

QUASI-GRAPHIC MATROIDS

JIM GEELEN, BERT GERARDS, AND GEOFF WHITTLE

ABSTRACT. Frame matroids and lifted-graphic matroids are two interesting generalizations of graphic matroids. Here we introduce a new generalization, *quasi-graphic matroids*, that unifies these two existing classes. Unlike frame matroids and lifted-graphic matroids, it is easy to certify that a matroid is quasi-graphic. The main result of the paper is that every 3-connected representable quasi-graphic matroid is either a lifted-graphic matroid or a frame matroid.

1. INTRODUCTION

Let G be a graph and let M be a matroid. For a vertex v of G we let $\text{loops}_G(v)$ denote the set of loop-edges of G at the vertex v . We say that G is a *framework* for M if

- (1) $E(G) = E(M)$,
- (2) $r_M(E(H)) \leq |V(H)|$ for each component H of G , and
- (3) for each vertex v of G we have $\text{cl}_M(E(G - v)) \subseteq E(G - v) \cup \text{loops}_G(v)$.

This definition is motivated by the following result that is essentially due to Seymour [1].

Theorem 1.1. *Let G be a graph with c components and let M be a matroid. Then M is the cycle matroid of G if and only if G is a framework for M and $r(M) \leq |V(G)| - c$.*

We will call a matroid *quasi-graphic* if it has a framework. Next we will consider two classes of quasi-graphic matroids; namely “lifted-graphic matroids” and “frame matroids”.

We say that a matroid M is a *lift* of a matroid N if there is a matroid M' and an element $e \in E(M')$ such that $M' \setminus e = M$ and $M'/e = N$.

Date: December 8, 2015.

1991 Mathematics Subject Classification. 05B35.

Key words and phrases. matroids, representation, graphic matroids, frame matroids.

This research was partially supported by grants from the Office of Naval Research [N00014-10-1-0851], NSERC [203110-2011], the Marsden Fund of New Zealand, and NWO (The Netherlands Organisation for Scientific Research).

If M is a lift of a graphic matroid, then we will call M a *lifted-graphic matroid*.

Theorem 1.2. *If G is a graph and M is a lift of $M(G)$, then G is a framework for M .*

We say that a matroid M is *framed* if it has a basis V such that for each element $e \in E(M)$ there is a set $W \subseteq V$ such that $|W| \leq 2$ and $e \in \text{cl}_M(W)$. A *frame matroid* is a restriction of a framed matroid.

Theorem 1.3. *Every frame matroid is quasi-graphic.*

Our main result is that for matroids that are both 3-connected and representable, there are no kinds of quasi-graphic matroids other than those described above.

Theorem 1.4. *Let M be a 3-connected representable matroid. If M is quasi-graphic, then either M is a frame matroid or M is a lifted-graphic matroid.*

The representability condition in Theorem 1.4 is necessary; the Vámos matroid, for example, is quasi-graphic but it is neither a frame matroid nor a lifted-graphic matroid. However, for frameworks with loop-edges, we do not require representability.

Theorem 1.5. *Let G be a framework for a 3-connected matroid M . If G has a loop-edge, then M is either a frame matroid or a lifted-graphic matroid.*

Our proof of Theorem 1.5 uses results of Zaslavsky [2] who characterized frame matroids and lifted-graphic matroids using “biased graphs”; we review those results in Sections 4 and 5.

One attractive feature of frameworks is that they are easy to certify. That is, given a graph G and a matroid M one can readily check whether or not G is a framework for M . More specifically, there is a polynomial-time algorithm that given G and M (via its rank oracle) will decide whether or not G is a framework for M .

We conjecture that there is no general way for certifying that a matroid is a frame matroid, or a lifted-graphic matroid, using only polynomially many rank evaluations.

Conjecture 1.6. *For any polynomial $p(\cdot)$ there is a frame matroid M such that for any set \mathcal{S} of subsets of $E(M)$ with $|\mathcal{S}| \leq p(|M|)$ there is a non-frame matroid M' such that $E(M') = E(M)$ and $r_{M'}(X) = r_M(X)$ for each $X \in \mathcal{S}$.*

Conjecture 1.7. *For any polynomial $p(\cdot)$ there is a lifted-graphic matroid M such that for any set \mathcal{S} of subsets of $E(M)$ with $|\mathcal{S}| \leq p(|M|)$ there is a non-lifted-graphic matroid M' such that $E(M') = E(M)$ and $r_{M'}(X) = r_M(X)$ for each $X \in \mathcal{S}$.*

In stark contrast to these two negative conjectures, we conjecture that the problem of recognizing quasi-graphic matroids is tractable.

