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Abstract. Frame matroids and lifted-graphic matroids are two
interesting generalizations of graphic matroids. Here we introduce
a new generalization, quasi-graphic matroids, that unifies these
two existing classes. Unlike frame matroids and lifted-graphic ma-
troids, it is easy to certify that a matroid is quasi-graphic. The
main result of the paper is that every 3-connected representable
quasi-graphic matroid is either a lifted-graphic matroid or a frame
matroid.

1. Introduction

Let G be a graph and let M be a matroid. For a vertex v of G we
let loopsG(v) denote the set of loop-edges of G at the vertex v. We say
that G is a framework for M if

(1) E(G) = E(M),
(2) rM(E(H)) ≤ |V (H)| for each component H of G, and
(3) for each vertex v of G we have clM(E(G − v)) ⊆ E(G − v) ∪

loopsG(v).

This definition is motivated by the following result that is essentially
due to Seymour [1].

Theorem 1.1. Let G be a graph with c components and let M be a
matroid. Then M is the cycle matroid of G if and only if G is a
framework for M and r(M) ≤ |V (G)| − c.

We will call a matroid quasi-graphic if it has a framework. Next
we will consider two classes of quasi-graphic matroids; namely “lifted-
graphic matroids” and “frame matroids”.

We say that a matroid M is a lift of a matroid N if there is a matroid
M ′ and an element e ∈ E(M ′) such that M ′ \ e = M and M ′/e = N .
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If M is a lift of a graphic matroid, then we will call M a lifted-graphic
matroid.

Theorem 1.2. If G is a graph and M is a lift of M(G), then G is a
framework for M .

We say that a matroid M is framed if it has a basis V such that for
each element e ∈ E(M) there is a set W ⊆ V such that |W | ≤ 2 and
e ∈ clM(W ). A frame matroid is a restriction of a framed matroid.

Theorem 1.3. Every frame matroid is quasi-graphic.

Our main result is that for matroids that are both 3-connected and
representable, there are no kinds of quasi-graphic matroids other than
those described above.

Theorem 1.4. Let M be a 3-connected representable matroid. If M is
quasi-graphic, then either M is a frame matroid or M is a lifted-graphic
matroid.

The representability condition in Theorem 1.4 is necessary; the
Vámos matroid, for example, is quasi-graphic but it is neither a frame
matroid nor a lifted-graphic matroid. However, for frameworks with
loop-edges, we do not require representability.

Theorem 1.5. Let G be a framework for a 3-connected matroid M . If
G has a loop-edge, then M is either a frame matroid or a lifted-graphic
matroid.

Our proof of Theorem 1.5 uses results of Zaslavsky [2] who character-
ized frame matroids and lifted-graphic matroids using “biased graphs”;
we review those results in Sections 4 and 5.

One attractive feature of frameworks is that they are easy to certify.
That is, given a graph G and a matroid M one can readily check
whether or not G is a framework for M . More specifically, there is a
polynomial-time algorithm that given G and M (via its rank oracle)
will decide whether or not G is a framework for M .

We conjecture that there is no general way for certifying that a ma-
troid is a frame matroid, or a lifted-graphic matroid, using only poly-
nomially many rank evaluations.

Conjecture 1.6. For any polynomial p(·) there is a frame matroid M
such that for any set S of subsets of E(M) with |S| ≤ p(|M |) there is a
non-frame matroid M ′ such that E(M ′) = E(M) and rM ′(X) = rM(X)
for each X ∈ S.
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Conjecture 1.7. For any polynomial p(·) there is a lifted-graphic ma-
troid M such that for any set S of subsets of E(M) with |S| ≤ p(|M |)
there is a non-lifted-graphic matroid M ′ such that E(M ′) = E(M) and
rM ′(X) = rM(X) for each X ∈ S.

In stark contrast to these two negative conjectures, we conjecture
that the problem of recognizing quasi-graphic matroids is tractable.

Conjecture 1.8. There is a polynomial-time algorithm that given a
matroid M , via its rank-oracle, decides whether or not M is quasi-
graphic.

2. Minors of quasi-graphic matroids

We will start by proving that the class of quasi-graphic matroids is
minor-closed.

