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ON THE ZEROS OF THE ERROR TERM 
FOR THE MEAN SQUARE OF IC(i + it)I 

A. !VIC AND H.J. J. TE RIELE 

ABSTRACT. Let £( T) denote the error term in the asymptotic formula for 

The function E(T) has mean value n. By In we denote the nth zero of 
E(T) - rr. Several results concerning In are obtained, including tn+l - tn « 
t ~12 . An algorithm is presented to compute the zeros of £( T)- rr below a given 
bound. For T::; 500000, 42010 zeros of £( T)-n were found. Various tables 
and figures are given, which present a selection of the computational results. 

1. INTRODUCTION 

Let, as usual, for T ~ 0 

E(T)= foTic(~+it)l 2 dt-Tlog(~)-(2y-l)T 
denote the error term in the asymptotic formula for the mean square of the 

Riemann zeta function on the critical line (y is Euler's constant). In view of 

F. V. Atkinson's explicit formula for E(T) (see [2] and [11, Chapter 15]) and 

its important consequences, this function plays a central role in the theory of 
((s) . 

It is also of interest to consider £( T) in mean square, and one has 

(1) liT E 2(t)dt=CT312 +&'(Tlog5 T) (c = 2C4
( 3/ 2l ~ l0.3047) 

3J2n((3) 

This formula is due independently to T. Meurman [16] and Y. Motohashi [17], 

who improved the previous error term &( T 514 1og2 T) of D. R. Heath-Brown 

[10]. One consequence of (1) is the omega result E(T) = Q(T114 ) [6], which 

was sharpened by Hafner and Ivie [7, 8] to 

(2) E(T) = Q+{T(logT) 114 (1oglogT) 13 +tog 4J/4 

x exp(-B)log log log T)} (B > 0) 
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and 

(3) E(T) = n_ { TI/4 exp ( D(loglog T)t/4 ) }. (D > 0), 
(log log log T) 314 

where f(x) = Q+(g(x)) (resp. Q_) means that f(x) > Cg(x) (resp. f(x) < 
-Cg(x)) for some C > 0 and some arbitrarily large values of x; further­
more, f(x) = Q(g(x)) means that Jf(x)J = Q+(g(x)). These omega results 
are analogous to the sharpest omega results for L1(x), the error term in the clas­
sical Dirichlet divisor problem. This suggests the analogy between E ( T) and 
2nL1( fn) (see [ 11, Chapter 15]), which was one of the principal motivations for 
Atkinson's pioneering work [2]. However, there is an important difference be­
tween E(T) and 2nA(fn). While E(T) is a continuous function of T (with 
derivatives of any order), A({~) is certainly not, since Ln<x d ( n) ( d ( n) is the 
number of divisors of n) has jumps for integral x which may be as large as 
exp( 1~s1f0r~) . (Here and later, C, C1 , • • • denote positive, absolute constants). 
From (2), (3) and continuity it is immediate that E(T) has an infinity of zeros, 
and the purpose of this paper is to study these zeros and related topics, both 
from the theoretical and numerical viewpoint. 

It seems expedient, especially from the numerical viewpoint, to study the 
zeros of E ( T) - n rather than those of E ( T) . This is because E ( T) has the 
mean value n. More precisely, Hafner and Ivie [7] prove that, for T ;:=:: 2, 

-3 ' n d n nn -
T m-' f E(t) dt = nT + 2 /- I.>-1) ~ (arcsinh 2T) ./2 n'S_N yn 

(4) 
( T 1)-t/4 

x 2nn + 4 sin(f(T, n)) 

-2 ~ d(n) (1og_I_)- 2 sin (r1og_I_-T+'!!._) 
L,, 1n 2nn 2nn 4 

115.N' V" 

where 

AT < N < A' T for any two fixed constants 0 < A < A' . Note that formal 
differentiation of the sine terms in ( 4) leads to Atkinson's formula [2] for E( T) 
itself (without the error term &'(log2 T)) . Also, on simplifying ( 4) by Taylor's 
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formula, one may deduce 

1T oo 
d -1/4 -3/4 3/4"""" 'n -5/4 . ( ;;:;---;:;-; n) ·, 

E(t) t=rcT+2 re T L.,(-1) d(n)n sm v8nnT- 4 
(5) 2 n=I 

+ &(T213 log T), 

which we shall need in §3. A nice feature of ( 5) is that the series is absolutely 
convergent, so that 

1T (E(t) - re) dt = &'(T314 ), 

and, as shown in [7], the above integral is also Q± ( y 3!4 ) • 

The plan of the paper is as follows. In §2 we shall study the general problem 

of gaps between consecutive zeros of E(t)-f(t), where f(t) ( « 11!4-q for any 
fixed 0 < rJ < ~) is continuous. In §3 we turn to zeros of E(t)-n and show, by 

u~ing (5), that E(t) - re always has a zero in [T, T + cfl] (c > 0, T?. T0 ). 

Some other results involving the zeros of E ( t) - re , E' ( t) and related topics, are 
discussed in §4. In §~ we describe the algorithms we used for the computation 
of E(t) - n and its zeros, including an estimate of the errors involved. For 
t ::;: 500000, 42010 zeros of E(t) - re were found. In §6 we present tables and 
figures with a selection of the results of the computations. These results eluci~ 
date the behavior of E(t) - re, but clearly much more extensive computations 
will be needed to examine the most important conjectures concerning the order 
of E(t) - re and the distribution of its zeros. 

2. GAPS BETWEEN GENERAL ZEROS 

In this section we consider the zeros of the general function 

E/t) := E(t) - f(t), 

where we shall assume that f(t) is continuous for t?. t0(f) and satisfies 

J(t) = &(tl/4-r1) 

for any fixed rJ such that 0 < 17 < 1/4 (note that the sign of f(t) is unimpor­

tant). From (2)-(3) one has trivially E(T) = Q±(T114 ), hence also Er(T) = 

Q±(T114 ), so that by continuity each E rUl has infinitely many distinct zeros 
in (t0(f), oo), which we shall denote by t1 (f) < t2(f) < .. · . Our aim is to 

estimate the quantity 

(6) K(f) = inf{c?. 0: tn+I (f) - tn(f) « t~(f)}, 
or, in other words, to estimate the gaps between consecutive zeros of Er(t) , 

since (6) implies 

tn+I (f) - tn(f) « (tn(f)((f)+e (n?. n0(e, f)) 

for any e > O. Here and subsequently, a(n) « b(n) means that a(n) = 

&(b(n)), n --+ oo. Determining the exact value of K(f) for any f seems a 
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difficult problem. Our main result on K(/) is contained in 

Theorem 1. Let 

Then 

(7) 

a= inf{c > 0: E(t) « {}. 

