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Computational Aspects of Lie Group Representations and Related Topics i

Preface

Powerful computer algebra tools have brought new life to the algorithmic
study of mathematics. The impact of the algorithmic approach is especially
noteworthy in the study of Lie groups. In order to inform the Dutch com-
puter algebraists of developments in this direction, the Spring 1990 sessions of
the Computational Algebra Seminar at CWI, Amsterdam, have been mainly
devoted to computational aspects of Lie group representations.

At the seminar, on one hand, better ways were brought forward to satisfy
the physicists’ demands to collect explicit data about representations, tensor
product decompositions etc., while, on the other hand, new impulses were given
to effective computations of invariants of groups acting on given spaces and even
invariants of elements pertaining to these groups. The contributions by Bram
Broer, Arjeh Cohen & Bert Ruitenburg, Marc van Leeuwen and Peter Littel-
mann reflect these activities. Omar Foda and Jan Sanders exploited the use
of Lie group notions and techniques in computations for statistical mechanics
and differential equations, respectively.

The remaining two contributions are somewhat further away from the the-
ory of Lie groups. Both cover topics of very general interest to computational
algebra. Wim Ruitenburg focused on the fundamental theorem of algebra from
a constructive point of view: how to find (or, better, construct) roots of polyno-
mials. He stressed that a solution in constructive algebra leads to the existence
of an (admittedly, possibly highly impractical) algorithm providing that solu-
tion. Van den Essen elaborated on the Jacobian Conjecture. He showed that
it is related to various branches of mathematics and how various forms of the
conjecture have computational interpretations.

Because many of the talks at the seminar were fine introductions into an
active field of research, I have asked the lecturers for a written contribution.
These proceedings are the outcome of the enterprise thus started. Several col-
leagues have given me substantial help in the refereeing. I wish to express
my sincere gratitude for their efforts. Most manuscripts were delivered to me
electronically. Using TgX, I have forged them into a more or less uniform lay-
out. Marc van Leeuwen’s occasional but highly effective assistance is gratefully
acknowledged.

In the seminar, the contributors were requested to present elementary
introductions, with the aim of reaching a wide audience. We hope that these
proceedings still reflect that principle.

Arjeh M. Cohen
CWI, Amsterdam
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Hilbert series for ternary forms

Bram Broer

Faculteit Wiskunde en Informatica
Universiteit van Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
The Netherlands

0. Introduction

We shall give generating functions for the concomitants of the ternary cu-
bic forms and some types of covariants of the ternary quartics. The method
of calculation we used is essentially a combination of nineteenth century tech-
niques; but the calculations were done in the computer algebra package Maple'.

The method is not restricted to SLs, but works for any reductive group—
as will be explained elsewhere. We tried to be as down to earth as reasonably
possible, because the method is elementary and can be of some use for the
calculation of other generating functions in the SLj (or, equivalently, the SUs)
area. Some other explicit results are given in [Br90].

1. Models for irreducible representations

Let k be an algebraically closed field of characteristic zero, for example the
field of the complex numbers. One of the basic properties of G := SL3(k) is the
complete reducibility of its (rational) representations, i.e., any representation
is a direct sum of representations having no nontrivial subrepresentations. We
shall describe a model for any irreducible G-representation, similar to the model
used in the last century.

t The author thanks the Stichting Computer Algebra Nederland for provid-
ing computation facilities with Maple on a Sun workstation.
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. The restrictions z;; to G of the coordinate functions of End(k3) generate
the algebra k[G] of polynomial functions on Gj they are related by det (z;;) =
1. The natural G := G x G-action on G induces an action on k[G] by algebra
automorphisms :

((9:9))(=) = (g~ zg"),
where (g,9') € G, f € k[G] and z € G.
Write U for the subgroup of G consisting of upper triangular matrices
u = (us;) with u;; = 1 for 2 = 1,...,n. The subalgebra of (1 x U)-invariant
elements in k[G] is denoted by k[Gy] (see [Kr84]); it is generated by

U1 1= T11, U = T21, U3 1= T31,

T1 := T21%32 — 22231, T2 := T31T12 — 11232, L3 := T11T22 — T12T21-

These generators are related by the single relation Zle z;u; = 0.

