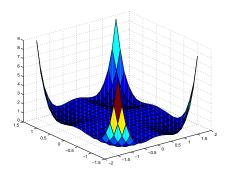
Optimization over Polynomials: Selected Topics

Monique Laurent

ICM 2014

What is polynomial optimization?



Minimize a polynomial function f over a region

$$K = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$

defined by polynomial inequalities

(P)

SOME INSTANCES

Testing nonnegativity of polynomials

THE QUADRATIC CASE IS EASY

The quadratic form $x^T M x$ is nonnegative over \mathbb{R}^n if and only if the matrix M is positive semidefinite

This can be tested in polynomial time, using Gaussian elimination

THE QUARTIC CASE IS HARD

Testing matrix copositivity: co-NP complete [Kabadi-Murty 1987]

A symmetric matrix M is **copositive** if $x^T M x \ge 0$ for all $x \ge 0$

Equivalently, the polynomial $f_M = \sum_{i,j=1}^n M_{ij} x_i^2 x_j^2$ is nonnegative over \mathbb{R}^n

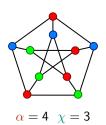
Testing convexity:

NP-hard [Ahmadi et al. 2013]

A polynomial f(x) is **convex** if and only if its Hessian matrix H(f)(x) is positive semidefinite

Equivalently, the polynomial $F = y^T H(f)(x)y$ is nonnegative on $\mathbb{R}^n \times \mathbb{R}^n$

Two hard combinatorial problems over graphs



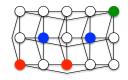
- stability number $\alpha(G)$: maximum cardinality of a set of pairwise non-adjacent vertices (stable set)
- coloring number $\chi(G)$: minimum number of colors needed to properly color the vertices of G.

 $\alpha(G)$, $\chi(G)$ are NP-complete

[Karp 1972]

Chvátal's reduction:

 $\chi(G)$ is the smallest integer c such that $\alpha(G \square K_c) = |V(G)|$



Polynomial optimization formulations for $\alpha(G)$

• Basic formulation:

$$\alpha(G) = \max \sum_{v \in V} x_v \text{ s.t. } x_u x_v = 0 \text{ (}uv \in E\text{), } x_v^2 = x_v \text{ (}v \in V\text{)}$$

Motzkin-Straus formulation:

$$\frac{1}{\alpha(G)} = \min \ x^{T}(I + A_{G})x \ \text{s.t.} \ \sum_{v \in V} x_{v} = 1, \ x_{v} \ge 0 \ (i \in V)$$

• Copositive formulation:

$$\alpha(G) = \min \lambda$$
 s.t. $\lambda(I + A_G) - J$ is copositive

Bounds for
$$\alpha(G)$$
 and $\chi(G)$?

Linear Programming & Semidefinite Programming

Optimize a linear function over

a polyhedron

$$a_i^\mathsf{T} x = b_j, \ x \ge 0$$

a convex set (spectrahedron)

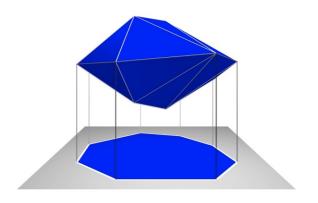
$$\langle A_i, X \rangle = b_i, X \succeq 0$$

LP

SDP

There are efficient algorithms to solve LP and SDP (up to any precision).

One more idea: Lift to higher dimensional space



Add new variables modeling all pairwise products $x_i x_j$ of original variables, or higher order products $x_i x_j x_k$, etc.

Semidefinite bounds for $\alpha(G)$ and $\chi(G)$

S stable
$$\rightsquigarrow x = (1, 0, 0, 1, 0)^T \rightsquigarrow X = \frac{1}{|S|}xx^T$$

$$X \succeq 0 \qquad (X \text{ is positive semidefinite})$$

Lovász' theta number:

[Lovász 1979]

$$\vartheta(G) = \max \sum_{i,j \in V} X_{ij}$$
 s.t. $Tr(X) = 1$, $X_{uv} = 0$ ($uv \in E$), $X \succeq 0$

Sandwich inequalities: $\alpha(G) \leq \vartheta(G) \leq \chi(\overline{G})$

Stronger bounds?