1 
a SK(/) S l · 

Proof. Note first that from known results on a (see [ 11, Chapter 15] and [7]) 
one has 

1 139 
4 S a S 429 = 0.324009324 ... , 

so that unconditionally K(/) 2: l . Since, in analogy with the classical conjecture 
.1(x) « x 114+< for the divisor problem, one conjectures that cl'. = i, perhaps 
even K(/) = l for all f. If true, the last conjecture is very strong, since it 
implies [11, Chapter 15] that (( 1 +it)« t 118+o, which is not proved yet. 

Now we turn to the proof of the lower bound in (7). Suppose that a > K(f). 
Then for e > 0 sufficiently small, E r(t) must vanish in [T, T + r-e] for 
T 2: T0 (e), which we shall presently show to be impossible. By the definition of 
a , there exist arbitrarily large T such that for any given e > 0 we have either 
E(T) > r•-e/2 or E(T) < -T"-e12 • In both cases the analysis is similar, so 
we shall consider only the former case. From 

E(T + H) - E(T) = lrT+H le(~+ it) 1
2 

dt - t (1og 2tn + 2y - 1) l~+H 
it follows that for some absolute C > 0, 

(8) E(T + H) - E(T) 2: -CH log T (T 2: 2, 0 s H:::; 1T). 
Let 0 s H s T"-e . Then 

El(T + H) - Ef(T) = E(T + H) - E(T) + &(T114-ry) 

2: - CT"-e log T - C1 T 114-ry, 

which implies 

El(T + H) 2: To-e/ 2 - CT"-e log T - 2C1 T 114-'1 > C2 Tn-e/l > 0 

for some C 1 , C2 > 0, 0 < e s 2(n: - i + 71) and T 2: T0 (c:), since a 2: l. 
Therefore, E r(t) does not vanish in [T, T + T''-e], which is a contradiction 
if a > K(f) and e > 0 is sufficiently Smail. 

To prove the upper bound in (7), suppose that 

(9) T 112 log6 T s H s T 112+ry. 

Assuming that El(t) does not change sign in [T, T + H], we shall obtain a 
contradiction with suitable H, which will yield K(f) s 1 · If El(t) does not 
change sign in [T, T +HJ, then 

( 10) j·T+H I rT+ll I r IE.r(t)I dt = lr El(t) dt . 
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From (1), (5) and (9) we infer that 

( 11) (T ~ oo) 

and 

( 12) 

since by hypothesis f(t) « 11!4-YI and, for T 5 t 5 T + H, 

E~(t) = E 2(t) + &'(T114-,,[E(t)I) + &'(T1/ 2- 2"). 

307 

We shall use Holder's inequality for integrals, letting 0 < ~ < ! be a fixed 
number which may be chosen arbitrarily small. We have 

( 13) 

rT+H rT+H 
HT 112 « Jr E_~(t)dt = Jr E~(t)E_~-6 (t)dt 

<; (J,T+H IE 1Ull d1)' (J,''+H 1£1(1)1"-""'-" dt) ,_, 
« T36/411-6, 

where we used (10) and (12), and where 

I= [E (t)[(2-6J/(l-6J dt = [E (t)[2+0/(l-0J dt. 1T+H 1T+H 
T f T f 

We need an upper bound estimate for I, and to this, we shall use the large values 
technique discussed in Chapters 13 and 15 of [ 11 ]. Namely, let T 114 « V « 
T 113 and let R0 = R0 (V, T, T0 ) be the number of points ti in [T, T + T0 ] 

such that IE.r(t)l ;:::: V and [ti - t) ;:::: CV for i =f. j and any fixed C > 0. 
Then 

[E(ti)[ 2:: [E/(ti)[ - [f(ti)[ 2:: V - C1 T 114_,, ~ V/2 

for i = 1 , ... , R0 • Analogously as in ( 13.66) of [ 11 ], we obtain 

(14) 

for any given e > 0 . This gives 

(15) 

for 

R « yl+ev-3 
0 

(16) v;:::: c1 r;f36y7136+e;2 (C1 > O). 

In our case, T0 = H ;:::: T 1/ 2 log6 T, thus V » T 114 holds trivially if ( 16) is 

satisfied, and V > T 113 is impossible since a < 1 · In I we divide the interval 
of integration [T, T + H] into subintervals of length V (except perhaps the 
last such subinterval, which may be shorter, but whose contribution to I is 
clearly negligible), and write I= / 1 +/2 • In / 1 the maximum of [E(t)\ in each 
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of the subintervals is at most C 1 H 4136 T 7136+e/Z , while in ! 2 it is larger. We 
estimate / 1 trivially, using ( 11), and obtain 

11 « HT112(H4/36T7/36+e/2)'5/(1-o). 

To bound / 2 , we use the large values estimate (15) (since (16) holds), consid­
ering separately subintervals with even and odd indices, so that jti - t) ~ V 
is fulfilled. Hence, by the definition of a, we obtain (considering &(log T) 
possible values of V of the form V = 2m) 

3+o/( 1-0) ! 2 « logT max R0 V 
Tt/4,:0Y-ST'+t 

T 1+e 1 T Vo/(l-oJ T'+3e+oo/(I-o) « og max « 
v -s r•+t 

if 0 < J < ±. Therefore, (13) gives, for 0 < e < ±, 
HTI/2 « T3o/4Tl-o+e+oo + T3o/4 Hl-o T(I-o)/2 H4o/36 T7o/36+!5e/2. 

Simplifying, it follows that 

(17) H « Tl/2+o(«-l/4)+e + Tl/2+e « Tl/2+o(a-l/4)+e, 

since a 2: ~ . Thus, if we take 

H = T1;2+o(r;-I/4J+2e, 

then for J and e sufficiently small, (9) holds but ( 17) is impossible. This 
contradiction shows that K(j) ::::; ± , as asserted. o 

3. ZEROS OF E(t) - 7r 

The upper bound in Theorem 1 applies to the case when f(t) = n, that is, to 
the zeros of E(t) - n. Henceforth, we let tn = tn(n), so that 0 < t 1 < t2 < · · · 
denote the distinct zeros of E(t) - n (these bear no relation to the points ti in 
§2). Theorem l gives 

( 18) 

but we shall use a special method to improve ( 18) by removing "e". The result 
IS 

Theorem 2. There exists a constant c > 0 (effectively computable) such that 
E(t) - n has a zero of odd order in [T, T + cJT] for T ~ T0 . 