Lemma 2.1. Let G be a framework for M . If H is a component of G,
then H is a framework for M |E(H).

Proof. Note that conditions (1) and (2) are immediate. Condition (3)
follows from the fact that for each flat F of M , the set F ∩ E(H) is a
flat of M |E(H). �

The following result is very easy, but it is used repeatedly.

Lemma 2.2. Let G be a framework for M . If v is a vertex of G that is
incident with at least one non-loop-edge, then rM(E(G − v)) < r(M).
Moreover, if v has degree one, then rM(E(G− v)) = r(M)− 1.

Proof. This follows directly from (3). �

Lemma 2.3. Let G be a connected framework for M and let H be a
subgraph of G. Then |V (H)| − r(M |E(H)) ≥ |V (G)| − r(M).

Proof. The result holds when H is trivial, so we may assume that
V (H) 6= ∅. We can extend H to a spanning subgraph H+ of G with
|E(H+)|− |E(H)| = |V (G)|− |V (H)|. Clearly |V (H+)|− r(E(H+)) ≥
|V (G)| − r(M). If H 6= H+, then there is a vertex v ∈ V (H+)− V (H)
that has degree one in H+. By Lemma 2.2, r(E(H+−v)) = r(E(H))−1
and, hence, |V (H+ − v)| − r(E(H+) − v) ≥ |V (G)| − r(M). Now we
obtain the result by repeatedly deleting vertices in V (H+) − V (H) in
this way. �

If X is a set of edges in a graph G, then G[X] is the subgraph of G
with edge-set X and with no isolated vertices.

Lemma 2.4. Let G be a framework for M and let X ⊆ E(M). Then
G[X] is a framework for M |X.
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Proof. Condition (1) is clearly satisfied. Condition (2) follows from
Lemmas 2.1 and 2.3. Condition (3) follows from the fact that for each
flat F of M , the set F ∩ E(H) is a flat of M |E(H). �

The following two results give sufficient conditions for independence
and dependence, respectively, for a set in a matroid given only the
structure in the framework.

Lemma 2.5. Let G be a framework for M . If F is a forest of G, then
E(F ) is an independent set of M .

Proof. We may assume that E(F ) is non-empty and, hence, that F has
a degree-one vertex v. By Lemma 2.2, rM(E(F )) = rM(E(F − v)) + 1.
Now the result follows inductively. �

Lemma 2.6. Let G be a framework for G. If H is a subgraph of G
and |E(H)| > |V (G)|, then E(H) is a dependent set of M .

Proof. By Lemma 2.4 and (2), we have rM(E(H)) ≤ |V (H)|. So, if
|E(H)| > |V (G)|, then E(H) is a dependent set of M . �

We can now prove Theorem 1.1.

Theorem (Theorem 1.1 restated). Let G be a graph with c components
and let M be a matroid. Then M is the cycle matroid of G if and only
if G is a framework for M and r(M) ≤ |V (G)| − c.

Proof. By Lemma 2.5 and the fact that r(M) ≤ |V (G)| − c, we have
r(E(H)) = |V (H)| − 1 for each component H of G. Hence we may
assume that G is connected. By Lemma 2.5, the edge-set of each
forest of G is independent in M . Therefore, it suffices to prove, for
each circuit C of G, that E(C) is dependent in M . By Lemma 2.3,
|V (C)| − r(E(C)) ≥ |V (G)| − r(E(G)) = 1. So r(E(C)) < |V (C)| =
|E(C)| and, hence, E(C) is dependent as required. �

To prove that the class of quasi-graphic matroids is closed under
contraction, we consider two cases depending on whether or not we are
contracting a loop-edge of the framework.

Lemma 2.7. Let G be a framework for M and let e be a non-loop-edge
of G. Then G/e is a framework for M/e.