Write B for the subgroup of G consisting of the upper triangular matrices;
any character B — k* is of the form €7€}*, where €;(b) = b;;, 1 = 1 or 2. Now
1 x B acts on k[Gy] in a completely reducible way determined by its action on
the generators

b-u; = e1(b)ea(d)us, b-z; =e€1(b)zs.
This action induces an N2-grading on k[Gy] by
kKGul= P Vinm)
(n,m)EN?3

with
3 3
e— (pM1 M2, 3, M1, M3, M3, J— , —
Vin,m) = (27 25?25 ul uy 2 ug™; E n; = n, E m; = m)
i=1 i=1

= {f € k[G]; f(zb) = e1(b)"+™ex(b)" f(z), = € G,b € B},

and Vin,m) * Vin',m') C Vintn’,m4+m’)- The G (=~ G x 1)-action on k[Gy] com-
mutes with the N2-grading, hence induces a representation on V,. These V,’s
are the models of the simple modules.

1.1 Proposition Let u € N2,
(i) The G-module V, is simple.

(ii) Each simple G-module is isomorphic to some V,,.

This can be proved using the following two lemmas. The first lemma gen-
eralizes the fact that 1 is the only eigenvalue of any u € U in any representation.
We skip the proof.

1.2 Lemma Any non-zero representation of U has a non-zero fixed point.

From this lemma it follows, with the complete reducibility of the represen-
tations of G, that a G-representation V is reducible if and only if the dimen-
sion of the fixed-points space V'V is at least two. The space of U-invariants
(V)Y = (2{*u4?), p € N2, is one-dimensional, hence V,, is irreducible. This
proves the first assertion of Proposition 1.1. The second will now be dealt with.
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1.3 Lemma IfV is a simple G-module, then it is isomorphic to some V,,.

Proof Let v' be a nonzero fixed-point of U in the dual representation V* to
V. Then the action G x kv' — V*, defined by (g, Av') — ¢ - (Av'), induces a
non-zero map

V~V* > k[G] @ (kv')*,

by restricting the coordinate functions on V* to G x kv’, commuting with the
G-actions. The image of V is isomorphic to V itself, because V is simple,
and is contained in the (1 x B)-fixed points of k[Gy] ® (kv')*, hence is equal
to Vu, p = (n,m) € N2, if b.v' = €1(b)" ™ ex(b)"'. O

The monomials Hf:i o iu;t, with Y5, ng = pg, Y, m; = gz andnz =0 or
my = 0, can be taken as a basis for V#, with u = (u1A, p2). Hence by an easy
count it follows that the dimension of V}, is 3(n + 1)(m + 1)(n+m + 2).

It is also easy to show that, as G-modules,

kG~ P Vi@ Vy.
A

2. Concomitants

Let M be any G-module. In the nineteenth century its concomitants were
studied, i.e., the polynomial (not necessarily linear) maps ¢ : M — V. The
degree of ¢ in the coefficients of m € M was called its degree, the degree in
the z’s (i.e., A1) its order and the degree in the u’s (i.e., ;) its class. If
class and order were both zero they were called invariants, if only the class
was zero covariants and if the order was zero contravariants. Hilbert’s famous
basis theorem [H90] says that there are finitely many fundamental concomitants
(invariants, covariants, respectively contravariants) such that any concomitant
(invariant, covariant, respectively concomitant) can be expressed polynomially
in them.

There were various geometric reasons to consider concomitants, in particu-
lar for the ternary n-ics, i.e., for M = V(5 0). We give an example of a covariant
with geometric importance. The locus of zeros C(f) of f # 0 € V(5,0) is a curve
of degree n in the projective plane. Also, if n > 2,

°f
6(82'62:]'

determines a curve C(H(f)), if H(f) is not 0. The intersection points of the two
curves are exactly the inflexion points and singularities of either of them. This
Hessian curve does not depend on a choice of basis. That is, the assignment

H : Vin,0) = V(an-s6,0) : f— H(f)

is a covariant for the ternary n-ics of degree 3 and order 3n — 6.

We shall give some examples of complete systems, i.e., sets of concomitants
(covariants, etc.) in which any concomitant (covariant, etc.) can be expressed
polynomially.

H(f) :=det (

) € V(an-s6,0)
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2.1 The only concomitants for V(; o) are the powers of f
Vir,0) = Vimyoy: f =

of degree n and order n; hence f itself is the basis concomitant.