Proof. We shall use the fact that, if h(t) E IC[2, T], and Nh (T) is the number 
of zeros of h(t) in [2, T], then Nh(T) ~ NH(T) - 1, where NH(T) is the 
number of zeros in [2, T] of the function 

H(t, a) = ~1 ua h(u) du 
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for any fixed real a. For, if T 1 and T 11 are two zeros of H(t, a) m [2, T], 
then 

T" 

O=H(T11 ,a)-H(T1 ,a)= { uah(u)du. 
lT' 

Hence uah(u), and consequently h(u), must change sign in [T', T 11 ] and have 
a zero of odd order in [T1 , T 11 ]. In proving Theorem 2, we shall make use of 
the asymptotic formula (5), and we shall consider the function 

00 

g(t) :=I: d(n)n- 514 sin( v8nnt - ~) . 
n=I 

Clearly, g(t) E qo, oo), and g(t) has an infinity of zeros, since g(t) = Q±(l) 
(follows by the method of Hafner and Ivie [7]). Further, for 0 S H ::; T, we 
have 

{T+H 2 1 oo ? -5/2 {T+f! ( ( 11:.)) 
11 g (t) dt = 2 I: d-(n)n 11 1 - cos 2v8nnt - 2 dt 

T n=I T 

+ &' ( £: (mn)e-5/4 IJT+H eiv'87i/(vm±fii) dtl') 
m,n=I ;mf.n T 

To estimate the integrals on the right-hand side, we use the simplest result on 
exponential integrals (see Lemma 2.1 of [ 11 ]): Let F(x) be a real differentiable 
function such that F' (x) is monotonic with either F 1 (x) 2: m, or F 1 (x) S 
-m < 0 for a S x S b. Then 

( 19) lih eiF(x) dxl S 4m -1. 

Using ( 19), we obtain 

lT+H g2(t) dt = ( ~ Ed2(n)n-s12) H +&'(VT) 

+ &' { yl/2 (:t n2e-2 L m ~ n 
n=l n<m'5_2n 

oo e-3/4) } I: e-5/4 L m + n ~~ 
m-n 

n=I m>2n 

= c H +&'(VT)' 

where 

C = ~ ~ d 2 ( ) -s/2 = (4 (S/2) '""' I 561592 
2 L., n n 2( ( 5) '""' · · 

n=I 

Hence, for T 2: T0 , suitable C1 , C2 , C3 > 0 and C3 VT S H S T, we have 

(20) c,H::::: lr+H /ul dt:::; c2H. 
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However, 

£ 1 (T) := liT (E(t) - n) dt = ~ ( ~ r/4 
T 314 (g(T) + y(T)), 

where y(t) is continuous, and by (5), 

(21) y(t)=&'(t- 1112 logt). 

Suppose now that £ 1 (t) does not change sign in [T, T + H] , where H = D./T 
for some sufficiently large D > 0. Then g(t) + y(t) also does not change sign 
m [ T, T + H] , and we have 

}T tE[T, T+H] }T 

rT+H (g(t) + y(t) )2 dt s max lg(t) + y(t)I · I r T +Ji (g(t) + y(t)) d tl 
(22) I T+lf I 

S C4 h (g(t) + y(t)) dt . 

Estimating the last integral by ( 19) and using (21 ), we obtain 

{T+H 2 
(23) JT (g(t) + y(t)) dt s C5../T' 

where C5 > 0 is an absolute constant. On the other hand, using (20) and (21), 
we obtain 

rT+H ) rT+H 2 2 jT (g(t) + y(t)r dt = jT (g (t) + 2g(t)y(t) + y (t)) dt 

{T+H 2 
=1T g(t)dt 

+ & { r '112 H' 12 log T (lT+H /(I) dt) 'I'} + o(H) 

(24) 

"?.. C1H + o(H) (T----+ oo). 

Comparing (23) and (24), it follows that 

C1H + o(H)::; C5./f', 
which is impossible for D > C5/C1 • Hence g(t) + y(t), and consequently 
E 1 (t), must change sign in [T, T + D./T]. By the discussion at the beginning 
of the proof it follows that E(t)- n must change sign in [T, T + 2DVT], and 
Theorem 2 follows with c = 2D . A more careful estimation of the preceding 
integrals (working out explicitly all the &'-constants) would yield an explicit 
value for c. D 

The method of proof of Theorem 2 is fairly general and can be used to yield 
results on sign changes in short intervals for certain types of arithmetic error 
terms. The key ingredient is the existence of a sharp formula for the integral 
of the error term in question (the analogue of (5)). In particular, it follows by 
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our method that Ll(x) changes sign in [x, x + C1 fi] for x 2 x0 . This also 
follows from general results of J. Steinig [22], whose method is different from 
ours and cannot be used to yield Theorem 2. 

Another important problem is the estimation of tn , the nth zero of E(t)- n, 
as a function of n . Alternatively, one may consider the estimation of the 
counting function 

K(T) := L 1. 
t,,~T 

Since [T, T + cVT] contains a tn for T 2 T0 , it follows that K(T) » VT. 
Setting T = tn, we have n = K(tn) » yT;;, or 

(25) 

This upper bound seems very crude to us, and we proceed to deduce a lower 
bound for t n , which appears to be somewhat closer to the truth. Note that 
K ( T) « M ( T) , where M ( T) denotes the number of zeros in [O, T] of the 
function 

E 1 
( t) = I ( ( 4 + it) I 2 - log ( 2

1n: ) - 2 y = Z 2 ( t) - log ( 2tn: ) - 2 y . 

Here, as usual, we denote by Z (t) the real-valued function 

z ( t) = x - I / 2 ( 4 + it) ( ( 4 + it) 

( x(s) = ((~(~ s) - ins-I sin (~s) f(l - s)) , 
so that I Z ( t) I = I ( ( ~ +it) I and the real zeros of Z (t) are precisely the ordinates 
of the zeros of ((s) on the critical line Res= ~. But M(T) = M 1 (T)+M2(T), 
where M 1 ( T) and M 2 ( T) denote the number of zeros of 

Z(t) - (1og 2tn: + 2y) I/2' Z(T) + (1og 2tn + 2y) I/2 

in (0, T], respectively. Note that M1 (T) « LJ(T), where LJ(T) is the number 
of zeros of 

z'(t) + (-l)J 
2tJ!og(t/2n:) 

m [O, T]. It was shown by R. J. Anderson [ 1] that the number of zeros of z' (t) 
in [O, T] is asymptotic to fn log T, and by the same method it follows that 
LJ(T) = &(Tlog T). Hence K(T) « Tlog T, and taking T = tn, we obtain 

(26) tn»n/logn. 

Our numerical results (cf. Table 2 in §6) indicate that both (25) and (26) are 
far from the truth. In the range we have investigated numerically, t n behaves 
roughly like n log n , but we have no idea how to prove this in general. 
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4. SOME FURTHER RESULTS 

As before, let t n be the nth distinct zero of E( t) - n . In this section we 
present some further results on the t 11 's and related subjects. 