Stronger semidefinite bounds for $\alpha(G)$ and $\chi(G)$

S stable
$$\rightsquigarrow x = (1,0,0,1,0)^{\mathsf{T}} \rightsquigarrow X = \frac{1}{|S|}xx^{\mathsf{T}} \succeq 0, \geq 0$$

Stronger bound for $\alpha(G)$:

[McEliece et al. 1978, Schrijver 1979]

$$\vartheta'(G) = \max \sum_{i,j \in V} X_{ij}$$
 s.t. $Tr(X) = 1$, $X_{uv} = 0$ ($uv \in E$), $X \succeq 0$, $X \succeq 0$

Stronger bound for $\chi(\overline{G})$:

[Szegedy 1994]

$$\vartheta^+(G) = \max \sum_{i:i \in V} X_{ij}$$
 s.t. $Tr(X) = 1$, $X_{uv} \le 0$ ($uv \in E$), $X \succeq 0$

Sandwich inequalities: $\alpha(G) \leq \vartheta'(G) \leq \vartheta(G) \leq \vartheta^+(G) \leq \chi(\overline{G})$

Systematic construction of stronger bounds?

Use higher order semidefinite relaxations

GENERAL APPROACH TO

POLYNOMIAL OPTIMIZATION

Strategy

$$(\mathbf{P}) \qquad f_{\min} = \min_{x \in K} f(x)$$

Approximate (P) by a hierarchy of convex (semidefinite) relaxations

Such relaxations can be constructed using sums of squares of polynomials

the dual theory of moments

Shor (1987), Nesterov (2000), Lasserre, Parrilo (2000–)

SUMS OF SQUARES

Strategy (use sums of squares)

(P)
$$f_{\min} = \min_{x \in K} f(x) = \sup_{\lambda \in \mathbb{R}} \lambda \text{ s.t. } f(x) - \lambda \ge 0 \ \forall x \in K$$

Testing whether a polynomial f is nonnegative is hard

but one can test the sufficient condition:

f is a sum of squares of polynomials (SOS)

using semidefinite programming

Use SDP to find sums of squares

$$f(x,y) = x^4 + 2x^3y + 3x^2y^2 + 2xy^3 + 2y^4$$
 is SOS?

Equate coefficients on both sides: x^4 : a = 1 x^3y : 2b = 2 x^2y^2 : 2c + d = 3 xy^3 : 2e = 2 y^4 : f = 2

$$M = \begin{pmatrix} 1 & 1 & c \\ 1 & 3 - 2c & 1 \\ c & 1 & 2 \end{pmatrix} \succeq 0 \iff -1 \leq c \leq 1$$

$$c = -1 \rightsquigarrow f = (x^2 + xy - y^2)^2 + (y^2 + 2xy)^2$$

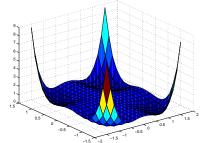
$$c = 0 \rightsquigarrow f = (x^2 + xy)^2 + \frac{3}{2}(xy + y^2)^2 + \frac{1}{2}(xy - y^2)^2$$

Are all nonnegative polynomials SOS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials if and only if n = 1, or d = 2, or (n = 2 and d = 4).

Hilbert's 17th problem [1900]: Is every nonnegative polynomial is a sum of squares of rational functions?

Artin [1927]: Yes



Motzkin [1967]: $p = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$ is nonnegative, **not** a sum of squares, but $(x^2 + y^2)^2p$ is SOS!

Are many nonnegative polynomials sums of squares?

Theorem: [Blekherman 2003]

Few SOS polynomials

when fixing the degree and letting the number of variables grow:

$$\frac{\operatorname{vol}(\operatorname{POS}_{n,2d})}{\operatorname{vol}(\operatorname{SOS}_{n,2d})} = \Theta(n^{\frac{d-1}{2}D}) \qquad [D = \binom{n+2d-1}{2d} - 1]$$

Theorem: [Lasserre 2006] [Lasserre-Netzer 2006] SOS polynomials are **dense** within nonnegative polynomials, when fixing the number of variables and letting the degree grow:

If
$$f\geq 0$$
 on $[-1,1]^n$, then
$$\forall \epsilon>0 \ \exists k\in\mathbb{N} \ \text{such that} \ f+\epsilon\left(1+\sum_{i=1}^n x_i^{2k}\right) \ \text{is SOS}$$

Positivity certificates over K

$$K = \{x \mid g_1(x) \geq 0, \dots, g_m(x) \geq 0\}$$

Quadratic module:
$$Q(g) = \{s_0 + s_1g_1 + \ldots + s_mg_m \mid s_j \text{ SOS}\}$$

Preordering: $P(g) = \{\sum_{e \in \{0,1\}^m} s_e g_1^{e_1} \cdots g_m^{e_m} \mid s_e \text{ SOS}\}$

Theorem: Assume *K* compact.