2.2 The Hessian for the ternary quadrics is an invariant; H(f) = 0 if and
only if C(f) degenerates into a union of two lines. Its ‘derivative’

oH(f)

O0H : V2,0 = Vjo,2): f = Zaijmiwj = Z da., il
ij

i<y i<y

is a contravariant of class 2 and degree 2.

Any concomitant ¢(f) for the ternary quadrics can be expressed polyno-
mially in a unique way by f, H(f) and (8H)(f); e.g., any invariant can be
expressed as E:zo b; H(f)", for some b; € k.

2.3 In 1850 Aronhold proved that any invariant for the ternary cubics can
be expressed polynomially in a unique way in two invariants, called S and
T classically, of degree 4 and 6. We shall give a description of them. Any
member of the pencil C(Af + uH(f)) of cubic curves has the same set of
inflexion points and singularities; and any cubic curve with these inflexion
points and singularities is a member of this pencil. In particular we have that
H(H(f)) = A(f)f+B(f)H(f), for some invariants 4 and B. In fact, expressed
in S and T:
H(H(f)) = 8-6°S(f)*f +2 - 6°T(NH(f),

Using this equation an expression for S and T can be derived. We remark that
S has the following curious property that f can be expressed as a sum of three
cubes if and only S(f) = 0.

Apart from the invariants and the Hessian, there are two more basic co-
variants. T 0 o' oH(f)
8z 10z, Ox108x3 Ox,10x3 Oz,

2f %t %t BH(f)
8z ,0x, Ox 20z 2 Bxa0xs Bz 4y

C: frdet
3f a%f 8%t 8H(f)
Bz 30z, Bz 30z 2 Ox3dxs Oxg

H(f) OH() OHUY)
Oz, Bz, Oxg

has degree 8 and order 6, and
af BH(f) 8C(f)

oz, Oz, Oz,
. 2] SH(f) 9C(f)
K : f+—det a—w% e Bz
B8f B8H(4) 0C(f)
Bz Oxg Bz s

has degree 12 and order 9.
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-Any covariant of the ternary cubics can be expressed polynomially by f,
H(f), C(f), K(f), S(f) and T(f), but not in a unique way: K(f)? can be
expressed in the other basic covariants.

In 1869 Gordan [G69] found an explicit generating set of all the concomi-
tants of the cubic forms; it is considered as one of the crowning pieces of nine-
teenth century invariant theory. There are 34 generating concomitants needed
to express any concomitant polynomially in them, the degrees vary up to 12.
We give the triples (class, order, degree) of Gordan’s set of generators; there is
at most one generator for each given triple.

0,0,0),(3,0,1),(2,2,2),(3,0,3),(0,3,3),(3,3,3), (0,0, 4), (4,1,4), (2,2,4),

(0,6,4), (4,1,5),(0,3,5),(3,3,5),(1,4,5), (0,0,6), (2,2, 6), (5,2, 6), (2,5,6),
(4,1,7),(3,3,7),(1,4,7),(1,7,7),(6,0,8), (5,2,8), (1,4,8), (2,5,8), (7,1,9),
(3,3,9),(1,7,9),(5,2,10), (2,5, 10), (7,1, 11), (9, 0, 12), (0, 9, 12).

2.4 For the ternary quartics the situation is much less well understood, not
even a generating set of the invariants is known. In 1967, relatively recently,
Shioda [Sh67] gave a rational form of the generating function of the linear
independent invariants of given degree, and made several conjectures on the al-
gebra of invariants concerning generators and relations. In 1987 Dixmier [D87]
proved one of these conjectures by giving a set of algebraically independent
invariants, of degrees 3,6,9,12,15,18 and 27, and proving that the full algebra
of invariants is finitely generated (and free) considered as a module over the
subalgebra generated by these invariants.

2.5 Write con(u;v, 1) for the number of linearly independent concomitants
for V, of order v, class v; and degree ¢, and define the generating function for
the concomitants of V,, as

Con(p; z,y,t) := Z con(p; v, i)z y*3tt.
(v:3)

Analogously, Inv(u;t), Cov(p;z,t) and Contr(u;y,t) for the invariants, co-
variants and contravariants for V), are defined. It follows from Hilbert’s Basis
Theorem that these generating functions can be expressed as (the Taylor ex-
pansion at t = 0 of) some rational function.