First observe that 

Un+! - tn\2J~?,,J( (~+it) 12 :::: /
1
"+

1 I((~+ it) 12 dt 
" 

= t (log 2tn + 2y - 1) 1:::+1 + E(tn+l) - E(tn) 

=t (1og 2tn +2y- l)l:n+i ::'.: (tn+l -tn) (log~~ +2y). 
" 

Therefore, it follows.that 

(27) 
I ( 

1 ) 1 · ( t ) 1 /2 .T'~x ( -2 + it :::: log -2n + 2y 
l 11 _t_tn+I TC 

This inequality shows that the maximum of I(( 1 + it)i between consecutive 
zeros of E( T) - n: cannot be too small, even if the gap between such zeros is 
small. On the other hand, the maxima of !((~ + it)i can be larger1 over long 
intervals. Namely, Balasubramanian [3] proved that 

(28) max I( (-21 +it) I :::: exp (-4
3 logH ) 

IE[T, T+H) loglogH 

for (log T)° ::; H ::; T. We recall that the best upper bound for ( ( ~ + it) is, 
under the truth of the Riemann hypothesis (see E. C. Titchmarsh [24, p. 354, 
Theorem 14.14(A)]), 

(29) ((~+it) «exp(i~gl~ggtt), 
so that the gap between (28) (for H = T) and (29) is not so large. 

Another useful inequality is 

( 30) 

the proof of which is analogous to the proof of K(f) :::: u in Theorem I, and 
which is actually more precise than the inequality K( n) :::: o: (for f (t) = n: in 
Theorem 1 ). Namely, let 

1£(7) - nl == max IE(t) - nl. 
IE[t,,,1,,, 1 ) 

1Take, for example, II= T =In= 1020 ; then (27) yields max ~ 6.73 and (28) yields max ~ 
13.47. Practically speaking, the bounds in (27) and (28) are weak: in [14] we have maxZ(I) = 
116.88; the corresponding right-hand sides (27) and (28) yield 4.39 and 6.77, -respectively1 For 
recent results concerning large values of Z (I) , cf. [ 18] and [ 19]. 
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Suppose E(t) - n > 0 (if E(t) - n < 0, then we use 

(31) E(T- H) -E(T) S CHlogT ( C > 0 , 0 s H s -!J) , 
which is proved analogously as (8)), and use (8). Then 

E(l + H) - n ~ E(t) - n - CHlogtn 2::: 0 

for 0 s H S (E(t) - n)/(2C logtn). Thus E(t) - re has no zeros in [t, t + H] 
with H = (E(t) - n)/(2Clogtn). Consequently, 

(E(t) - n)/(2Clogtn) = H S tn+I - tn, 

and (30) follows. 
Using (30), we may investigate sums of powers of consecutive gaps tn+I - tn. 

Namely from ( 1) we have, as T--.. oo, 

3/2 {2T !tn+I 
(32) cl T ~ lr E 2(t) dt ~ L 1 E 2(t) dt. 

T<t,,$.2T, T 114 Iog- 2 T$.t,,+ 1-111 " 

The contribution of gaps less than T 114 log-2 T is negligible by (30) and trivial 
estimation. From (32) we infer by (30) that 

T 312 « L (tn+I - t11 ) ( max IE(t) - nl 2 + i) 
IE(I ,I ] 

T<t,,$.2T,t,,+ 1 -t,,~T 114 log- 2 T " "' 1 

2 ~ 3 « log T L.., (tn+l - t11 ) + T, 
(33) 

which gives (replacing T by TT J and summing over j ~ 1) 

(34) 3/2 -2 ~ 3 
T log T « L.., (tn+I - t11 ) • 

111 '.5,_T 

In general, for any fixed a ;::: I and any given e > 0, 

(35) y(3+o-e)/4 « ~ (l _ l )". 
e,o L.., n+l n 

t,,$.T 

(Here, a(n) «e,o b(n) means that the constant implied by the relation a(n) = 
0( b( n)) depends on e and (}'..) This follows along the same lines as ( 34 ), using 

yl+a/4-e «a.e hT IE(t)la dt (a 2::: 0, e > 0) 

with a = Cl'. - I . The last bound for a > 2 (without "e") follows easily from 
( 1) and Holder's inequality, and for 0 < a < 2 it follows from 

T ( T ) I /2 ( T ) 1 /2 
T 312 «Ii Ea 12 (t)E 2-a/2 (t) dt :$ Ii IE(t)la dt 1 IE(t)l4-a dt 
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on bounding the last integral by Theorem 15. 7 of [ 11 ]. It may be conjectured 
that the lower bound in (35) is close to the truth, that is, we expect that 

(36) L (tn+l - tn)" = T(3+n+o(l))/4 (n ::'.'.: l' T--+ oo), 
t,,5-T 

but unfortunately we cannot at present prove this for any specific a > 1 (for 
a= 1 it is trivial). 

The lower bound estimate ( 34) may be compared to corresponding results 
for Yn+I - Yn, where 0 < y1 5 y2 5 · · · are the positive zeros of ((!+it) (or 
Z(t)). Large values of Yn+l - y11 were (unconditionally) investigated by Ivie 
and Jutila [13] and Ivie [12], where it was shown that 

(37) L (Yn+I - Y,/ « Tlog6 T, 
., <T 
'n-

while from 

it follows that 

"<T 'n-
Thus, it follows that the gaps between the t 11 's are, on the average, much larger 
than the gaps between the y n 's. 

If one assumes RH, then (37) may be sharpened. From the work of A. Fujii 
(seep. 246 of [24]) it follows that, for any fixed integer k 2: 1 , 

(38) 1-k """' k I-k Tlog T « ~ (Yn+I - Y) « Tlog T, 
"<T 'n-

and presumably the bounds in (38) may be replaced by an asymptotic equality. 
Of course, the lower bound in ( 38) is unconditional and follows as in the case 
k = 3 which we already discussed. 

It is known (see H. M. Edwards [4]) that Z(t) cannot attain positive local 
minima or negative local maxima if RH is true. In other words, the zeros of 
Z ( t) and z' ( t) are interlacing, and on RH, R. J. Anderson ( 1] proved that the 
zeros of z' ( t) and z" ( t) are also interlacing. However, the situation with the 
zeros of E(t) (or E(t) - n) in this respect is (unconditionally) quite different. 
We have 

E 1(t) = Z 2(t) - (1og 2
1n + 2y) , £ 11 (t) = 2Z(t)Z 1 (t) - ~, 

E(r)(t) = 2 f (r-_ 2)zUl(t)Z(r-I-JJ(t) + (-l)r-l(r- 2)!tI-r 
)=0 J 
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for r ;:::: 3 . If E' (t) = 0 , then 

(39) \c (~+it) I= J1og 2tn: + 2y, 

and heuristically, (39) should hold quite often. Since we have by the remark 
following Theorem 1 that K(f) ;:::: i, this would mean that E(t) - n: must 
have many positive local minima and negative local maxima between large gaps 
between its zeros, regardless of the truth of RH. This will be confirmed by the 
numerical experiments described in § 6. If 0 < r 1 :::; r 2 :::; · · · are the zeros of 
E' (t), let 

and 

8 = inf{c;:::: 0: Yn+I - Yn «: y~} 
denote the exponents for the gaps between the corresponding consecutive zeros 
of E' ( t) and Z ( t) . Determining the true values of e and <! seems almost 
hopeless. Under RH, e = ~ = 0, and unconditionally, A. Ivie in [11] proved 
that e:::; 0.15594583 ... and in [12] indicated how e:::; 0.15594578 ... may 
be attained. These are the sharpest hitherto published results. 