- [Schmüdgen 1991] f > 0 on $K \implies f \in P(g)$.
- [Putinar 1993] Archimedean condition: $\exists R: R \sum_i x_i^2 \in Q(g)$. f > 0 on $K \implies f \in Q(g)$.

Positivstellensatz: [Krivine 1964, Stengle 1974]

$$f > 0$$
 on $K \iff \exists p, q \in P(g)$ $pf = q + 1$

$$f \ge 0$$
 on $K \iff \exists p, q \in P(g) \ \exists k \in \mathbb{N} \ pf = f^{2k} + q$

SOS relaxations for (P)

Truncated quadratic module:

$$Q(g)_t := \{\underbrace{s_0}_{\deg \le 2t} + \underbrace{s_1 g_1}_{\deg \le 2t} + \ldots + \underbrace{s_m g_m}_{\deg \le 2t} \mid s_j \text{ SOS} \}$$

Replace

$$(\mathbf{P}) \qquad f_{\min} = \inf_{x \in \mathcal{K}} f(x) = \sup_{\lambda} \lambda \text{ s.t. } f - \lambda \ge 0 \text{ on } \mathcal{K}$$
 by
$$(\mathbf{SOSt}) \qquad f_t^{\mathsf{sos}} = \sup_{\lambda} \lambda \text{ s.t. } f - \lambda \in Q(g)_t$$

- ▶ Each bound f_t^{sos} can be computed with SDP.
- $f_t^{sos} \le f_{t+1}^{sos} \le f_{min}.$
- ▶ **Asymptotic convergence:** $\lim_{t\to\infty} f_t^{sos} = f_{min}$. [Lasserre 2001]

Degree bounds? Convergence?

- For the general **Positivstellensatz**, recent degree bounds by [Lombardi-Perruci-Roy 2014] (depending on *n*, *m* and the maximum degree, exponential with 5 towers)
- For the **Positivstellensatz of Schmüdgen**, degree bounds and error estimates by [Schweighofer 2004]: There exist constant c, c' > 0 such that, for any polynomial f of degree d:

(i) If
$$f > 0$$
 on K then $f \in P_t(g)$ for $t \le cd^2 \left(1 + \left(d^2 n^d \frac{L(f)}{f_{\min}}\right)^c\right)$.

(ii)
$$f_{\min} - f_t^{\operatorname{sos}} \leq c' L(f) \frac{d^4 n^{2d}}{\varsigma'/t}$$
 for any $t \geq c' d^{c'} n^{c'd}$.

Sharper estimates for $K = [0,1]^n$ by [De Klerk-L 2010], roughly c = c' = 1. Also for the standard simplex by [DeKlerk-Parrilo-L 2006] (convergence in 1/t).

- For **Putinar's Positivstellensatz**, results by [Nie-Schweighofer 2007]:
- If f > 0 on K then $f \in Q_t(g)$ for $t \le c'' \exp\{(2d^2n^d)^{c''}\}$.
- When $K \subseteq \{0,1\}^n$, convergence in n steps.

For $K = \{0,1\}^n$, there are linear lower bounds [L 2003].

MOMENTS

$$f_{\min} = \inf_{x \in K} f(x) = \inf_{\mu} \int_{K} f(x) d\mu$$
 s.t. μ is a probability measure on K
$$= \inf_{L \in \mathbb{R}[x]^*} L(f)$$
 s.t. L has a representing measure μ on K

Deciding if a linear functional $L \in \mathbb{R}[x]^*$ has a representing measure μ on K is the (difficult) classical moment problem.