We give generating functions corresponding to the examples above.

1
C’on((l,O),x,y,t) = (T—Tt)
Con((2,0);z,y,t) = !
B BRI T )1 221 - P)
1— g1824

Coul(3,0):2.1) = Ty — (1 —19)(1 = °B) (1 = o)
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1+t9 +t12 +t15 +"'+t66 +t75
(1 —3)(1 —8)(1 — ¢2)(1 — £12)(1 — £15)(1 — ¢18)(1 — ¢27)
In the rest of this paper we give a method for calculating these generating

functions, and shall compute, with the aid of a computer, Con((3,0);z,y,t)
and some coefficients of Cov((4,0); z, ).

Inv((4,0);¢t) =

3. Equivariant Hilbert series

The sum of the simple submodules isomorphic to Vi, A € N2, of the G-
module M is called the isotypical component ME with highest weight A. In
particular, if A = 0 it is the set of invariants, or the G-fixed points, in M. The
multiplicity of V) in M is equal to the dimension of the isotypical component
of highest weight A divided by the dimension of V. We have

dim MY / dim Vj = dim Homg(V3, M) = dim M ®y Vy.

Any ) € Z? determines a character of T, the subgroup of diagonal matrices
in G, in the following way:

diag(t1, t2, (t1t2) ") s 112 P 2402,

For a T-module M write M) for the T-eigenspace of M of character (associated
with) A € Z%. We have that the multiplicity of Vj in the G-module M equals
the dimension of (MY),, noting that T ~ B/U acts on the U-fixed points of
M.

Let M = @20 M; be a graded G-module with dim M; < oo for any %, then
we define the G-Hilbert series Hg(M;z,y,t) to be the generating function of
the multiplicities for all highest weights

(o]
He(M;z,y,t) := Z Z dim Homg (Va, M;)e &',
i=0 AeN32

where we use the short-hand e* := z*1y*2. Analogously the T-Hilbert series
‘Hr and the (usual) Hilbert series H are defined by

Hr(M;z,y,t) = Z Z dim((M;)y)e "
1=0 \cZ?2

H(M;t) = Z dim M;t*.
=0

We shall consider the series as elements of the integral domain

D:= Q[ww m_la Y, y_l]IIt]].

We proceed analogously for multigraded modules. Usually we shall write
He(M) for He(M;z,y,t). For generalities on Hilbert series (also known as
Poincaré series) we refer to [Sp77], [Sp82].
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8.1 = We shall use the Hilbert series to derive the character of Vj, i.e., the
T-Hilbert series of the (trivially graded) module obtained by restricting the
action of G on V5 to T.

The double graded ring k[Gy| has G-Hilbert series

1
He(k[Gul; 2, v, 8,t) = D T T S—
N
We claim
1— st
Hr(k[Gu]) = 2

(1—zs)(1 -z~ tys)(1 —y~1s)(1 - yt)(1 — 2y~ 't)(1 — 2711)’

Proof Consider the polynomial ring A := k[X1, X2, X3, Uy, Uz, Us], and let T
act on X; and U; as it does on z; and ;. Then there is a surjection 4 — k[Gy]

with kernel the principal ideal generated by the irreducible element Y, X;U;
of bidegree (1,1). Then

HT(k[Gu]) = 'HT(A) —Hr ((Z X,'U,-)A) = (1 - st)'HT(A).
Now A ~ ®f’=1 k[X;] ® k[U;], hence

Hr(A) = HHT(k[X,-]) - Hr (k[U3]),

from which the formula follows. O

The Weyl group W = NgT/T is isomorphic to the symmetric group on
{1,2,3} generated by s; = (1,2) and s2 = (2, 3). It acts on D by

sitz— yle,y— y,tiot

sz T,y a/ytt.

The sign of 7 € W is denoted by €, and we define the endomorphism J of D
by J(f) := D ew €r7(f). Write p = (1,1).

3.2 Proposition (Weyl’s Character Formula)

(i) We have
Hr (V) = T (e"19)/ T ().

(i) For any (graded) G-module M we have

Hr(M)J (ef) = T (e Ha(M)).
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Proof One can check by hand, or by using a computer algebra package like
Maple, that

7 ( )3 ) (&) = TG/ T ()
AEN?