5. COMPUTATION OF THE ZEROS OF E(T) - 71: 

In this section we shall describe how we have computed the zeros of E ( T)-n: . 
We write 

(40) E(T) - :re= E 11 (T) = I(T) - T (1og ~ + 2y - 1) -n, 

where 

( 41) l(T) = foT I((~+ it) 12 
dt. 

Each time a value of £ 11 ( T) is computed, the corresponding I ( T)-value is 
saved, since this can be used in the computation of neigh boring £ 11 ( T)-values, 
in view of the relation 

(42) l(T + h) = l(T) + lT+h I((~+ it) 12 
dt. 

In §5.1 the formulas used to compute the values of IC(1 + it)I are given. The 
integral in ( 42) is computed by means of the Simpson quadrature formula with 
extrapolation; this is described in §5.2. 

We have developed a numerical algorithm to find as many zeros of £ 11 ( T) 
as possible, starting at T = 0, and proceeding with small steps on T. We 
cannot be absolutely sure that this algorithm does find all the zeros, but special 
provisions have been made in case of doubt. The algorithm is described in §5.3. 
The error control of the computations is explained in §5.4. 
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5.1. Computation of I((~+ it)I. There are two formulas suitable for the com­
putation of I((~+ it)I: the Euler-Maclaurin and the Riemann-Siegel formula. 

The Euler-Maclaurin formula enables us to compute ((s) to any desired 
accuracy, by taking m and n large enough in 

n-1 l 1-s m 

(43) ((s) = I:rs + 2n-s +; _ l + LTk_n(s) + um_n(s)' 
j=l k=l 

where 
B 2k-2 

?k l-s-2k IT . 
Tk n ( s) = ( 2k) ! n . ( s + J ) 

;=0 
and 

IU111 .n(s)I < ITm+l.n(s)R:(~!~;~ 1 j 

for all m ~ 0, n ~ l, and Re(s) > -(2m + 1). Here, B2 = 1/6, B4 = 
- l / 30, . . . are the Bernoulli numbers. In order to obtain ( ( t + it) to within a 
specified absolute tolerance, we may take n ~ t / ( 2rc) . Thus, the computational 
work required is roughly proportional to t. The precise choice we made for m 
and n is as described in [20] and [21] (see also §5.4). As an example of the use 
of(43),take s=~ (cf.(l));for m=2, n=5 we find ((~)=2.612375056 
with an error which is less than 3.1 x l 0- 7 , and for m = 2, n = 6 we find the 
value 2.612375259 with an error less than 9.4 x 10-8 . For the computation 
of C in (1) we took ((~) = 2.612375 (and ((3) = 1.202057). 

The Riemann-Siegel formula is a substantial improvement over the Euler­
Maclaurin formula for not too small t, since its computing time is proportional 
to t 112 rather than t. Write the function Z(t) = x- 112 {! +it)(( t +it) as 

Z(t) = exp(i8(t))( (~+it) , 
where 

8(t) = rm(log! (~+~it)) - ~tlogn, 
1/1 I/? . and let r = l/(2rc), m = lr "j and z = 2(r - - m) - 1. Then the R1emann-

Siegel formula for Z (t) with n + I terms in its asymptotic expansion is given 
by 

( 44) 

m 

Z(t) = 2 L k- 112 cos(O(t) - tlogk) 
k=l 

n 
+ (-l)m-Ir-1/4 L<P;(z)(-l)Jr-;/2 + Rn(r)' 

;=0 

when Rn(r) = 6"(r-(Zn+JJ/4) for n ~ 0 and r > 0. Here, the <P1 (z) are certain 
entire functions which can be expressed in terms of the derivatives of 

? 

<P (z) = <P(z) = cos(n(4z" + 3)/8) 
o cos(rcz) 
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<P 1 and <P2 are given by 
(3) 

<P ("') - <I> (z) 
1 ~ - 12n2 

and 
<1>12l(z) <1>(6J(z) 

<I> (z) = + ---..,... 
2 l 6n 2 288n4 • 

The coefficients of rapidly converging power series expansions of <I> .(z) are 
j 

given in [9]. Gabcke [5] has obtained error bounds for Rn(r), for t ;::: 200 
and 0 ::::; n ::::; 10 . For n ::::; 4 these bounds are optimal, and they are given by 
IR ( )I -(2n+3)/4 h O n• <cnt ,werec0 = .127,c1 =0.053,c2 =0.011,c3 =0.031, 
c4 = 0.017. 

5.2. Computation of I(T + h) from I(T). In order to compute I(T + h) from 
I(T) for some step h, we use Simpson's rule with extrapolation as follows. Let 

( 45) 
{T+h 

!(T, h) := }T f(t)dt, 

where f(t) = I((~+ it)j 2 . We first compute two approximations / 1 and !2 to 
I(T, h) based on applying Simpson's quadrature rule to the interval [T, T +h], 
and to the two intervals [T, T + h/2] and [T + h/2, T + h], respectively: 

h 
11 ="6{.f(T)+4.f(T + h/2) + f(T + h)} 

and 

h 
f 2 = U{f(T) + 4f(T + h/4) + 2f(T + h/2) + 4f(T + 3h/4) + f(T + h)}. 

Using the technique of extrapolation ( cf., e.g., [23, §3.3]), these two values can 
be combined to yield the better approximation (provided that h is sufficiently 
small): 

( 46) 

where (!2 - ! 1) / 15 is a good approximation of the error in ! 2 . This error is 
used in our computations as a (very pessimistic) estimate of the error in Iextr. 

A possible alternative to ( 46) might be a Gauss-Legendre quadrature rule. For 
example, some experiments revealed that a 3-point Gauss-Legendre rule would 
yield roughly the same accuracy as the above 5-point Simpson rule (which, 
effectively, is a 4-point rule since the end point value f(T + h) on [T, T + h] 
is used as starting point value on [T + h, T + 2h]). However, in order to get 
an estimate of the error in the 3-point Gauss-Legendre rule, we know of no 
better way ( cf. [23, p. 127]) than to apply a 4-point Gauss-Legendre rule, and 
compare the results; this would require four extra function evaluations, since the 
!-values needed in the 3-point rule cannot be used in the 4-point rule. This is 
our motivation for choosing ( 46). Professor W. Gautschi has kindly pointed out 
the alternative of using the 7-point Gauss-Kronrod formula for estimating the 
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error in the 3-point Gauss-Legendre formula. This also requires four additional 
points, but is more accurate than the 4-point Gauss-Legendre formula, since 
it has maximum degree of exactnes'>. See, e.g., W. Gautschi, Gauss-Kronrod 
quadrature-A survey, in "Numerical Methods and Approximation Theory III" 
(G. V. Milovanovic, ed.), Faculty of Electronic Engineering, Univ. of Nis, Nis, 
1988, pp. 39-66. 