Conjecture 1.8. *There is a polynomial-time algorithm that given a matroid M , via its rank-oracle, decides whether or not M is quasi-graphic.*

2. MINORS OF QUASI-GRAPHIC MATROIDS

We will start by proving that the class of quasi-graphic matroids is minor-closed.

Lemma 2.1. *Let G be a framework for M . If H is a component of G , then H is a framework for $M|E(H)$.*

Proof. Note that conditions (1) and (2) are immediate. Condition (3) follows from the fact that for each flat F of M , the set $F \cap E(H)$ is a flat of $M|E(H)$. \square

The following result is very easy, but it is used repeatedly.

Lemma 2.2. *Let G be a framework for M . If v is a vertex of G that is incident with at least one non-loop-edge, then $r_M(E(G - v)) < r(M)$. Moreover, if v has degree one, then $r_M(E(G - v)) = r(M) - 1$.*

Proof. This follows directly from (3). \square

Lemma 2.3. *Let G be a connected framework for M and let H be a subgraph of G . Then $|V(H)| - r(M|E(H)) \geq |V(G)| - r(M)$.*

Proof. The result holds when H is trivial, so we may assume that $V(H) \neq \emptyset$. We can extend H to a spanning subgraph H^+ of G with $|E(H^+)| - |E(H)| = |V(G)| - |V(H)|$. Clearly $|V(H^+)| - r(E(H^+)) \geq |V(G)| - r(M)$. If $H \neq H^+$, then there is a vertex $v \in V(H^+) - V(H)$ that has degree one in H^+ . By Lemma 2.2, $r(E(H^+ - v)) = r(E(H)) - 1$ and, hence, $|V(H^+ - v)| - r(E(H^+ - v)) \geq |V(G)| - r(M)$. Now we obtain the result by repeatedly deleting vertices in $V(H^+) - V(H)$ in this way. \square

If X is a set of edges in a graph G , then $G[X]$ is the subgraph of G with edge-set X and with no isolated vertices.

Lemma 2.4. *Let G be a framework for M and let $X \subseteq E(M)$. Then $G[X]$ is a framework for $M|X$.*

Proof. Condition (1) is clearly satisfied. Condition (2) follows from Lemmas 2.1 and 2.3. Condition (3) follows from the fact that for each flat F of M , the set $F \cap E(H)$ is a flat of $M|E(H)$. \square

The following two results give sufficient conditions for independence and dependence, respectively, for a set in a matroid given only the structure in the framework.

Lemma 2.5. *Let G be a framework for M . If F is a forest of G , then $E(F)$ is an independent set of M .*

Proof. We may assume that $E(F)$ is non-empty and, hence, that F has a degree-one vertex v . By Lemma 2.2, $r_M(E(F)) = r_M(E(F - v)) + 1$. Now the result follows inductively. \square

Lemma 2.6. *Let G be a framework for G . If H is a subgraph of G and $|E(H)| > |V(G)|$, then $E(H)$ is a dependent set of M .*

Proof. By Lemma 2.4 and (2), we have $r_M(E(H)) \leq |V(H)|$. So, if $|E(H)| > |V(G)|$, then $E(H)$ is a dependent set of M . \square

We can now prove Theorem 1.1.

Theorem (Theorem 1.1 restated). *Let G be a graph with c components and let M be a matroid. Then M is the cycle matroid of G if and only if G is a framework for M and $r(M) \leq |V(G)| - c$.*

Proof. By Lemma 2.5 and the fact that $r(M) \leq |V(G)| - c$, we have $r(E(H)) = |V(H)| - 1$ for each component H of G . Hence we may assume that G is connected. By Lemma 2.5, the edge-set of each forest of G is independent in M . Therefore, it suffices to prove, for each circuit C of G , that $E(C)$ is dependent in M . By Lemma 2.3, $|V(C)| - r(E(C)) \geq |V(G)| - r(E(G)) = 1$. So $r(E(C)) < |V(C)| = |E(C)|$ and, hence, $E(C)$ is dependent as required. \square

To prove that the class of quasi-graphic matroids is closed under contraction, we consider two cases depending on whether or not we are contracting a loop-edge of the framework.

Lemma 2.7. *Let G be a framework for M and let e be a non-loop-edge of G . Then G/e is a framework for M/e .*

Proof. Conditions (1) and (2) are clearly satisfied. Let u and v be the ends of e in G , and let f be an edge of G that is incident with u but not with v . To prove (3) it suffices to prove that there exists a cocircuit C in M such that $f \in C$, $e \notin C$, and C contains only edges incident with either u or v .