“( Ty zly zy~?
—\(

T—eo)1—9t) (I-o lys)(1—9t)  (1-y 'o)(1-ay 1)

z~ 1yt z~ 2y 22y~
(1—yts)(1 —=z~1t) + (1-z-1ys)(1—2z"1) (1—-=zs)(1- y—lmt))/
[(ey—e ly+ey™? -2yt 27y — 2y )
1-—st
(1—=2zs)(1 —zys)(1 —y~ts)(1 —yt)(1 — zy~1t)(1 — =z~ 1¢)
= Hr(k[Gv))-

By comparing the coefficients of s#1t#2 we get the character formula. O
Define the endomorphisms D; and D, of D by

.eP_s‘.(f.eP)
eP — si(eP)

Di(f) =1

they are called Demaszure operators. They have the properties that D? = D;
and D1DyDy, = D3 D1 D,. Write T = D1 D3 D;.

3.3 Proposition (Demazure’s Character Formula) We have

I(f) = I(P 1)/ T (¢),
hence for any (graded) G-module M we have Hr (M) = I(He(M)).

Proof 1t is easily proved that s; D;(f) = D;(f), hence 7Z(f) = Z(f), T€ W,
and J(e?Di(f))/ T (e?) = T(e”£)/ T (e?). Then I(f) = T(e#I(f))/T(e*) =
T (e f)/ T (). O
8.4 We shall define a kind of reverse of the Demazure operators. We define
D1(f), f € D, to be the part of f—s;(f)z~2y which consists only of nonnegative
powers of z, and analogously D2 (f) the part of f — sa(f)zy~2 which consists
of the nonnegative powers of y. For example

o ziy ifi>0
’Dl(:v';tﬂ): 0 ifi=-1
T2y i< -1
One can check Df = D; and D1 D2 D1 = D2 D1D2. We write
B(f) := D1(D2(D1(f))),

then B(f) consists only of nonnegative powers of z and y.
The fundamental property is contained in the next proposition.
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3.5 Proposition
(i) We have Z(B(f)) = Z(/),

(i) B(z(f)) = B(f).
(i) For any (graded) G-module M we have B(Hr(M)) = He(M).

Proof We have D; D; = D; and D; D; = D;, hence
I(B(f)) = D1D2D1 D1 D2 D1(f) = D1 Dy D1 D2 Di(f)

= D3D1D2 D2 D1(f) = D2 D1 D2 D1(f) = D1 Dy Di(f) = Z(f)-

And analogously BZ(f) = B(f)- O

4. A relation

We introduce a handy notation first. If V' is some T-module, take any basis
{ei}icr for V consisting of T-eigenvectors e; with eigencharacter (associated to)
X\i € Z2. For any function f on Z? with values in an abelian group I' we shall

write
S5 := Y FA) €T

ARV i€l

For example Hr(V) = Y, €, and

1 1 '
Hr(k[V]) = [Thev-(1—€t) - (HAI—V(I - e)‘t)> , W

where f — f* is the involution of D determined by
Ty, Yy, tot,

which commutes with the W-action, and hence with 7 and 3.
Let M be some G-module, N a T-submodule, and u € Z*. Write

B(e* H (1-eMt)) =: Z N e,

A-M/N Aesk.N

where SV is a finite subset of N2. We shall write a¥ for the polynomials

a’;’N in the variable ¢ if no confusion can arise, and S* for S»%.
The next proposition is fundamental to our approach of calculating G-

Hilbert series.
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4.1 Proposition We have

B <~——iﬂ—)) = Y AHe(k[M]® V).

[T n(1— €Mt AESH

Proof Using Proposition 3.5, equation (1) and the property that Z(fg) =
fZ(g), if f is W-invariant, we obtain

2(5 (mstimem) ) =2 (si—em) =

1 * u A '
- (=) 1(e A ”)

= mz (B(e” H (1 _e,\t)))

AFM/N

=Hr(k[M]) ) oA z(e)’
A€sk

> dAHr(K[M]® V).
AESH

Now apply B and use Proposition 3.5 again to finish the proof. O

5. Ternary quadrics

As a first example we calculate the well-known generating function for the
concomitants of the ternary quadrics.
Take N := (23,25, 2] *23), and p = 0. Then if

fi=I1 -ty =(1-ay )1 -2 t)(1 -y ),

AFM/N
we have
Di(f) = 1—(2y™' +y 2t + (ey> +y ) —y %)
DaDi(f) =1 - (—e 't + 27yt — 2™ 7yt’)
B(f) =D1D:Da(f) = 1=t
Next write