5.3. The zero-searching algorithm. Our algorithm proceeds with a step h to 
find zeros of the function En ( t) , i.e., after the search has been completed for 
t ::; T, the interval [T, T + h] is searched (in certain cases combined with a 
second search on [T - h, T]) . Now and then, small parts of the computations 
are repeated with a smaller, and also with a larger step. This is in order to check 
whether the step has to be decreased or may be increased, respectively, in view 
of the required accuracy. 

Let Tj := jh, Ij := I(T) and Ej := En(Tj), j = 0, 1, .... Suppose that 
the interval [O, Ti] has already been treated. This implies that Ij and Ej are 
known, for j = 0, 1, ... , i. We now compute !(Ti+!) from /(~) (by means 
of (42) and Simpson's rule as described in §5.2) and then Ei+i (with the help 
of ( 40)). 

If E;Ei+l < 0, then by continuity there is at least one zero between ~- and 
Ti+ 1 • This zero is found by a rootfinder described at the end of this section. 

If EiEi+l ?:: 0 and Ei_ 1Ei < 0, then we are finished with the interval 
[Ti, Ti+il · 

If EiEi+l ?:: 0 and Ei_ 1Ei?:: 0, then Ei-I, Ei and Ei+I have the same sign. 
We check whether IEil:::; IEi_ 1 I and IEil ::; IE,+ 11. If so, this means we have a 
local extremum; if not, we are finished on [Ti , Ti+ 1] • 

In case of a local extremum, we check whether 

(47) IEil ::; h (1og ~;1 + 2y) . 
If not, we know that there can be no zero on [Ti- I, Ti+ 1] because of 

(48) : 1 En(t) =I((~+ it) J

2 
- (1og 2tn + 2y) ;::: - (1og ~; 1 + 2y) 

and the mean value theorem, and we are finished on [Ti, T1+ 1]. 

If we do have a local extremum such that (47) holds, we fit a quadratic 
polynomial through the three points ( T;_ 1 , E;_ 1) , ( T1 , Ei) , ( ~+ 1 , Ei+t) and 
compute the point 7;, where this polynomial has its extremum. If h is small 
enough, there should be a zero, T = Tc, of E~(t) very close to T = Tc. This 
zero is found with the Newton process. Next, I( T ) and E := E ( T.) are 

(' l' T{ £ 

computed, and if EeEi < 0, then there are zeros on [Ti- I , J;,] and [Tc. T;+i], 
which are found by the rootfinder described below. This completes the descrip­
tion of our algorithm, apart from the rootfinder. 

The root.finder is designed to find a zero of Err(t) on the interval [a, b], 
where En(a) and Err(h) have different sign. First, the intersection point 
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(c, E71 (c)) of the line through (a, E71 (a)) and (b, E 71 (b)) and the horizon­
tal axis is found. Next, a quadratic polynomial is fitted through the three points 
(a,E71 (a)), (c,E 71 (c)), (b,E71 (b)),anditszeroon [a,b] istakenasthestart­
ing point to find a zero of £ 71 (t) on [a, b] with the Newton process. 

5.4. Error control. The numerical computations were carried out on the CDC 
Cyber 995 computer of SARA (the Academic Computer Centre Amsterdam), 
which has a floating-point mantissa of 48 bits, i.e., a machine accuracy of about 
14 decimal digits. 

Our aim was to compute as many zeros as possible of the function £ 71 (t) 
on the interval [O, 5 x 105] , each with an absolute error of about 10-4 . This 
means an accuracy of at least 5 decimal digits for the smallest zero, and 10 
decimal digits for the largest zero below 5 x l 05 . 

The error in the computation of I((~+ it)I was controlled as follows. 
For t E [O, 5 x 103] we applied the-Euler-Maclaurin formula ( 43) in single 

precision. If we assume IU,,,_ 11 (~ + it)I < 10-A, then it follows (cf. [20, pp. 
151-152]) that 

n ~ (2n)- 1 10A/( 2m+ 2l(t + m + 1). 

This still leaves freedom to choose one of either n or m , given t and A . We 
took A= 15 and (for most t) m = 100, so that n ~ 0.2244(t+ 101). The 
actual error is dominated by the machine errors in the computation of the terms ri 1!2+1n in (43). A pessimistic upper bound for this error is 10- 14 tn, and for 
the value of n given above, and for t :::; 5000, this is less than 5.8 x 10-8 . 

For t E [5 x 103 , 5 x 105 ] we applied the Riemann-Siege! formula ( 44) with 
n = 3, in double precision (i.e., with an accuracy of about 28 decimal digits), 
and the result was truncated to single precision. We denote this numerical 
approximation of Z(t) by Zd(t). An extensive error analysis for t E [3.5 x 
107 , 3. 72 x 108] is given in [ 15]. A similar analysis shows that for t E [5 x 
103 , 5 x 105] the error is dominated by the inherent error in ( 44 ), i.e., 

3 5 for t E [5 x 10 , 5 x 10 ] . 

In order to get an idea of the actual error, we computed I ( ( ~ + it) I by ( 43) and 
compared it with IZd(t)I, fort= 4900(0.1)5100. The maximum difference we 
found was 3.9 x 10- 10 at t = 5067.2. 

Since the function E 71 (t) measures how well the integral J(t) is approximated 
by the function t(log 21.,, + 2y - 1) + n, we can expect a loss of significant digits 
when we subtract the two terms for the computation of E 71 (t) . Therefore, we 
computed the integral I ( t, h) in ( 45) so that its contribution to the total error 
in I ( t + h) ( = I ( t) + I ( t , h)) was as small as the machine accuracy allows. 
Thus, the number h was chosen such that 

( 49) 
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(Recall that (/2 - / 1)/15 is a very pessimistic estimate of the quadrature error 
in l(t, h).) Actually, we took h = 0.01 for 0 St s 500, h = 0.02 for 
500 s t ::::; 2000 and h = 0.05 for 2000 ::::; t ::::; 500000. Several spot checks 
were carried out locally for smaller values of h. To summarize, we estimate 
that the number of correct digits in our computation of £ 71 (/) varies between at 
least 13 decimal digits near t = 0 and about 7 near t = 5 x l 05 . The absolute 
error is about 10- 12 t(log 2171 + 2y - 1) ::::::; 5. 7 x 10-6 for t = 5 x 105 • 

In the rootfinder used in the zero-searching algorithm described in §5.3, the 
Newton process was iterated to machine precision. Usually, no more than two 
Newton iterations were needed for this purpose. The influence of the error in 
£ 71 ( t) on its zeros may be quantified as follows. Suppose that in the neigh­
borhood of a zero t = t0 of £ 71 (t) we compute with E71 (t) rather than with 
E 71 (t), where E71 (t) = E71 (t) + e, e being a fixed small number. Then the 
Newton process for the computation of t = t0 is given by 

i+l 1 E71 (t 1) i E 71 (ti) e 
t =t ---. =t ---. ---.' 