By (3), there exist cocircuits C_e and C_f such that $e \in C_e$, that C_e contains only edges incident with v , that $f \in C_f$, and that C_f contains only edges incident with u . We may assume that $e \in C_f$ since otherwise we could take $C = C_f$. Since f is not incident with v , we have $f \notin C_e$. Then, by the strong circuit exchange axiom, there is a cocircuit C of M with $f \in C \subseteq (C_1 \cup C_2) - \{e\}$, as required. \square

Lemma 2.8. *Let G be a framework for M , let e be a loop-edge of G at a vertex v and let H be the graph obtained by first, for each non-loop edge $f = vw$ incident with v adding f as a loop at w , and then for each loop-edge f of $G - e$ at v adding f as a loop on an arbitrary vertex. If e is not a loop of M , then H is a framework for M/e .*

Proof. Conditions (1) and (2) are clearly satisfied. By Lemma 2.4, we have $r_M(\text{loops}_G(v)) = 1$, so each element of $\text{loops}_G(v) - \{e\}$ is a loop in M/e . Each vertex $w \in V(G) - \{v\}$ is incident with the same edges in G as it is in H except for the elements in $\text{loops}_G(v)$. Moreover, $\text{cl}_M(E(G - w)) = \text{cl}_{M/e}(E(H - w)) \cup \{e\}$. Therefore (3) follows. \square

We have proved the following:

Theorem 2.9. *The class of quasi-graphic matroids is closed under taking minors.*

3. BALANCED CIRCUITS

Let G be a framework for a matroid M . If C is a circuit of G , then, by Lemmas 2.3 and 2.5, $E(C)$ is either independent in M or $E(C)$ is a circuit in M ; we say that C is *balanced* if $E(C)$ is a circuit of M .

Lemma 3.1. *Let G be a framework for M . Then $M = M(G)$ if and only if each circuit of G is balanced.*

Proof. If $M = M(G)$, then each circuit of G is balanced. Conversely, suppose that each circuit of G is balanced. Let F be a maximal forest in G . Since each circuit is balanced, $E(F)$ is a basis of M . Then, by Theorem 1.1, $M = M(G)$. \square

A *theta* is a 2-connected graph that has exactly two vertices of degree 3 and all other vertices have degree 2. Observe that there are exactly three circuits in a theta.

Lemma 3.2. *Let G be a framework for M and let H be a theta-subgraph of G . If two of the circuits in H are balanced, then so too is the third.*

Proof. If there are two balanced circuits in H then $r_M(E(H)) \leq |E(H)| - 2 = |V(H)| - 1$. So, by Theorem 1.1, $M|E(H) = M(H)$ and, by Lemma 3.1, all circuits of H are balanced. \square

The following result describes the circuits of a matroid in terms of the framework; first we will give an unusual example to demonstrate one of the outcomes. If M consists of a single circuit and G is a graph with $E(G) = E(M)$ whose components are circuits, then G is a framework for M .

Lemma 3.3. *Let G be a framework for M and let C be a circuit in M . Then either*

- $G[C]$ is a balanced circuit,
- $G[C]$ is a connected graph with minimum degree at least two, $|C| = V(G[C]) + 1$, and $G[C]$ has no balanced circuits, or
- $G[C]$ is a collection of vertex-disjoint non-balanced circuits.

Proof. We may assume that $G[C]$ is not a balanced circuit, and hence, that $G[C]$ contains no balanced circuit. Next suppose that $|C| \geq V(G[C]) + 1$. By Lemma 2.6, C is minimal with this property. Hence $G[C]$ is connected, the minimum degree of $G[C]$ is two, and $|C| = V(G[C]) + 1$. Now suppose that $|C| \leq V(G[C])$ and consider a component H of $G[C]$; it suffices to show that $G[C]$ is a circuit. By Lemma 2.6 and the argument above, we may assume that $|E(H)| \leq |V(H)|$. If H is not a circuit there is a degree-one vertex v of H . Moreover, the edge e that is incident with v is not a loop-edge. Then, by (3), the element e is a coloop of $M|C$, which contradicts the fact that C is a circuit. \square

For a set X of elements in a matroid M we let

$$\lambda_M(X) = r_M(X) + r_M(E(M) - X) - r(M).$$

Lemma 3.4. *Let G be a framework for M . If H is a component of G , then $\lambda_M(E(H)) \leq 1$.*

Proof. By Lemma 2.2, $r(E(M) - E(H)) \leq r(M) - (|V(H)| - 1)$. Hence $\lambda_M(E(H)) = r_M(E(H)) + r_M(E(M) - E(H)) - r(M) \leq |V(H)| + (r(M) - (|V(H)| - 1)) - r(M) = 1$. \square

The following result is an immediate consequence of Lemma 3.4.

Lemma 3.5. *If G is a framework for a 3-connected matroid M with $|M| \geq 4$ and G has no isolated vertices, then either*

- G is connected, or
- G has two components one of which consists of a single vertex with a loop.

