Z. Here eitherZ is non-convex or functions inV are non-convex (or both). Nat-
urally, this captures loss (or error) of a model in machine learning and also the number of (un)satisfied
constraints in constraint satisfaction problems (CSPs). For example, in the MAX-CUT problemz ∈ {0, 1}d
represents a subset of vertices andV consists of

(

d
2

)

, “zi 6= zj” predicates.
A standard approach to such non-convex problems is to mapZ to a convex bodyK ⊆ R

N and map
V to convex functions overK in such a way that the resulting convex optimization problemcan be solved
efficiently and the solution allows one to recover a “good” solution to the original problem. For example,
by ensuring that the mappings,M : Z → K andT : V → F satisfy: for allz andv, v(z) = (T (v))(M(z))
and for all instances of the problem(vi)ni=1,

min
z∈Z

1

n

∑

i∈[n]
vi(z)−min

x∈K
1

n

∑

i∈[n]
(T (vi))(x) < ε. (20)

(Approximation is also often stated in terms of the ratio between the original and relaxed values and referred
to as the integrality gap. This distinction will not be essential for our discussion.) The goal of lower bounds
against such approaches is to show that specific mappings (orclasses of mappings) will not allow solving
the original problem via this approach,e.g.have a large integrality gap.

The class of convex relaxations for which our approach giceslower bounds are those that are “easy”
for SQ algorithms. Accordingly, we define the following measure of complexity of convex optimization
problems.

Definition 6.9. For an SQ oracleO, t > 0 and a problemP over distributions we say thatP ∈ Stat(O, t)
if P can be solved using at mostt queries toO for the input distribution. For a convex setK, a setF of
convex functions overK andε > 0 we denote by Opt(K,F , ε) the problem of finding, for every distribution
D overF , x∗ such thatF (x∗) ≤ minx∈K F (x) + ε, whereF (x)

.
= Ef∼D[f(x)].

For simplicity, let’s focus on the decision problem6 in which the input distributionD belongs toD =
D+ ∪ D−. LetP (D+,D−) denote the problem of deciding whether the input distribution is inD+ or D−.
This is a distributional version of apromiseproblem in which an instance can be of two types (for example
completely satisfiable and one in which at most half of the constraints can be simultaneously satisfied).
Statistical query complexity upper bounds are preserved under pointwise mappings of the domain elements
and therefore an upper bound on the SQ complexity of a stochastic optimization problem implies an upper
bound on any problem that can be reduced pointwise to the stochastic optimization problem.

Theorem 6.10.LetD+ andD− be two sets of distributions over a collection of functionsV on the domain
Z. Assume that for someK and F there exists a mappingT : V → F such that for allD ∈ D+,

6Indeed, hardness results for optimization are commonly obtained via hardness results for appropriately chosen decision prob-
lems.
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minx∈KEv∼D[(T (v))(x)] > α+ and for allD ∈ D−, minx∈KEv∼D[(T (v))(x)] ≤ α−. Then if for an SQ
oracleO andt we have a lower boundP (D+,D−) 6∈ Stat(O, t) then we obtain that Opt(K,F , α+−α−) 6∈
Stat(O, t).

The conclusion of this theorem, namely Opt(K,F , α+ − α−) 6∈ Stat(O, t), together with upper bounds
from previous sections can be translated into a variety of concrete lower bounds on the dimension, ra-
dius, smoothness and other properties of convex relaxations to which one can map (pointwise) instances of
P (D+,D−). We also emphasize that the resulting lower bounds are structural and do not assume that the
convex program is solved using an SQ oracle or efficiently.

Note that the assumptions on the mapping in Thm. 6.10 are stated for the expected valueminx∈KEv∼D[(T (v))(x)]
rather than for averages over given relaxed cost functions as in eq. (20). However these distributional set-
tings are usually considered only when the number of available samples ensures that for everyx the average
over random samples1n

∑

i∈[n](T (vi))(x) is sufficiently close to the expectationEv∼D[(T (v))(x)] that the
distinction does not matter.