Proof. Conditions (1) and (2) are clearly satisfied. Let u and v be the
ends of e in G, and let f be an edge of G that is incident with u but
not with v. To prove (3) it suffices to prove that that there exists a
cocircuit C in M such that f ∈ C, e 6∈ C, and C contains only edges
incident with either u or v.
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By (3), there exist cocircuits Ce and Cf such that e ∈ Ce, that Ce

contains only edges incident with v, that f ∈ Cf , and that Cf contains
only edges incident with u. We may assume that e ∈ Cf since otherwise
we could take C = Cf . Since f is not incident with v, we have f 6∈ Ce.
Then, by the strong circuit exchange axiom, there is a cocircuit C of
M with f ∈ C ⊆ (C1 ∪ C2)− {e}, as required. �

Lemma 2.8. Let G be a framework for M , let e be a loop-edge of G at
a vertex v and let H be the graph obtained by first, for each non-loop
edge f = vw incident with v adding f as a loop at w, and then for each
loop-edge f of G− e at v adding f as a loop on an arbitrary vertex. If
e is not a loop of M , then H is a framework for M/e.

Proof. Conditions (1) and (2) are clearly satisfied. By Lemma 2.4, we
have rM(loopsG(v)) = 1, so each element of loopsG(v) − {e} is a loop
in M/e. Each vertex w ∈ V (G)− {v} is incident with the same edges
in G as it is in H except for the elements in loopsG(v). Moreover,
clM(E(G− w)) = clM/e(E(H − w)) ∪ {e}. Therefore (3) follows. �

We have proved the following:

Theorem 2.9. The class of quasi-graphic matroids is closed under
taking minors.

3. Balanced circuits

Let G be a framework for a matroid M . If C is a circuit of G, then,
by Lemmas 2.3 and 2.5, E(C) is either independent in M or E(C) is a
circuit in M ; we say that C is balanced if E(C) is a circuit of M .

Lemma 3.1. Let G be a framework for M . Then M = M(G) if and
only if each circuit of G is balanced.

Proof. If M = M(G), then each circuit of G is balanced. Conversely,
suppose that each circuit of G is balanced. Let F be a maximal forest
in G. Since each circuit is balanced, E(F ) is a basis of M . Then, by
Theorem 1.1, M = M(G). �

A theta is a 2-connected graph that has exactly two vertices of degree
3 and all other vertices have degree 2. Observe that there are exactly
three circuits in a theta.

Lemma 3.2. Let G be a framework for M and let H be a theta-subgraph
of G. If two of the circuits in H are balanced, then so too is the third.

Proof. If there are two balanced circuits in H then rM(E(H)) ≤
|E(H)| − 2 = |V (H)| − 1. So, by Theorem 1.1, M |E(H) = M(H)
and, by Lemma 3.1, all circuits of H are balanced. �
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The following result describes the circuits of a matroid in terms of the
framework; first we will give an unusual example to demonstrate one
of the outcomes. If M consists of a single circuit and G is a graph with
E(G) = E(M) whose components are circuits, then G is a framework
for M .

Lemma 3.3. Let G be a framework for M and let C be a circuit in
M . Then either

• G[C] is a balanced circuit,
• G[C] is a connected graph with minimum degree at least two,
|C| = V (G[C]) + 1, and G[C] has no balanced circuits, or
• G[C] is a collection of vertex-disjoint non-balanced circuits.

Proof. We may assume that G[C] is not a balanced circuit, and,
hence, that G[C] contains no balanced circuit. Next suppose that
|C| ≥ V (G[C]) + 1. By Lemma 2.6, C is minimal with this prop-
erty. Hence G[C] is connected, the minimum degree of G[C] is two,
and |C| = V (G[C]) + 1. Now suppose that |C| ≤ V (G[C]) and con-
sider a component H of G[C]; it suffices to show that G[C] is a cir-
cuit. By Lemma 2.6 and the argument above, we may assume that
|E(H)| ≤ |V (H)|. If H is not a circuit there is a degree-one vertex v
of H. Moreover, the edge e that is incident with v is not a loop-edge.
Then, by (3), the element e is a coloop of M |C, which contradicts the
fact that C is a circuit. �

For a set X of elements in a matroid M we let

λM(X) = rM(X) + rM(E(M)−X)− r(M).

Lemma 3.4. Let G be a framework for M . If H is a component of G,
then λM(E(H)) ≤ 1.