E~(rt) E~(t1 ) E~(t') 

so there is a systematic error e / E~ ( /) in the computation of the zero t = t0 . 

In particular, when E~(t) is small for t close to t0 , then the error in this zero 
may be large. We found 

l 
max -,- ::::::; 3.015, 

1:5500000, En(/)=0 1£,,(f)I 

where the maximum is assumed for t = 137538.499969. For e = 10- 5 , this 
means a maximum absolute error in the zeros of E,,(t) of about 3 x 10- 5 . 

6. RESULTS AND CONJECTURES 

In this section we present a selection of our computational results. We have 
found 42010 zeros of the function E,,(t) on the interval [O, 500000]. The first 
l 00 of them are listed in Table 1. 

For selected values of n, Table 2 compares logtn with logn, and tn with 
n log n . The quotient log t n /log n is slowly changing, with a global tendency 
to decrease. We believe it converges to 1, although very large t n will certainly 
have to be computed in order to corroborate this. The quotient t n / n log n first 
decreases to 0.8904, and then increases slowly to 1.1180; no possible conclu­
sion about a limit is apparent from these data. Perhaps n log n is just a rough 
approximation to tn, much as n log n is a rough approximation to Pn, the nth 
prime. 

Data on gaps between consecutive zeros of E71 (t) are shown in Tables 3, 4, 5 
and 6. It appears that the gaps dn := t n - t n- ! , n = 2, 3, . . . behave in a very 
irregular way. Although we cannot exclude the possibility that K = K(n) = ~, 
this seems unlikely to us. In fact, we believe K = ~ to hold. Maxima and 
minima of the quotient dnf t!/}_1 are presented in Tables 4 and 5, respectively. 
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TABLE 1 
The first 100 zeros of Err (t) 

n t,. n tn n tn n t,. 
1 1.199593 26 99.048912 51 190.809257 76 318.788055 
2 4.757482 27 99.900646 52 192.450016 77 319.913514 
3 9.117570 28 101.331134 53 199.646158 78 321.209365 
4 13.545429 29 109.007151 54 211.864426 79 326.203904 
5 17.685444 30 116.158343 55 217.647450 80 330.978187 
6 22.098708 31 117.477368 56 224.290283 81 335.589281 
7 27.706900 32 119.182848 57 226.323460 82 339.871410 
8 31.884578 33 119.584571 58 229.548079 83 343.370082 
9 35.337567 34 121.514013 59 235.172515 84 349.890794 

10 40.500321 35 126.086783 60 239.635323 85 354.639224 
11 45.610584 36 130.461139 61 245.494672 86 358.371624 
12 50.514621 37 136.453527 62 256.571746 87 371.554495 
13 51.658642 38 141.371299 63 262.343301 88 384.873869 
14 52.295421 39 144.418515 64 267.822499 89 390.001409 
15 54.750880 40 149.688528 65 280.805140 90 396.118200 
16 56.819660 41 154.448617 66 289.701637 91 399.102390 
17 63.010778 42 159.295786 67 290.222188 92 402.212210 
18 69.i 78386 43 160.333263 68 294.912620 93 406.737516 
19 73.799939 44 160.636660 69 297.288651 94 408.735190 
20 76.909522 45 171.712482 70 297.883251 95 417.047725 
21 81.138399 46 179.509721 71 298.880777 96 430.962383 
22 85.065503 47 181.205224 72 299.919407 97 434.927645 
23 90.665198 48 182.410680 73 308.652004 98 439.425963 
24 95.958639 49 182.899197 74 314.683833 99 445.648250 
25 97.460878 50 185.733682 75 316.505614 100 448.037348 

TABLE 2 
Some data concerning the order of tn 

n t,. lo~ tn/ log n t.,./nlogn 
2 4.757482 2.2502 3.4318 
5 17.685444 1. 7849 2.1977 

10 40.500321 1.6075 1.7589 
20 76.909522 1.4496 1.2837 
50 185.733682 1.3355 0.9496 

100 448.037348 1.3257 0.9729 
200 978.559572 1.2997 0.9235 
500 2766.863752 1.2753 0.8904 

1000 6174.307534 1.2635 0.8938 
2000 13807.257919 1.2542 0.9083 
5000 39310.200279 1.2421 0.9231 

10000 89563.343441 1.2380 0.9724 
20000 204 737 .805598 1.2349 1.0337 
42010 499993.656034 1.2326 1.1180 

For 4 :S n :S 42010 we observed that dn < r:/~ 1 logt11 _ 1 , which in general is 
close to best possible, in view of (2), (3), and (30). Combined with the data in 
Table 5, this supports the conjecture that K(n) = i (where K is defined in (6)). 
The data on gn and gn/ log t 11 in Table 3 support (36) for rJ: = 2. Table 6 gives a 

'1 . 
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TABLE 3 
Various data related to the gaps between consecutive zeros 

n d'fl. := ln - tn-l d./t~ni d.(t1j\ log d0 / log t0 log d./ logn 9n :~ t~574 }.:~2 di g0 (.logt,. 
3.557889 3.2484 3.3996 0.8137 1.8310 1.8016 1.1551 
4.140015 1.1249 2.1580 0.4945 0.8827 1.8864 0.6566 

10 5.162754 0.8685 2.1175 0.4435 0. 7129 1.7165 0.4638 
20 3.109583 0.3620 1.0609 0.2612 0.3787 1.5146 0.3488 
50 2.834485 0.2096 0.7708 0.1994 0.2663 1.3773 0.2636 

100 2.389098 0.1132 0.5200 0.1427 0.1891 1.4164 0.2320 
200 0.075980 0.0024 0.0136 -0.3743 -0.4864 J.3835 0.2009 
500 3.624824 0.0690 0.5000 0.1625 0.2072 J.2801 0.1615 

1000 0.753268 0.0096 0.0850 -0.0325 -0.0410 1.2895 0.1477 
2000 0.596044 0.0051 0.0550 -0.0543 -0.0681 1.3067 0.1371 
5000 7.983033 0.0403 0.5670 0.1964 0.2439 1.3173 0.1245 