Lemma 3.6. *Let M be a 3-connected matroid with $|E(M)| \geq 4$. If M is quasi-graphic, then M has a connected framework.*

Proof. Let G be a framework for M and suppose that G is not connected. We may assume that G has no isolated vertices. Then, by Lemma 3.5, G has two components, one of which consists of a single vertex v and a single edge e . Since e is not a coloop of M , $r(M) \leq |V(G)| - 1$. Let $w \in V(G) - \{v\}$. Now we construct a new graph G^+ by adding a new edge f with ends v and w and let M^+ be a matroid obtained from M by adding f as a coloop. Note that G^+ is a framework for M^+ . Therefore G^+/f is a framework for M^+/f . Since f is a coloop of M^+ , we have $M^+/f = M^+ \setminus f = M$. So G^+/f is a connected framework for M . \square

Lemma 3.7. *Let M be a 3-connected matroid with $|E(M)| \geq 4$. If G is a connected framework for M , then G is 2-connected.*

Proof. Suppose otherwise. Then there is a pair (H_1, H_2) of subgraphs of G such that $G = H_1 \cup H_2$, $|V(H_1) \cap V(H_2)| = 1$, and $|V(H_1)|, |V(H_2)| \geq 2$. Note that H_1 and H_2 are both connected. Now $M(G)$ is not 3-connected, so, by Lemma 1.1, $r(M) = |V(G)|$. Therefore $\lambda_M(E(H_1)) \leq |V(H_1)| + |V(H_2)| - |V(G)| = 1$. Since M is 3-connected either $|E(H_1)| \leq 1$ or $|E(H_2)| \leq 1$; we may assume that $|E(H_1)| = 1$. Let $e \in E(H_1)$. Since H_1 is a connected and $|V(H_1)| \geq 2$, the edge e is not a loop. Therefore, by (3), e is a coloop of M . This contradicts the fact that M is 3-connected. \square

The following two lemmas refine Lemma 3.3 in the case that M is 3-connected.

Lemma 3.8. *Let M be a 3-connected matroid with $|M| \geq 4$ and let G be a framework for M . If C_1 and C_2 are vertex-disjoint non-balanced circuits of G , then either*

- $E(C_1) \cup E(C_2)$ is a circuit of M ,
- $E(C_1) \cup E(C_2) \cup E(P)$ is a circuit of M for each minimal path P in G from $V(C_1)$ to $V(C_2)$.

Moreover, if C_1 and C_2 are in distinct components of G , then $E(C_1) \cup E(C_2)$ is a circuit of M .

Proof. We may assume that $E(C_1) \cup E(C_2)$ is not a circuit. Let P be a minimal path in G from $V(C_1)$ to $V(C_2)$. By Lemma 2.6, $E(C_1 \cup C_2 \cup P)$ is dependent. Let $C \subseteq E(C_1 \cup C_2 \cup P)$ be a circuit of M . By Lemma 3.3, $C = E(C_1 \cup C_2 \cup P)$.

Finally, suppose that C_1 and C_2 are in distinct components of G . We may assume that G has no isolated vertices. Then, by Lemma 3.5, G has two components one of which has a single vertex, say v , and a single loop-edge, say e . Since M is 3-connected, e is not a coloop of

M . Then, by (3), $r(M) \leq |V(G)|$. We may assume that $E(C_1) = \{e\}$; let w be a vertex of C_2 . Construct a graph G^+ from G by adding a new edge f with ends v and w and construct a new matroid M^+ by adding f as a coloop to M . Note that G^+ is a framework for M^+ and hence G^+/f is a framework for M^+/f . By Lemmas 2.6 and 3.3, $E(C_1) \cup E(C_2)$ is a circuit in M^+/f . Moreover, as f is a coloop of M^+ , we have $M^+/f = M$, so $E(C_1) \cup E(C_2)$ is a circuit in M . \square

Lemma 3.9. *Let M be a 3-connected matroid with $|M| \geq 4$ and let G be a framework for M . If C is a circuit for M , then $G[C]$ has at most two components.*

Proof. Suppose that $G[C]$ has more than two components. By Lemma 3.3, each component of G is a balanced circuit. By Lemma 3.5, two of these circuits are in the same component of G . Let P be a shortest path connecting two components of $G[C]$; let these components be C_1 and C_2 . Since C is a circuit, $G[C_1 \cup C_2]$ is independent. Therefore, by Lemma 3.8, $E(C_1 \cup C_2 \cup P)$ is a circuit of M . Let $e \in E(P)$ and $f \in E(C_1)$. By the strong exchange property for circuits, there is a circuit C' of G with $e \in C' \subseteq (C \cup E(P)) - \{f\}$. However this is inconsistent with the outcomes of Lemma 3.3. \square

4. FRAME MATROIDS

We start by proving Theorem 1.3.