Lower bounds for planted CSPs: We now describe an instantiation of this approach using lower bounds
for constraint satisfaction problems established in [37].Feldman et al. [37] describe implications of their
lower bounds for convex relaxations using results from a preliminary version of this work (specifically
Cor. 5.1) and discuss their relationship to those for lift-and-project hierarchies (Sherali-Adams, Lovász-
Schrijver, Lasserre) of canonical LP/SDP formulations. Toexemplify this approach, we give further impli-
cations based on our results for the first-order methods.

Let Z = {−1, 1}d be the set of assignments tod Boolean variables. A distributionalk-CSP problem
is defined by a setD of distributions over Booleank-ary predicates. One way to obtain a distribution over
constraints is to first pick some assignmentz and then generate random constraints that are consistent with
z (or depend onz in some other predetermined way). In this way we can obtain a family of distributions
D parameterized by a “planted” assignmentz. Two standard examples of such instances are plantedk-SAT
(e.g.[21]) and the pseudorandom generator based on Goldreich’s proposal for one-way functions [41].

Associated with every family created in this way is a complexity parameterr which, as shown in [37],
characterizes the SQ complexity of finding the planted assignment z, or even distinguishing between a
distribution inD and a uniform distribution over the same type ofk-ary constraints. This is not crucial for
discussion here but, roughly, the parameterr is the largest valuer for which the generated distribution over
variables in the constraint is(r−1)-wise independent. In particular, random and uniformk-XOR constraints
(consistent with an assignment) have complexityk. The lower bound in [37] can be (somewhat informally)
restated as follows.

Theorem 6.1([37]). LetD = {Dz}z∈{−1,1}d be a set of “planted” distributions overk-ary constraints of
complexityr and letUk be the uniform distribution on (the same)k-ary constraints. Then any SQ algorithm
that, given access to a distributionD ∈ D ∪ {Uk} decides correctly whetherD = Dz or D = Uk needs
Ω(t) calls to VSTAT( dr

(log t)r ) for anyt ≥ 1.

Combining this with Theorem 6.10 we get the following general statement:

Theorem 6.2. LetD = {Dz}z∈{−1,1}d be a set of “planted” distributions overk-ary constraints of com-
plexityr and letUk be the uniform distribution on (the same)k-ary constraints. Assume that there exists a
mappingT that maps each constraintC to a convex functionfC ∈ F over some convexN -dimensional set
K such that for allz ∈ {−1, 1}d, minx∈KEC∼Dz [fC(x)] ≤ α− andminx∈KEC∼Uk

[fC(x)] > α+. Then
for everyt ≥ 1, Opt(K,F , α+ − α−) 6∈ Stat(VSTAT( dr

(log t)r ),Ω(t)).

Note that in the context of convex minimization that we consider here it is more natural to think of the
relaxation as minimizing the number of unsatisfied constraints (although if the objective function is linear
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then the claim also applies to maximization overK). We now instantiate this statement for solving the
k-SAT problem via a convex program in the classF0

‖·‖p(B
N
p , 1) (see Sec. 4). LetCk denote the set of all

k-clauses (OR ofk distinct variables or their negations). LetUk be the uniform distribution overCk.

Corollary 6.11. There exists a family of distributionsD = {Dz}z∈{−1,1}d overCk such that the support of
Dz is satisfied byz with the following property: For everyp ∈ [1, 2], if there exists a mappingT : Ck →
F0
‖·‖p(B

N
p , 1) such that for allz, minx∈BN

p
EC∼Dz [(T (C))(x)] ≤ 0 andminx∈BN

p
EC∼Uk

[(T (C))(x)] > α

thenα = Õ
(

(d/ log(N))−k/2
)

.

This lower bound excludes embeddings in exponentially high(e.g.2d
1/4

) dimension for which the value
of the program for unsatisfiable instances differs from thatfor satisfiable instances by more thand−k/4 (note
that the range of functions inF0

‖·‖p(B
N
p , 1) can be as large as[−1, 1] so this is a normalized additive gap).