Proof. By Lemma 2.2, r(E(M)−E(H)) ≤ r(M)−(|V (H)|−1). Hence
λM(E(H)) = rM(E(H)) + rM(E(M) − E(H)) − r(M) ≤ |V (H)| +
(r(M)− (|V (H)| − 1))− r(M) = 1. �

The following result is an immediate consequence of Lemma 3.4.

Lemma 3.5. If G is a framework for a 3-connected matroid M with
|M | ≥ 4 and G has no isolated vertices, then either

• G is connected, or
• G has two components one of which consists of a single vertex

with a loop.

Lemma 3.6. Let M be a 3-connected matroid with |E(M)| ≥ 4. If M
is quasi-graphic, then M has a connected framework.
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Proof. Let G be a framework for M and suppose that G is not con-
nected. We may assume that G has no isolated vertices. Then, by
Lemma 3.5, G has two components, one of which consists of a sin-
gle vertex v and a single edge e. Since e is not a coloop of M ,
r(M) ≤ |V (G)| − 1. Let w ∈ V (G) − {v}. Now we construct a new
graph G+ by adding a new edge f with ends v and w and let M+ be a
matroid obtained from M by adding f as a coloop. Note that G+ is a
framework for M+. Therefore G+/f is a framework for M+/f . Since
f is a coloop of M+, we have M+/f = M+ \ f = M . So G+/f is a
connected framework for M . �

Lemma 3.7. Let M be a 3-connected matroid with |E(M)| ≥ 4. If G
is a connected framework for M , then G is 2-connected.

Proof. Suppose otherwise. Then there is a pair (H1, H2) of sub-
graphs of G such that G = H1 ∪ H2, |V (H1) ∩ V (H2)| = 1, and
|V (H1)|, |V (H2)| ≥ 2. Note that H1 and H2 are both connected. Now
M(G) is not 3-connected, so, by Lemma 1.1, r(M) = |V (G)|. Therefore
λM(E(H1)) ≤ |V (H1)|+ |V (H2)|−|V (G)| = 1. Since M is 3-connected
either |E(H1)| ≤ 1 or |E(H2)| ≤ 1; we may assume that |E(H1)| = 1.
Let e ∈ E(H1). Since H1 is a connected and |V (H1)| ≥ 2, the edge e
is not a loop. Therefore, by (3), e is a coloop of M . This contradicts
the fact that M is 3-connected. �

The following two lemmas refine Lemma 3.3 in the case that M is
3-connected.

Lemma 3.8. Let M be a 3-connected matroid with |M | ≥ 4 and let G
be a framework for M . If C1 and C2 are vertex-disjoint non-balanced
circuits of G, then either

• E(C1) ∪ E(C2) is a circuit of M ,
• E(C1)∪E(C2)∪E(P ) is a circuit of M for each minimal path
P in G from V (C1) to V (C2).

Moreover, if C1 and C2 are in distinct components of G, then E(C1)∪
E(C2) is a circuit of M .

Proof. We may assume that E(C1)∪E(C2) is not a circuit. Let P be a
minimal path in G from V (C1) to V (C2). By Lemma 2.6, E(C1∪C2∪P )
is dependent. Let C ⊆ E(C1∪C2∪P ) be a circuit of M . By Lemma 3.3,
C = E(C1 ∪ C2 ∪ P ).

Finally, suppose that C1 and C2 are in distinct components of G.
We may assume that G has no isolated vertices. Then, by Lemma 3.5,
G has two components one of which has a single vertex, say v, and a
single loop-edge, say e. Since M is 3-connected, e is not a coloop of
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M . Then, by (3), r(M) ≤ |V (G)|. We may assume that E(C1) = {e};
let w be a vertex of C2. Construct a graph G+ from G by adding a
new edge f with ends v and w and construct a new matroid M+ by
adding f as a coloop to M . Note that G+ is a framework for M+

and hence G+/f is a framework for M+/f . By Lemmas 2.6 and 3.3,
E(C1)∪E(C2) is a circuit in M+/f . Moreover, as f is a coloop of M+,
we have M+/f = M , so E(C1) ∪ E(C2) is a circuit in M . �

Lemma 3.9. Let M be a 3-connected matroid with |M | ≥ 4 and let G
be a framework for M . If C is a circuit for M , then G[C] has at most
two components.