Theorem (Theorem 1.3 restated). *Every frame matroid is quasi-graphic.*

Proof. Let M be a frame matroid. Note that M is a quasi-graphic matroid if and only if $\text{si}(M)$ is a quasi-graphic matroid, so we may assume that M is simple. Recall that the class of quasi-graphic matroids is closed under taking minors, so we may further assume that M is framed; let V be a basis of M such that each element is spanned by a 2-element subset of V . We now construct a graph G with vertex-set V and edge-set $E(M)$ such that, for each $v \in V$ the edge v is a loop on the vertex v and for each $e \in E(M) - V$ the edge e has ends u and v where $\{e, u, v\}$ is the unique circuit of M in $V \cup \{e\}$. We claim that G is a framework for M .

By construction $E(G) = E(M)$ and, since V is a basis of M , for each component H of G we have $r(E(H)) = |V(H)|$. Finally, for each vertex v of G , the hyperplane of M spanned by $V - \{v\}$ is $E(G - v)$. Hence G is indeed a framework for M . \square

Next we give an alternative characterization of frame matroids using frameworks; these results are effectively due to Zaslavsky [2].

Let G be a graph and let \mathcal{B} be a subset of the circuits of G . We say that \mathcal{B} satisfies the *theta-property* if there is no theta in G with exactly two of its three circuits in \mathcal{B} .

Theorem 4.1. *Let G be a graph and let \mathcal{B} be a collection of circuits in G that satisfy the theta-property. Now let $M = (E(G), \mathcal{I})$ where a set $I \subseteq E(G)$ is contained in \mathcal{I} if and only if there is no $C \in \mathcal{B}$ with $E(C) \subseteq I$ and $|E(H)| \leq |V(H)|$ for each component H of $G[I]$. Then M is a matroid.*

Proof. We call the circuits of G in \mathcal{B} *balanced*. To prove that M is a matroid it suffices to check the following conditions, which are effectively a reformulation of the circuit axioms in terms of independent sets:

- (a) $\emptyset \in \mathcal{I}$,
- (b) for each $J \in \mathcal{I}$ and $I \subseteq J$, we have $I \in \mathcal{I}$, and
- (c) for each set $I \in \mathcal{I}$ and $e \in E(M) - I$ either $I \cup \{e\} \in \mathcal{I}$ or there is a unique minimal subset C of $I \cup \{e\}$ that is not in \mathcal{I} .

Conditions (a) and (b) follow from the construction.

Let $I \in \mathcal{I}$ and $e \in E(M) - I$ with $I \cup \{e\} \notin \mathcal{I}$. Let C_1 and C_2 be minimal subsets of $I \cup \{e\}$ that are not in \mathcal{I} . Suppose for a contradiction that $C_1 \neq C_2$. By definition, for each $i \in \{1, 2\}$, we have $G[C_i - \{e\}]$ is connected, $e \in C_i$, and either $G[C_i]$ is a balanced circuit or $|C_i| > |V(G[C_i])|$. Consider $J = (C_1 \cup C_2) - \{e\}$. Since $J \subseteq I$, we have $J \in \mathcal{I}$. Since $G[C_1 - \{e\}]$ and $G[C_2 - \{e\}]$ are connected, $G[J]$ is connected. Therefore $|J| \leq |V(G[J])|$. It follows that $|C_1| \leq |V(G[C_1])|$ and $|C_2| \leq |V(G[C_2])|$. Hence $G[C_1]$ and $G[C_2]$ are balanced circuits. Now $G[C_1 \cup C_2]$ is a theta and $G[J]$ is a circuit. By the theta-property, $G[J]$ is balanced. However, this contradicts the fact that $J \in \mathcal{I}$. \square

We denote the matroid M in Theorem 4.1 by $FM(G, \mathcal{B})$.

Theorem 4.2. *If G is a graph and \mathcal{B} is a collection of circuits in G that satisfies the theta-property, then $FM(G, \mathcal{B})$ is a frame matroid.*

Proof. Let G^+ be obtained from G by adding a loop-edge e_v at each vertex of v . Now let \mathcal{B}^+ be obtained from \mathcal{B} by adding the circuits $(G[\{e_v\}] : v \in V(G))$. Since we only added loops to \mathcal{B} , the collection \mathcal{B}^+ satisfies the theta-property. Let $M^+ = FM(G^+, \mathcal{B}^+)$ and $V = \{e_v : v \in V(G)\}$. By the definition of $FM(G^+, \mathcal{B}^+)$, the set V is a basis of M^+ . For each non-loop edge e of G with ends u and v , the set $\{e_u, e, e_v\}$ is a circuit of M^+ and for each loop-edge e of G at v , the set $\{e, e_v\}$ is a circuit of M^+ . Therefore M^+ is a framed matroid and hence $FM(G, \mathcal{B})$ is a frame matroid. \square