For comparison, in the original problem the the values of these two types of instances are1 and≈ 1− 2−k.
In particular, this implies that the integrality gap is1/(1 − 2−k)− o(1) (which is optimal).
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A Uniform convexity, uniform smoothness and consequences

A space(E, ‖ · ‖) is r-uniformly convex if there exists constant0 < δ ≤ 1 such that for allx, y ∈ E

‖x‖r + δ‖y‖r ≤ ‖x+ y‖r + ‖x− y‖r
2

. (21)

From classical inequalities (see, e.g., [6]) it is known that ℓdp for 1 < p < ∞ is r-uniformly convex for
r = max{2, p}. Furthermore,

• Whenp = 1, the functionΨ(x) = 1
2(p(d)−1)‖x‖2p(d) (with p(d) = 1 + 1/ ln d) is 2-uniformly convex

w.r.t. ‖ · ‖1;

• When1 < p ≤ 2, the functionΨ(x) = 1
2(p−1)‖x‖2p is 2-uniformly convex w.r.t.‖ · ‖p;

• When2 < p < ∞, the functionΨ(x) = 2p−2

p ‖x‖pp is p-uniformly convex w.r.t.‖ · ‖p.
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By duality, a Banach space(E, ‖·‖) beingr-uniformly convex is equivalent to the dual space(E∗, ‖·‖∗)
beings-uniformly smooth, where1/r+1/s = 1. This means there exists a constantC ≥ 1 such that for all
w, z ∈ E∗

‖w + z‖s∗ + ‖w − z‖s∗
2

≤ ‖w‖s∗ + C‖z‖s∗. (22)

In the case ofℓdp space we obtain that its dualℓdq is s-uniformly smooth fors = min{2, q}. Furthermore,
when1 < q ≤ 2 the norm‖ · ‖q satisfies (22) withs = q andC = 1; when2 ≤ q < ∞, the norm‖ · ‖q
satisfies (22) withs = 2 andC = q−1. Finally, observe that forℓd∞ we can use the equivalent norm‖·‖q(d),
with q(d) = ln d+ 1:

‖x‖∞ ≤ ‖x‖q(d) ≤ e ‖x‖∞,

and this equivalent norm satisfies (22) withs = 2 andC = q(d) − 1 = ln d, that grows only moderately
with dimension.

B Sample complexity of mean estimation

The following is a standard analysis based on Rademacher complexity and uniform convexity (see, e.g.,
[71]). Let (E, ‖ · ‖) be anr-uniformly convex space. We are interested in the convergence of the empirical
mean to the true mean in the dual norm (to the one we optimize in). By Observation 3.1 this is sufficient to
bound the error of optimization using the empirical estimate of the gradient onK .

= B‖·‖.
Let (wj)nj=1 be i.i.d. samples of a random variablew with meanw̄, and letw̄n .

= 1
n

∑n
j=1w

j be the
empirical mean estimator. Notice that

‖w̄n − w̄‖∗ = sup
x∈K

|〈w̄n − w̄, x〉| .

Let (σj)nj=1 be i.i.d. Rademacher random variables (independent of(wj)j). By a standard symmetrization
argument, we have
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For simplicity, we will denote‖K‖ .
= supx∈K ‖x‖ the‖ · ‖ radius ofK. Now by the Fenchel inequality
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where the last inequality holds from thes-uniform smoothness of(E∗, ‖ · ‖∗). Proceeding inductively we
obtain

E
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∣
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n
∑

j=1
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





.

It is a straightforward computation to obtain the optimalλ̄ = ‖K‖r−1n

C1/s(
∑

j ‖wj‖s∗)
1/s , which gives an upper

bound

E
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∣
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1
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n
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



1/s

.

By simply upper bounding the quantity above byε > 0, we get a sample complexity bound for achieving
ε accuracy in expectation,n = ⌈Cr/s/εr⌉, whereC ≥ 1 is any constant satisfying (22). For the standardℓdp-
setup, i.e., where(E, ‖ · ‖) = (Rd, ‖ · ‖p), by the parameters of uniform convexity and uniform smoothness
provided in Appendix A, we obtain the following bounds on sample complexity:

(i) For p = 1, we haver = s = 2 andC = ln d, by using the equivalent norm‖ · ‖p(d). This implies that

n = O

(

ln d

ε2

)

samples suffice.