1 1
T MLen(t=e)) ~ (1= o)1 - )1 — o 740)’
then D2(g) = g, and one checks that

1-z"2%y

T (1 (1 e 5
- 1 n (vt —y)z 2
T — 0 T 1= (1~ o)1~ o7

g—si(g)z” "y = (
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In the development of the second factor at ¢ = 0 only negative powers of z
occur; in the first factor only nonnegative. Hence

1
(- y2)(1 - 2%)

So it follows from Proposition 4.1 that

He(k[V(2,0)]) =

D1D2(9) = = D2 D1D2(9)-

1
(1 —y2t)(1 — z22)(1 —t3)’

and for the concomitants
1

C’on((2, 0), T, y’t) = (1 _ th)(] — y2t2)(]_ — ts) )

6. Ternary cubics

Taking N := (3, 22z, 212, 23, z322) we have that GN := {gn;g €
G,n € N} is the subvariety of the space of ternary cubics M := V(3,0) defined
by the invariant polynomials; this was known to Hilbert [H93]. It consists of
the elements € M such that 0 is in the closure of the orbit Gz.

6.1 We compute the relation associated to N and 0 € N2. Write

f= H (1-e*t)

AFM/N
=(1-t)(1 -z %yt)(1 — zy~2t)(1 — 2y~ 1e)(1 — y3¢).

Then

Di(f) = (1= *)(y* — t)(y™° +y %" — tey™®)

D2D1(f) = (1= )((1 +1) +y2~2(t — t7) + 4 (~1%27°) + y* (%2 7°))
D1 D2 D1(f) = (1 — t3)((1 + t2) + t2zy — t323).

Hence B(f) = (1—t*)+t?(1-t?)zy—t3(1—t%)z®. Put F¥:= B (m)
and A := k[V(3,0)], then it follows from Proposition 4.1 that
FOO = (1 - t*YHg(A) +t3(1 - t2)He(A ® V1,1)) — t°(1 — t2)He (A ® V{o,3))-
The relations associated to (N and) (1,1), (3,0) and (0, 3) are
FOD = (1-4)(1 - *)YHe(A® V),
FO = —2(1-)(1 - *)He(A ® Via,0) + (1 - 1*)He (A ® Vo)~
— (1~ *YHe (4 ® V3,0),
FO3) = —¢(1 - t*YHg(4) — t(1 — t*)He(A ® Vj1,1))+
+(1-t*)He(A® Viz0),

where we used V(?s,o) =~ Vio,3)-
These four relations enable us, by elimination of Hg(4A ® V{1,1)), He(A®
V(3,0)) and Hg(A ® V(o,3)), to express Hg(A) in terms of F¥.
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6.2 Proposition We have

F(0,0) _ t2(1 _ t)F(l,l) + tSF(3,0) + tSF(0,3)

He(K[Vs,0)) = -1 5)

6.3 We give an outline of the calculation of F(%9). Write g = 1/([[,.n(1 —
e*t)). Then

g—s1(g)z %y =
. 1
= 1= 23t)(1 — z9t)(1 — z-T2t)(1 — 2—345%)

X

1 z™ %y )
((1 —oty 1) (1—= i)
_ (14 t)aty(a? - y)
(1—=2%)(1 - zyt)(y — 2%t) x (z — y?t)(2® — ¥°t)(2® — ut)

Observe that the degree with respect to x of this rational function is negative,
and the two parts of the denominator separated by x are coprime in k(y, t)[z].
Hence there is a partial fraction decomposition

B A N B
Tz — o) | (2 - - PO - u)

where both summands have negative degree with respect to z. Using Maple
we calculated that A and B could be written with denominator

(1-9°)(1 - y°¢°)(1 - 4°t%),
and numerator a for 4:
(=10 — 3y%) 2t 4 ((¢° — 8 —¢") y" + (—t° — 1) y* + t?) 2%+
(8 =)+ ( +) ) 2+