Theorem 4.3. *A loopless matroid M is a frame matroid if and only if there is a graph G and a collection \mathcal{B} of circuits of G satisfying the theta-property such that $M = FM(G, \mathcal{B})$.*

Proof. The “if” direction of the result follows from Theorem 4.2. For the converse we may assume that M is a framed matroid; let V be a basis of M such that each element is spanned by a 2-element subset of V . We now construct a graph G with vertex-set V and edge-set $E(M)$ such that, for each $v \in V$ the edge v is a loop on the vertex v and for each $e \in E(M) - V$ the edge e has ends u and v where $\{e, u, v\}$ is the unique circuit of M in $V \cup \{e\}$. By the proof of Theorem 1.3, G is a framework for M .

By Lemma 3.3, it suffices to prove that, if C_1, \dots, C_k are disjoint non-balanced circuits of G , then $E(C_1 \cup \dots \cup C_k)$ is independent. This follows from the fact that $V(C_1 \cup \dots \cup C_k)$ is independent and that, for each $i \in \{1, \dots, k\}$, the sets $E(C_i)$ and $V(C_i)$ span each other. \square

5. LIFTED-GRAPHIC MATROIDS

We start by proving Theorem 1.2.

Theorem (Theorem 1.2 restated). *If G is a graph and M is a lift of $M(G)$, then G is a framework for M .*

Proof. Let e be an element of a matroid M' such that $M' \setminus e = M$ and $M'/e = M(G)$. Thus $E(M) = E(G)$. For each component H of G , $r_{M'/e}(E(H)) = |V(H)| - 1$ so $r_M(E(H)) = r_{M'}(E(H)) \leq r_{M'/e}(E(H)) + 1 = |V(H)|$. For a vertex v of G , we have $\text{cl}_M(E(G - v)) \subseteq \text{cl}'_M(E(G - v) \cup \{e\}) - \{e\} = \text{cl}_{M'/e}(E(G - v)) \subseteq E(G - v) \cup \text{loops}_G(v)$. So G is a framework for M . \square

Next we will give an alternative characterization of lifted-graphic matroids using frameworks; again, these results are effectively due to Zaslavsky [2].

Theorem 5.1. *Let G be a graph and let \mathcal{B} be a collection of circuits in G that satisfy the theta-property. Now let $M = (E(G), \mathcal{I})$ where a set $I \subseteq E(G)$ is contained in \mathcal{I} if and only if there is no $C \in \mathcal{B}$ with $E(C) \subseteq I$ and $G[I]$ contains at most one circuit. Then M is a matroid and G is a framework for M .*

Proof. We call the circuits of G in \mathcal{B} *balanced*. To prove that M is a matroid it suffices to check the following conditions:

- (a) $\emptyset \in \mathcal{I}$,
- (b) for each $J \in \mathcal{I}$ and $I \subseteq J$, we have $I \in \mathcal{I}$, and

(c) for each set $I \in \mathcal{I}$ and $e \in E(M) - I$ either $I \cup \{e\} \in \mathcal{I}$ or there is a unique minimal subset C of $I \cup \{e\}$ that is not in \mathcal{I} .

Conditions (a) and (b) follow from the construction.

Let $I \in \mathcal{I}$ and $e \in E(M) - I$ with $I \cup \{e\} \notin \mathcal{I}$. Let C_1 and C_2 be minimal subsets of $I \cup \{e\}$ that are not in \mathcal{I} . Suppose for a contradiction that $C_1 \neq C_2$. By definition, for each $i \in \{1, 2\}$, either $G[C_i]$ is a balanced circuit, $G[C_i]$ is the union of two vertex disjoint non-balanced circuits, or $G[C_i]$ is 2-edge-connected and $|C_i| = |V(G[C_i])| + 1$. Consider $J = (C_1 \cup C_2) - \{e\}$. Since $J \subseteq I$, we have $J \in \mathcal{I}$ so either $G[J]$ is a forest or $G[J]$ contains a unique circuit.

For each $i \in \{1, 2\}$, there is a circuit A_i of $G[C_i]$ that contains e . Since $G[J]$ contains at most one circuit, either $A_1 = A_2$ or $A_1 \cup A_2$ is a theta.

First suppose that $A_1 = A_2$. Since $C_1 \neq C_2$, the circuit A_1 is non-balanced. Therefore, for each $i \in \{1, 2\}$, there is a non-balanced circuit B_i in $G[C_i - e]$. Since $G[J]$ contains a unique circuit $B_1 = B_2$. But then $C_1 = E(A_1 \cup B_1)$ and $C_2 = E(A_2 \cup B_2)$, contradicting the fact that $C_1 \neq C_2$.