Proof. Suppose that G[C] has more than two components. By
Lemma 3.3, each component of G is a balanced circuit. By Lemma 3.5,
two of these circuits are in the same component of G. Let P be a short-
est path connecting two components of G[C]; let these components be
C1 and C2. Since C is a circuit, G[C1 ∪C2] is independent. Therefore,
by Lemma 3.8, E(C1 ∪ C2 ∪ P ) is a circuit of M . Let e ∈ E(P ) and
f ∈ E(C1). By the strong exchange property for circuits, there is a
circuit C ′ of G with e ∈ C ′ ⊆ (C ∪ E(P )) − {f}. However this is
inconsistent with the outcomes of Lemma 3.3. �

4. Frame matroids

We start by proving Theorem 1.3.

Theorem (Theorem 1.3 restated). Every frame matroid is quasi-
graphic.

Proof. Let M be a frame matroid. Note that M is a quasi-graphic
matroid if and only if si(M) is a quasi-graphic matroid, so we may as-
sume that M is simple. Recall that the class of quasi-graphic matroids
is closed under taking minors, so we may further assume that M is
framed; let V be a basis of M such that each element is spanned by a
2-element subset of V . We now construct a graph G with vertex-set V
and edge-set E(M) such that, for each v ∈ V the edge v is a loop on
the vertex v and for each e ∈ E(M) − V the edge e has ends u and v
where {e, u, v} is the unique circuit of M in V ∪ {e}. We claim that G
is a framework for M .

By construction E(G) = E(M) and, since V is a basis of M , for
each component H of G we have r(E(H)) = |V (H)|. Finally, for each
vertex v of G, the hyperplane of M spanned by V − {v} is E(G− v).
Hence G is indeed a framework for M . �

Next we give an alternative characterization of frame matroids using
frameworks; these results are effectively due to Zaslavsky [2].
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Let G be a graph and let B be a subset of the circuits of G. We say
that B satisfies the theta-property if there is no theta in G with exactly
two of its three circuits in B.

Theorem 4.1. Let G be a graph and let B be a collection of circuits
in G that satisfy the theta-property. Now let M = (E(G), I) where a
set I ⊆ E(G) is contained in I if and only if there is no C ∈ B with
E(C) ⊆ I and |E(H)| ≤ |V (H)| for each component H of G[I]. Then
M is a matroid.

Proof. We call the circuits of G in B balanced. To prove that M is a
matroid it suffices to check the following conditions, which are effec-
tively a reformulation of the circuit axioms in terms of independent
sets:

(a) ∅ ∈ I,
(b) for each J ∈ I and I ⊆ J , we have I ∈ I, and
(c) for each set I ∈ I and e ∈ E(M)− I either I ∪{e} ∈ I or there

is a unique minimal subset C of I ∪ {e} that is not in I.

Conditions (a) and (b) follow from the construction.
Let I ∈ I and e ∈ E(M) − I with I ∪ {e} 6∈ I. Let C1 and

C2 be minimal subsets of I ∪ {e} that are not in I. Suppose for a
contradiction that C1 6= C2. By definition, for each i ∈ {1, 2}, we have
G[Ci−{e}] is connected, e ∈ Ci, and either G[Ci] is a balanced circuit
or |Ci| > |V (G[Ci])|. Consider J = (C1 ∪ C2) − {e}. Since J ⊆ I,
we have J ∈ I. Since G[C1 − {e}] and G[C2 − {e}] are connected,
G[J ] is connected. Therefore |J | ≤ |V (G[J ])|. It follows that |C1| ≤
|V (G[C1])| and |C2| ≤ |V (G[C2])|. Hence G[C1] and G[C2] are balanced
circuits. Now G[C1∪C2] is a theta and G[J ] is a circuit. By the theta-
property, G[J ] is balanced. However, this contradicts the fact that
J ∈ I. �

We denote the matroid M in Theorem 4.1 by FM(G,B).