10000 22.172542 0.0741 1.2818 0.2718 0.3365 1.3931 0.1222 
20000 1.240345 0.0027 0.0583 0.0176 0.0217 1.4619 0.1195 
42010 1.636594 0.0023 0.0615 0.0375 0.0463 J.5505 0.1182 

TABLE 4 
Maxima of d,Jt~~ 1 

n ln d,, dn/t1 _! 
2 4.757482 3.557889 3.3996 

370 1992.136994 24.861362 3.7330 
510 2850.462567 31.291596 4.2943 

1176 7 420.277 407 42.085752 4.5410 
1321 84 75 .806973 43.841653 4.5751 
1322 8520.092619 44.285645 4.6155 
1472 9708.104280 54.053035 5.4531 
2074 14365.716667 61.751030 5.6465 
4224 32120.209803 76.460074 5.7148 
4692 36685.948268 82.898386 5.9933 
4848 38070.374558 88.990702 6.3746 
5006 39518.339822 96.093410 6.8196 
6058 49552.122137 104.276659 6.9928 
8230 71699.441192 123.858798 7.5724 

17138 170654.832030 165.382076 8.1389 
18198 183304.147130 169.425143 8.1900 
21804 227 502 .378144 186.717169 8.5512 
23764 252647.958173 213.951458 9.5451 
39084 457431.381229 261.454651 10.0549 

frequency distribution of the computed values of dn/t~~ 1 , in classes of length 
0.1 _ For example, we found 10641 values in the interval [O, 0. 1) , 818 in the 
interval [0.9, 1.0) and I value(thelargest)intheinterval [10.0, 10.1) (cf.the 
last entry in Table 4 )- To summarize: 82% of all values are in [0.0, 1.0), 11 % 
in [1.0, 2.0), 4% in [2.0, 3.0), 2% in [3.0, 4.0) and 1% in [4.0, 10.1). 

Table 7 presents maximal values of !£11 (t)I in intervals of length 25000, and 
the location of the adjacent zeros. The computed values of E 11 (t)/t 114 confirm 
the order results of E ( t) as discussed at the beginning of § 1. 
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TABLE 5 
M' . if d I 1/4 zmma o n tn-l 

n tn d,. dn/tn-I 
2 4.757482 3.557889 3.3996 
3 9.117570 4.360087 2.9522 
4 13.545429 4.427859 2.5481 
5 17.685444 4.140015 2.1580 
6 22.098708 4.413263 2.1521 
8 31.884578 4.177677 1.8209 
9 35.337567 3.452989 1.4531 

13 51.658642 1.144021 0.4291 
14 52.295421 0.636779 0.2375 
33 119.584571 0.401722 0.1216 
44 160.636660 0.303397 0.0853 

159 753.427349 0.280739 0.0536 
200 978.559572 0.075980 0.0136 
301 1604.012827 0.063653 0.0101 
628 3569.014 754 0.062385 0.0081 

1030 6389.011638 0.038008 0.0043 
2674 18818.622459 0.037263 0.0032 
3616 27076.314671 0.031137 0.0024 
6841 57197.581870 0.022931 0.0015 
8088 70009.242085 0.021013 0.0013 

11857 110163.040870 0.006778 0.0004 
11987 111649.073447 0.004789 0.0003 
27021 294421.287720 0.005105 0.0002 

TABLE 6 
Frequency distribution of the d nl t :/~ 1 -values, in classes of length 0.1 

10641 7208 5243 3192 1829 1812 1760 1082 912 818 
752 591 561 503 415 389 390 373 320 242 
210 201 196 190 195 170 143 143 130 121 
114 99 83 81 73 75 57 45 39 54 
68 46 30 40 23 30 35 36 19 21 
20 15 13 19 13 10 12 13 9 6 

2 2 7 4 8 6 5 4 7 5 
2 3 2 1 3 5 2 3 1 0 
0 2 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

Graphs of En(!) and its derivatives are presented in Figures 1-5, which cover 
the intervals [O, 50], [123400, 123600], [456999.4, 457431.4], [277514.8, 
277661.5], and [495151.35, 495321.95], respectively. Figure 2 shows how 
E11 (t) behaves on an arbitrarily chosen interval. Figure 3 shows this function 
near the largest observed dn-value (cf. the last entry in Table 4). Figures 4 
and 5 show the behavior of En (t) near its smallest and largest observed values, 
respectively (cf. Table 7). The function En(t) may increase sharply, but in view 
of (8) and (31) we see that it decreases relatively slowly, which is also reflected 
in the graphs. The function E~(t) has sharp peaks which roughly correspond 
to large values of !((-! + it)I. Note that Figure 5 displays many local extrema 
of E11 (t) in the large intervals between its consecutive zeros. 
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TABLE 7 
Maxima of IEir(t)I in intervals [ix 25000, (i + 1) x 25000], 
and adjacent zeros tn-I, tn 

t E,,.(t) E-.:(t)Lt17i n tn-1 d,. 
4 105730.30 -294.972917 -16.36 ll511 105652. 215612 78.840885 
5 130061.30 342.688448 18.05 13728 130060.547162 130.903167 
6 152359.00 -364.453147 -18.45 15615 152263.935681 95.831001 
7 183134.00 -355.682389 -17.19 18197 182999.306300 135.415687 
8 221488.30 367.810105 16.95 21310 221487.533725 104.953578 
9 225005.15 367.801167 16.89 21628 225004.360683 104.423051 

10 263358.05 404.632562 17.86 24614 263357.300497 135.522875 
11 277660.65 -436.894699 -19.03 25701 277514. 752120 146.699293 
12 304718.75 -379.461854 -16.15 27807 304616.030686 103.513435 
13 328768.95 489.881453 20.46 29574 328 768.180260 134.489310 
14 367120.55 -387.994451 -15. 76 32491 366950.894252 170.362297 
15 379395.50 394.115535 15.88 33424 379394. 773446 134.268815 
16 415716.60 -381.8544 76 -15.04 36021 415610.911107 106.341938 
17 428843.30 474.148290 18.53 36986 428842.537715 195.257502 
18 457170.60 430.409601 16.55 39084 457169.926578 261.454651 
19 495152.05 506.242025 19.08 41688 495151.305121 170.597059 

Err CT J 

E~ CTJ 

- T 

FIGURE 1 
Eir(t) and E~(t) on the interval [O, 50] 
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- T-123400.0 

FIGURE 2 
En(t) and E~(t) on the interval [123400, 123600] 

E' rr <T) 

Err CT l 

- T-456999.4 

FIGURE 3 
En(t) and E~(t) on the interval [456999.4, 457431.4] 
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FIGURE 4 
E 11 (t) and E~(t) on the interval [277514.8, 277661.5] 
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FIGURE 5 
£ 11 (t) and E:(t) on the interval [495151.35, 495321.95] 
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