(ii) For 1 < p ≤ 2, we haver = s = 2 andC = q − 1. This implies thatn =

⌈

q − 1

ε2

⌉

samples suffice.

(iii) For 2 < p < ∞, we haver = p, s = q andC = 1. This implies thatn =

⌈

1

εp

⌉

samples suffice.

C Proof of Corollary 4.7

Note that by Proposition 4.5 in order to obtain anε-optimal solution to a non-smooth convex optimization
problem it suffices to chooseη = ε/2, andT = ⌈r2rLr

0DΨ(K)/εr⌉. SinceK ⊆ Bp(R), to satisfy (9) it is
sufficient to have for ally ∈ Bp(R),

〈∇F (x)− g̃(x), y〉 ≤ η/2.

Maximizing the left hand side ony, we get a sufficient condition:‖∇F (x) − g̃(x)‖qR ≤ η/2. We can
satisfy this condition by solving the mean estimation problem inℓq-norm with errorη/[2L0R] = ε/[4L0R]
(recall thatf(·, w) is L0 Lipschitz w.r.t. ‖ · ‖p). Next, using the uniformly convex functions forℓp from
Appendix A, together with the bound on the number of queries and error for the mean estimation problems
in ℓq-norm from Section 3.1, we obtain that the total number of queries and the type of queries we need for
stochastic optimization in the non-smoothℓp-setup are:

• p = 1: We haver = 2 andDΨ(K) =
e2 ln d

2
R2. As a consequnce, solving the convex program

amounts to usingO

(

d ·
(

L0R

ε

)2

ln d

)

queries to STAT

(

ε

4L0R

)

.

• 1 < p < 2: We haver = 2 andDΨ(K) =
1

2(p − 1)
R2. As a consequence, solving the convex

program amounts to usingO

(

d log d · 1

(p− 1)

(

L0R

ε

)2
)

queries to STAT

(

Ω

(

ε

[log d]L0R

))

.

45



• p = 2: We haver = 2 andDΨ(K) = R2. As a consequence, solving the convex program amounts to

usingO

(

d ·
(

L0R

ε

)2
)

queries to STAT

(

Ω

(

ε

L0R

))

.

• 2 < p < ∞: We may chooser = p, DΨ(K) =
2p−2

p
Rp. As a consequence, solving the convex

program amounts to usingO

(

d log d · 22p−2

(

L0R

ε

)p)

queries to VSTAT

((

64L0R log d

ε

)p)

.

D Proof of Corollary 4.9

Similarly as in Appendix C, givenx ∈ K, we can obtaiñg(x) by mean estimation problem inℓq-norm with
errorε/[12L0R] (notice we have chosenη = ε/6).

Now, by Proposition 4.8, in order to obtain anε-optimal solution it suffices to run the accelerated method

for T =
⌈

√

2L1DΨ(K)/ε
⌉

iterations, each of them requiring̃g as defined above. By using the2-uniformly

convex functions forℓp, with 1 ≤ p ≤ 2, from Appendix A, together with the bound on the number of
queries and error for the mean estimation problems inℓq-norm from Section 3.1, we obtain that the total
number of queries and the type of queries we need for stochastic optimization in the smoothℓp-setup is:

• p = 1: We haver = 2 andDΨ(K) =
e2 ln d

2
R2. As a consequnce, solving the convex program

amounts to usingO

(

d ·
√

ln d · L1R
2

ε

)

queries to STAT

(

ε

12L0R

)

.

• 1 < p < 2: We haver = 2 andDΨ(K) =
1

2(p − 1)
R2. As a consequence, solving the convex

program amounts to usingO

(

d log d ·
√

1

(p− 1)
· L1R

2

ε

)

queries to STAT

(

Ω

(

ε

[log d]L0R

))

;

• p = 2: We haver = 2 andDΨ(K) = R2. As a consequence, solving the convex program amounts to

usingO

(

d ·
√

L1R
2

ε

)

queries to STAT

(

Ω

(

ε

L0R

))

.
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