Theorem 4.2. If G is a graph and B is a collection of circuits in G
that satisfies the theta-property, then FM(G,B) is a frame matroid.

Proof. Let G+ be obtained from G by adding a loop-edge ev at each
vertex of v. Now let B+ be obtained from B by adding the circuits
(G[{ev}] : v ∈ V (G)). Since we only added loops to B, the collection
B+ satisfies the theta-property. Let M+ = FM(G+,B+) and V =
{ev : v ∈ V (G)}. By the definition of FM(G+,B+), the set V is a
basis of M+. For each non-loop edge e of G with ends u and v, the set
{eu, e, ev} is a circuit of M+ and for each loop-edge e of G at v, the
set {e, ev} is a circuit of M+. Therefore M+ is a framed matroid and
hence FM(G,B) is a frame matroid. �
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Theorem 4.3. A loopless matroid M is a frame matroid if and only
if there is a graph G and a collection B of circuits of G satisfying the
theta-property such that M = FM(G,B).

Proof. The “if” direction of the result follows from Theorem 4.2. For
the converse we may assume that M is a framed matroid; let V be a
basis of M such that each element is spanned by a 2-element subset of
V . We now construct a graph G with vertex-set V and edge-set E(M)
such that, for each v ∈ V the edge v is a loop on the vertex v and for
each e ∈ E(M)− V the edge e has ends u and v where {e, u, v} is the
unique circuit of M in V ∪ {e}. By the proof of Theorem 1.3, G is a
framework for M .

By Lemma 3.3, it suffices to prove that, if C1, . . . , Ck are disjoint
non-balanced circuits of G, then E(C1 ∪ · · · ∪Ck) is independent. This
follows from the fact that V (C1∪· · ·∪Ck) is independent and that, for
each i ∈ {1, . . . , k}, the sets E(Ci) and V (Ci) span each other. �

5. Lifted-graphic matroids

We start by proving Theorem 1.2.

Theorem (Theorem 1.2 restated). If G is a graph and M is a lift of
M(G), then G is a framework for M .

Proof. Let e be an element of a matroid M ′ such that M ′ \ e = M and
M ′/e = M(G). Thus E(M) = E(G). For each component H of G,
rM ′/e(E(H)) = |V (G)|−1 so rM(E(H)) = rM ′(E(H)) ≤ rM ′/e(E(H))+
1 = |V (H)|. For a vertex v of G, we have clM(E(G− v)) ⊆ cl′M(E(G−
v) ∪ {e})− {e} = clM ′/e(E(G− v)) ⊆ E(G− v) ∪ loopsG(v). So G is a
framework for M . �

Next we will give an alternative characterization of lifted-graphic
matroids using frameworks; again, these results are effectively due to
Zaslavsky [2].

Theorem 5.1. Let G be a graph and let B be a collection of circuits
in G that satisfy the theta-property. Now let M = (E(G), I) where a
set I ⊆ E(G) is contained in I if and only if there is no C ∈ B with
E(C) ⊆ I and G[I] contains at most one circuit. Then M is a matroid
and G is a framework for M .

Proof. We call the circuits of G in B balanced. To prove that M is a
matroid it suffices to check the following conditions:

(a) ∅ ∈ I,
(b) for each J ∈ I and I ⊆ J , we have I ∈ I, and
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(c) for each set I ∈ I and e ∈ E(M)− I either I ∪{e} ∈ I or there
is a unique minimal subset C of I ∪ {e} that is not in I.

Conditions (a) and (b) follow from the construction.
Let I ∈ I and e ∈ E(M) − I with I ∪ {e} 6∈ I. Let C1 and

C2 be minimal subsets of I ∪ {e} that are not in I. Suppose for a
contradiction that C1 6= C2. By definition, for each i ∈ {1, 2}, either
G[Ci] is a balanced circuit, G[Ci] is the union of two vertex disjoint non-
balanced circuits, or G[Ci] is 2-edge-connected and |Ci| = |V (G[Ci])|+
1. Consider J = (C1 ∪C2)−{e}. Since J ⊆ I, we have J ∈ I so either
G[J ] is a forest or G[J ] contains a unique circuit.