Now suppose that $A_1 \cup A_2$ is a theta, and let C be the circuit in $(A_1 \cup A_2) - e$. Since J is independent, C is not balanced. By the theta-property and symmetry, we may assume that A_1 is not balanced. Then there is a non-balanced circuit B_1 in $G[C_1 - \{e\}]$. Since $G[J]$ has at most one circuit $C = B_1$. Therefore $C_1 = E(A_1 \cup A_2)$ and, hence, A_2 is non-balanced. Then there is a non-balanced circuit B_2 in $G[C_2 - \{e\}]$. Since $G[J]$ has at most one circuit $C = B_2$, however, this contradicts the fact that $C_1 \neq C_2$. \square

We denote the matroid M in Theorem 5.1 by $LM(G, \mathcal{B})$.

Theorem 5.2. *If G is a graph and \mathcal{B} is a collection of circuits in G that satisfies the theta-property, then $LM(G, \mathcal{B})$ is a lift of $M(G)$.*

Proof. Let G^+ be obtained from G by adding a loop-edge e at a vertex v and let $\mathcal{B}^+ = \mathcal{B} \cup \{G[\{e\}]\}$. Since we only added a loop to \mathcal{B} , the collection \mathcal{B}^+ satisfies the theta-property. Let $M^+ = LM(G^+, \mathcal{B}^+)$. By the definition of $LM(G^+, \mathcal{B}^+)$, for each circuit C of G , $\{e\} \cup E(C)$ is dependent in M^+ . Hence $E(C)$ is a dependent set M^+/e . Similarly, by the definition of $LM(G^+, \mathcal{B}^+)$, for each forest F of G , the set $\{e\} \cup E(F)$ is independent in M^+ and, hence, $E(F)$ is independent in M^+/e . Thus $M^+/e = M(G)$ and, hence, M is a lift of $M(G)$. \square

The following result is a converse to Theorem 5.2.

Theorem 5.3. *If G is a graph, M is a lift of $M(G)$, and \mathcal{B} is the set of balanced circuits of (M, G) , then $M = LM(G, \mathcal{B})$.*

Proof. It suffices to prove that if C_1 and C_2 are vertex disjoint circuits of G , then $E(C_1 \cup C_2)$ is dependent in M . Now $E(C_1 \cup C_2)$ has rank equal to $|E(C_1 \cup C_2)| - 2$ in $M(G)$ so its rank in M is at most $|E(C_1 \cup C_2)| - 1$. Thus $E(C_1 \cup C_2)$ is indeed dependent in M . \square

6. FRAMEWORKS WITH LOOPS

In this section we prove Theorem 1.5 which is an immediate consequence of the following two results.

Theorem 6.1. *Let G be a framework for a 3-connected matroid M , let \mathcal{B} be the set of balanced circuits of G , and let e be a non-balanced loop-edge at a vertex v . If $e \in \text{cl}_M(E(G - v))$, then $M = LM(G, \mathcal{B})$.*

Proof. It suffices to prove that if C_1 and C_2 are vertex-disjoint circuits of G , then $E(C_1 \cup C_2)$ is dependent in M . We may assume that C_1 and C_2 are non-balanced and, by Lemma 3.8, we may assume that C_1 and C_2 are in the same component of G .

First suppose that $C_1 = \{e\}$. Let P be a minimal path from $V(C_1)$ to $V(C_2)$. Let f be the edge of P that is incident with v . By (3) and the fact that $e \in \text{cl}_M(E(G - v))$, there is a cocircuit C^* of M such that $C^* \cap E(C_1 \cup P \cup C_2) = \{f\}$. Therefore $E(C_1 \cup P \cup C_2)$ is not a circuit of M . So, by Lemma 3.8, $E(C_1 \cup C_2)$ is a circuit of M , as required.

Now we may assume that neither C_1 nor C_2 is equal to $G[\{e\}]$. By the preceding paragraph, both $E(C_1) \cup \{e\}$ and $E(C_2) \cup \{e\}$ are circuits of M . So, by the circuit-exchange property, $E(C_1 \cup C_2)$ is dependent, as required. \square

Theorem 6.2. *Let G be a framework for a 3-connected matroid M , let \mathcal{B} be the set of balanced circuits of G , and let e be a loop-edge at a vertex v . If $e \notin \text{cl}_M(E(G - v))$, then $M = FM(G, \mathcal{B})$.*

Proof. By Lemmas 3.3, 3.8, and 3.9, it suffices to prove that, if C_1 and C_2 are vertex-disjoint non-balanced circuits of M , then $E(C_1 \cup C_2)$ is independent in M .