But one can use the **necessary condition**:

L is nonnegative on the quadratic module $Q(g) = \{s_0 + \sum_i s_i g_i : s_i \text{ SOS}\}$:

$$L(p^2) \geq 0 \quad \forall p,$$
 i.e., $M(L) = (L(x^{\alpha+\beta}))_{\alpha,\beta \in \mathbb{N}^n} \succeq 0$ and $L(g_jp^2) \geq 0 \quad \forall p,$ i.e., $M(g_jL) = (L(g_j(x)x^{\alpha+\beta}))_{\alpha,\beta \in \mathbb{N}^n} \succeq 0$

M(L) is a moment matrix and $M(g_iL)$ are localizing moment matrices

Moment relaxations for (P)

(P)
$$f_{\min} = \inf_{L \in \mathbb{R}[x]^*} L(f)$$
 s.t. L has a representing measure μ on K

Truncate at degree 2t:

(MOMt)
$$f_t^{\mathsf{mom}} = \inf_{L \in \mathbb{R}[x]_{2t}^*} L(f) \text{ s.t. } L(1) = 1, L \ge 0 \text{ on } Q(g)_t$$
i.e., $M_t(L) \succeq 0, M_{t-d_j}(g_j L) \succeq 0 \ \forall j$

(SOSt)
$$f_t^{sos} = \sup \lambda \text{ s.t. } f - \lambda \in Q(g)_t$$

$$f_t^{\mathsf{sos}} \leq f_t^{\mathsf{mom}} \leq f_{\mathsf{min}}$$

Sufficient condition for representing measure

$$M_t(L) = \boxed{ M_{t-1}(L) }$$

Theorem [Curto-Fialkow 1996 - L 2005: short algebraic proof]

If
$$M_t(L) \succeq 0$$
 and rank $M_t(L) = \operatorname{rank} M_{t-1}(L)$,

then L has a representing measure μ : $L(f) = \int f(x)\mu(dx)$ for $\deg(f) \leq 2t$

- ▶ Extend *L* to $L \in \mathbb{R}[x]^*$ with rank $M(L) = \operatorname{rank} M_t(L) =: r$
- ▶ $M(L) \succeq 0$ with finite rank $r \Longrightarrow L$ has a r-atomic measure μ
 - 1. the kernel I = Ker M(L) is a real radical ideal in $\mathbb{R}[x]$
 - 2. the quotient algebra $\mathbb{R}[x]/I$ has finite dimension r
 - 3. the variety V(I) has **r** points in \mathbb{C}^n , in fact $\mathbb{R}^n \rightsquigarrow \text{support of } \mu$
 - 4. it can be computed with the eigenvalue method
 - 5. define the **positive measure** μ (using interpolation polynomials at the points of V(I))

Optimality criterion for moment relaxation (MOMt)

$$K = \{x \mid g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$
 $d_K = 1$

 ${\color{red}d_K} = {\rm max}_j \lceil {\rm deg}(g_j)/2 \rceil$

Theorem [CF 2000 + Henrion-Lasserre 2005 + Lasserre-L-Rostalski 2008]

Assume L is an optimal solution of (MOMt) such that

rank
$$M_s(L) = \operatorname{rank} M_{s-d_K}(L)$$
 for some $d_K \leq s \leq t$.

- Then the relaxation is **exact**: $f_t^{\text{mom}} = f_{\text{min}}$.
- Moreover, one can compute the **global minimizers**:

$$V(\operatorname{Ker} M_{s}(L)) \subseteq \{ \text{ global minimizers of } f \text{ on } K \},$$

with **equality** if rank $M_t(L)$ is **maximum** (rank = # minimizers).

Properties

- Interior point algs for SDP give a **maximum rank** optimal solution
- ▶ Algorithm for computing the (finitely many) real roots of polynomial equations (and real radical ideals)

[Lasserre-L-Rostalski 2008,2009] [Lasserre-L-Mourrain-Rostalski-Trebuchet 2013]

- ▶ Finite convergence holds in the finite variety case [L 2007] in the convex case [Lasserre 2009, de Klerk-L 2011]
- Finite convergence holds generically

[Nie 2013]

 Several implementations: GloptiPoly [Henrion-Lasserre], SOSTOOLS [Prajna et al.], SparsePOP [Waki et al.], YALMIP [Löfberg]