For each i ∈ {1, 2}, there is a circuit Ai of G[Ci] that contains e.
Since G[J ] contains at most one circuit, either A1 = A2 or A1 ∪ A2 is
a theta.

First suppose that A1 = A2. Since C1 6= C2, the circuit A1 is non-
balanced. Therefore, for each i ∈ {1, 2}, there is a non-balanced circuit
Bi in G[Ci − e]. Since G[J ] contains a unique circuit B1 = B2. But
then C1 = E(A1 ∪ B1) and C2 = E(A2 ∪ B2), contradicting the fact
that C1 6= C2.

Now suppose that A1 ∪ A2 is a theta, and let C be the circuit in
(A1∪A2)−e. Since J is independent, C is not balanced. By the theta-
property and symmetry, we may assume that A1 is not balanced. Then
there is a non-balanced circuit B1 in G[C1 − {e}]. Since G[J ] has at
most one circuit C = B1. Therefore C1 = E(A1∪A2) and, hence, A2 is
non-balanced. Then there is a non-balanced circuit B2 in G[C2−{e}].
Since G[J ] has at most one circuit C = B2, however, this contradicts
the fact that C1 6= C2. �

We denote the matroid M in Theorem 5.1 by LM(G,B).

Theorem 5.2. If G is a graph and B is a collection of circuits in G
that satisfies the theta-property, then LM(G,B) is a lift of M(G).

Proof. Let G+ be obtained from G by adding a loop-edge e at a vertex
v and let B+ = B ∪ {G[{e}]}. Since we only added a loop to B, the
collection B+ satisfies the theta-property. Let M+ = LM(G+,B+). By
the definition of LM(G+,B+), for each circuit C of G, {e} ∪ E(C) is
dependent in M+. Hence E(C) is a dependent set M+/e. Similarly, by
the definition of LM(G+,B+), for each forest F of G, the set {e}∪E(F )
is independent in M+ and, hence, E(F ) is independent in M+/e. Thus
M+/e = M(G) and, hence, M is a lift of M(G). �

The following result is a converse to Theorem 5.2.

Theorem 5.3. If G is a graph, M is a lift of M(G), and B is the set
of balanced circuits of (M,G), then M = LM(G,B).
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Proof. It suffices to prove that if C1 and C2 are vertex disjoint circuits of
G, then E(C1∪C2) is dependent in M . Now E(C1∪C2) has rank equal
to |E(C1∪C2)|−2 in M(G) so its rank in M is at most |E(C1∪C2)|−1.
Thus E(C1 ∪ C2) is indeed dependent in M . �

6. Frameworks with loops

In this section we prove Theorem 1.5 which is am immediate conse-
quence of the following two results.

Theorem 6.1. Let G be a framework for a 3-connected matroid M ,
let B be the set of balanced circuits of G, and let e be a non-balanced
loop-edge at a vertex v. If e ∈ clM(E(G− v)), then M = LM(G,B).

Proof. It suffices to prove that if C1 and C2 are vertex-disjoint circuits
of G, then E(C1 ∪ C2) is dependent in M . We may assume that C1

and C2 are non-balanced and, by Lemma 3.8, we may assume that C1

and C2 are in the same component of G.
First suppose that C1 = {e}. Let P be a minimal path from V (C1)

to V (C2). Let f be the edge of P that is incident with v. By (3) and
the fact that e ∈ clM(E(G− v)), there is a cocircuit C∗ of M such that
C∗ ∩E(C1 ∪ P ∪C2) = {f}. Therefore E(C1 ∪ P ∪C2) is not a circuit
of M . So, by Lemma 3.8, E(C1 ∪ C2) is a circuit of M , as required.

Now we may assume that neither C1 nor C2 is equal to G[{e}]. By
the preceding paragraph, both E(C1)∪{e} and E(C2)∪{e} are circuits
of M . So, by the circuit-exchange property, E(C1 ∪ C2) is dependent,
as required. �

Theorem 6.2. Let G be a framework for a 3-connected matroid M ,
let B be the set of balanced circuits of G, and let e be a loop-edge at a
vertex v. If e 6∈ clM(E(G− v)), then M = FM(G,B).