First suppose that $C_1 = G[\{e\}]$. Since $e \notin \text{cl}_M(E(G - v))$, there is a cocircuit C^* of M that is disjoint from $E(C_2)$. Hence $E(C_1 \cup C_2)$ is independent as required.

Now suppose the neither C_1 nor C_2 is equal to $G[\{e\}]$. We may also assume that $E(C_1 \cup C_2)$ is dependent; by Lemma 3.3, $E(C_1 \cup C_2)$ is a circuit of M . Since $e \notin \text{cl}_M(E(G - v))$ and M has no co-loops, $G[\{e\}]$ is not a component of G . Then, by Lemma 3.5, there is a path from v to $V(C_1 \cup C_2)$ in G ; let P be a minimal such path. We may assume that P has an end in $V(C_1)$. By Lemma 3.8 and the preceding paragraph, $E(C_1 \cup P) \cup \{e\}$ is a circuit of M . Let $f \in E(C_1)$; by the circuit exchange

property, there exists a circuit C in $(E(C_1 \cup C_2 \cup P) \cup \{e\}) - \{f\}$. By Lemma 3.3, $C = E(C_2) \cup \{e\}$. However this contradicts the fact that $e \notin \text{cl}_M(E(G - v))$. \square

7. REPRESENTABLE MATROIDS

A framework G for a matroid M is called *strong* if G is connected and $r_M(E(G - v)) = r(M) - 1$ for each vertex v of G .

Lemma 7.1. *If M is a quasi-graphic matroid with $|M| \geq 4$, then M has a strong framework.*

Proof. By Lemma 3.6, M has a connected framework. Let G be a connected framework having as many loop-edges as possible. Suppose that G is not a strong framework and let $v \in V(G)$ such that $r_M(E(G - v)) < r(M) - 1$. Let C^* be a cocircuit of M with $C^* \cap E(G - v) = \emptyset$; if possible we choose C^* so that it contains a loop-edge of G . Since M is 3-connected, $|C^*| \geq 2$ and, by Lemma 2.6, there is at most one loop-edge at v . Therefore C^* contains at least one non-loop-edge. Let L denote the set of non-loop-edges of $G - C^*$ incident with v . By our choice of C^* , the set L is non-empty.

Let H be the graph obtained from G by replacing each edge $f = vw \in L$ with a loop-edge at w . By Lemma 3.7, H is connected. Note that H is framework for M . However, this contradicts our choice of G . \square

We are now ready to prove Theorem 1.4.

Theorem (Theorem 1.4 restated). *Let M be a 3-connected representable matroid. If M is quasi-graphic, then either M is a frame matroid or M is a lifted-graphic matroid.*

Proof. Let $M = M(A)$, where A is a matrix over a field \mathbb{F} with linearly independent rows. We may assume that $|M| \geq 4$. Therefore, by Lemma 7.1, M has a strong framework G .

Claim. *There is a matrix $B \in \mathbb{F}^{V(G) \times E(G)}$ such that*

- *the row-space of B is contained in the row-space of A , and*
- *for each $v \in V(G)$ and non-loop edge e of G , we have $B[v, e] \neq 0$ if and only if v is incident with e .*

Proof of claim. Let $v \in V(G)$ and let $C^* = E(M) - \text{cl}_M(E(G - v))$. By the definition of a strong framework, C^* is a cocircuit of M . Since $r(E(M) - C^*) < r(M)$, by applying row-operations to A we may assume that there is a row w of A whose support is contained in C^* . Since C^* is minimally co-dependent, the support of row- w is equal to C^* . Now we set the row- v of B equal to the row- w of A . \square

Note that $M(B)$ is a frame matroid and G is a framework for $M(B)$. We may assume that $r(M(A)) > r(M(B))$ since otherwise $M(A)$ is a frame matroid. Since G is a connected framework for both $M(A)$ and $M(B)$, it follows that $r(M(B)) = |V(G)| - 1$ and that $r(M(A)) = |V(G)|$. Up to row-operations we may assume that A is obtained from b by appending a single row. By Lemma 1.1, $M(B) = M(G)$. Hence M is a lift of $M(G)$. \square

REFERENCES

- [1] P. D. Seymour, Recognizing graphic matroids, *Combinatorica* **1** (1981), 75–78.
- [2] T. Zaslavsky, Biased graphs. II. The three matroids, *J. Combin. Theory Ser. B* **47** (1989), 32–52.

DEPARTMENT OF COMBINATORICS AND OPTIMIZATION, UNIVERSITY OF WATERLOO, WATERLOO, CANADA

CENTRUM WISKUNDE & INFORMATICA, AMSTERDAM, THE NETHERLANDS

SCHOOL OF MATHEMATICS, STATISTICS AND OPERATIONS RESEARCH, VICTORIA UNIVERSITY OF WELLINGTON, NEW ZEALAND