Applications to $\alpha(G)$ and $\chi(G)$

Semidefinite hierarchies for $\alpha(G)$, $\chi(G)$

$$\alpha(G) = \max \sum_{i \in V} x_i \text{ s.t. } x_i x_j = 0 \text{ (} ij \in E\text{)}, x_i^2 = x_i \text{ (} i \in V\text{)}$$

$$\begin{aligned} \operatorname{las}_t(G) &= \operatorname{max} \ L(\sum_{i \in V} x_i) \ \text{ s.t. } \ M_t(L) \succeq 0, \ L(1) = 1, \ L(x_i x_j) = 0 \ (ij \in E), \\ L &= 0 \ \text{on truncated ideal} \ (x_i^2 - x_i : i \in [n])_{2t} \end{aligned}$$

$$\chi(G) = \min c \text{ s.t. } \alpha(G \square K_c) = |V(G)|$$

$$\operatorname{\mathsf{Las}}_t(G) = \min \ c \ \operatorname{s.t.} \ \operatorname{las}_t(G \square K_c) = |V(G)|$$

- ▶ $\alpha(G) \leq \operatorname{las}_t(G)$, with equality if $t = \alpha(G)$.
- ▶ Las_t(G) ≤ $\chi(G)$, with equality if t = n. [Gvozdenović-L 2008]
- ▶ At t = 1, get theta number: $las_1(G) = \vartheta(G)$, $Las_1(G) = \vartheta(\overline{G})$.
- ▶ These hierarchies refine other known hierarchies [L 2003] [GL 2008]

Applications

- ► Coding problem: Find the maximum cardinality of an error correcting binary code of length *N*
- ► Compute the stability number $\alpha(G_N)$ of a Hamming graph G_N : $V = \{0,1\}^N$, edges = pairs $\{u,v\}$ at small Hamming distance.
- ▶ Big graph ($|V| = 2^N$), but with a large automorphism group.
- ▶ $las_t(G_N)$: SDP of size $O(N^{2^t-1})$ instead of $O(|V|^t = 2^{tN})$

[L 2007]

- Best known upper bounds for $\alpha(G_N)$ obtained by computing (variations of) the Lasserre bound of order t=2. Also bounds for $\chi(G_N)$ (and other symmetric graphs). [Gijswijt, Gvozdenović, L, Mittelman, Regts, Schrijver, Vallentin...]
- Extensions to geometric problems: kissing number problem
 [Bachoc-Vallentin 2008], coloring of the Euclidean space
 [Bachoc-Nebe-Oliveira-Vallentin 2009] (α, χ in infinite graphs)

Concluding remarks

- SDP hierarchies are used for approximation algorithms in TCS
- ▶ SDP hierarchies are used for **noncommutative** polynomials
 - Evaluate polynomials at matrices or operators (instead of scalars)
 - ► [Helton 2002] $f(X_1,...,X_n) \succeq 0$ for all $X_1,...,X_n \in \mathcal{S}^d$ $(\forall d \geq 1)$ $\iff f$ is a sum of hermitian squares
 - ▶ SDP hierarchies for quantum analogues of $\alpha(G)$ and $\chi(G)$?

$$M_G = \alpha(G)(I + A_G) - J \quad \rightsquigarrow \quad f_G = \sum_{i,j \in V} x_i^2 x_j^2 (M_G)_{ij} \geq 0$$

Conjecture:
$$f_G\left(\sum_{i\in V} x_i^2\right)^{\alpha(G)-1}$$
 is a sum of squares

[de Klerk-Pasechnik 2002]

Partial proof [Gvozdenović-L 2007]

▶ **Question** [DeKlerk-L 2010] What is the smallest constant C_n such that $x_1 \cdots x_n + C_n \in Q_n(x_i^2 - x_i : i \in [n])$? $C_n = \frac{1}{n(n+2)}$?

THANK YOU

Example

Compute the real roots of the polynomial equations:

$$g_1 = 5x_1^9 - 6x_1^5x_2 + x_1x_2^4 + 2x_1x_3,$$

$$g_2 = -2x_1^6x_2 + 2x_1^2x_2^3 + 2x_2x_3,$$

$$g_3 = x_1^2 + x_2^2 - 0.265625.$$

order t	rank sequence	accuracy
5	1 4 8 16 25 34	_
6	1 3 9 15 22 26 32	_
7	1 3 8 10 12 16 20 24	_
8	1 4 8 8 8 12 16 20 24	4.6789e-5

8 real roots (and 20 complex roots).