Proof. By Lemmas 3.3, 3.8, and 3.9, it suffices to prove that, if C1 and
C2 are vertex-disjoint non-balanced circuits of M , then E(C1 ∪ C2) is
independent in M .

First suppose that C1 = G[{e}]. Since e 6∈ clM(E(G − v)), there is
a cocircuit C∗ of M that is disjoint from E(C2). Hence E(C1 ∪ C2) is
independent as required.

Now suppose the neither C1 nor C2 is equal to G[{e}]. We may also
assume that E(C1 ∪ C2) is dependent; by Lemma 3.3, E(C1 ∪ C2) is a
circuit of M . Since e 6∈ clM(E(G−v)) and M has no co-loops, G[{e}] is
not a component of G. Then, by Lemma 3.5, there is a path from v to
V (C1 ∪ C2) in G; let P be a minimal such path. We may assume that
P has an end in V (C1). By Lemma 3.8 and the preceding paragraph,
E(C1∪P )∪{e} is a circuit ofM . Let f ∈ E(C1); by the circuit exchange



QUASI-GRAPHIC MATROIDS 13

property, there exists a circuit C in (E(C1 ∪C2 ∪ P )∪ {e})− {f}. By
Lemma 3.3, C = E(C2) ∪ {e}. However this contradicts the fact that
e 6∈ clM(E(G− v)). �

7. Representable matroids

A framework G for a matroid M is called strong if G is connected
and rM(E(G− v)) = r(M)− 1 for each vertex v of G.

Lemma 7.1. If M is a quasi-graphic matroid with |M | ≥ 4, then M
has a strong framework.

Proof. By Lemma 3.6, M has a connected framework. Let G be a
connected framework having as many loop-edges as possible. Sup-
pose that G is not a strong framework and let v ∈ V (G) such
that rM(E(G) − v) < r(M) − 1. Let C∗ be a cocircuit of M with
C∗ ∩ E(G − v) = ∅; if possible we choose C∗ so that it contains a
loop-edge of G. Since M is 3-connected, |C∗| ≥ 2 and, by Lemma 2.6,
there is at most one loop-edge at v. Therefore C∗ contains at least
one non-loop-edge. Let L denote the set of non-loop-edges of G − C∗
incident with v. By our choice of C∗, the set L is non-empty.

Let H be the graph obtained from G by replacing each edge f =
vw ∈ L with a loop-edge at w. By Lemma 3.7, H is connected. Note
that H is framework for M . However, this contradicts our choice of
G. �

We are now ready to prove Theorem 1.4.

Theorem (Theorem 1.4 restated). Let M be a 3-connected repre-
sentable matroid. If M is quasi-graphic, then either M is a frame
matroid or M is a lifted-graphic matroid.

Proof. Let M = M(A), where A is a matrix over a field F with lin-
early independent rows. We may assume that |M | ≥ 4. Therefore, by
Lemma 7.1, M has a strong framework G.

Claim. There is a matrix B ∈ FV (G)×E(G) such that

• the row-space of B is contained in the row-space of A, and
• for each v ∈ V (G) and non-loop edge e of G, we have B[v, e] 6= 0

if and only if v is incident with e.

Proof of claim. Let v ∈ V (G) and let C∗ = E(M) − clM(E(G − v)).
By the definition of a strong framework, C∗ is a cocircuit of M . Since
r(E(M)−C∗) < r(M), by applying row-operations toA we may assume
that there is a row w of A whose support is contained in C∗. Since C∗

is minimally co-dependent, the support of row-w is equal to C∗. Now
we set the row-v of B equal to the row-w of A. �
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Note that M(B) is a frame matroid and G is a framework for M(B).
We may assume that r(M(A)) > r(M(B)) since otherwise M(A) is
a frame matroid. Since G is a connected framework for both M(A)
and M(B), it follows that r(M(B)) = |V (G)| − 1 and that r(M(A)) =
|V (G)|. Up to row-operations we may assume that A is obtained from
b by appending a single row. By Lemma 1.1, M(B) = M(G). Hence
M is a lift of M(G). �
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