+((t4+t5)y5—t8y8+(t3+t2—t) yZ)m+y7t7+y

Now one sees that in the development in ¢ = 0 of the first summand only
non-negative powers of ¢ occur. But in the development of the second

z ®B
(1 -z 1y2)(1 — 2=3y3¢)(1 — = 2yt)

only negative powers of z occur, because the degree of B with respect to z is
smaller than 6. Hence

a

Dil) = oy x (1= o3 —ew) (1 = PP (1 = B (1 — 70
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Again there is a partial fraction decomposition of D;(f), this time with
respect to y, of the form

c D

D) = o t T —ew) (1 = 01 — 781 =8

with
C = (=22 Da(£))yone
and only the second summand gives non-negative powers of y in the develop-

ment at ¢ = 0.
And s5(D1(f))zy 2 has a decomposition of the form

F 4 G
(1—zyt) (11— z3t)(y — z2t)(y3 — z3t3)(y3 — z3t5)(y® — z5t%)’

with
F = (1= 2)s2s(D1(£)2y ), _yospes = (4= 2*) Da(f)) y_ys, - 2.

and only the first summand gives non-negative powers of y in the development
at t = 0. Combining we get

D2D1(f) = 0 S

PRV T = 23) (1 — zut)(1 — v383) (1 — v315)(1 — v8t4) (1 — zyt)
_ __c __F
= (20~ =5m) ~ o

N _(i;)ffti)wm X ((y = 2*) D1(f)) g2,

=D1(f)

Using Maple we found that the result only involves non-negative powers of both
z and y when expanded at ¢t = 0, hence D1 D2 D1(f) = D2D1(f).

We also found that F(%°) = B(f)* = D1 D2 D1(f)* could be written with
denominator

(1= (1 — v*3)(1 — > ¢*)(1 — 2yt)(1 — 233) (1 — 2%°) (1 — 2%t*)
and numerator

_ (—m11y2t13 _ 108414 _ 59,6415 4 ((tlo + t8) vt — ystle) 28+

((tls _ t14 _ t13) y7 + (t10 _ t12 + t9) y4 + yt8) $7+

+ ((—t“ _ tu) e+ (tu +410 448 4 t7) y® — t7) 25+

T a5y 4 ((_tlz —t”) v+ (tm +12 4248 +t7) vt + (—t5 —t4) y) oty
423yttt 4 ((tg +18 416+ t5) ¥® — %0 4 (_ts 5t tz) yz) o2+
+ (B4 (=t =)yt (B -2+ t)y) 2 - 1).
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6.4 Remark The expansion of this rational function has an independent
interpretation. The ideal of the cone GN is generated by the fundamen-
tal, algebraically independent invariants S and T'; from this it follows that
He(k[GN]) = Hg(A)(1 — t*)(1 — t®). This cone is not normal, because its
singularities form a subvariety of codimension one. Writg_gﬂTV for the normal-
ization of GN, then the interpretation is F(°9) = X5 (k[GN]).

In an analogous way the other F* s can be computed. Together with
Proposition 6.2 it gives the following completion of computations by Forsyth
[F98].

6.5 Theorem The SL3-Hilbert series Hg(k[V(3,0)]) can be written as a ratio-
nal function with numerator
1— zyt + 29?2 + (= + 2yt + 222t + 22y — 225 + 2hy)t5+
+ (£2y2 _ w2y5)t6 + (my‘l + w4y _ 156?,/3 + :c7y)t7 + (yS _ my7 _ w2y5+
oty —atyt — 2By)eE 4 (—ey” + 22y 4 2y — atyt — By + 2Ty
— 2Ty + (22 + 2%y% — 2Tyt — 2By?)t10 + (—2®yf — 2%yt + 28—
— 227y 4 (—aty? + 2ty — 25y — 2Tyt 4+ 2% + 2 — 210)e12 4
+ (2% — 2Tyt + 2Ty — 2% — 210y + 211y?)e1® 4 (2hy7 — 255+
a7y + 210~ + 2%0)t5 + (2TyT — 2% + 2210y)t0 4
(2990 + 210y% — 211y5)el7 4 OBt _ 1047420 | g11.8421,
and with denominator
(1 - 21 — ¥ (1 — v*t*)(1 — 2yt)(1 — 23¢3)(1 — 23¢°)(1 — 25¢*)x
x (1—t*)(1—1°).
6.6 Remark The generating function Con((3,0); z, y,t) of the concomitants
of the ternary cubic forms is obtained from the formula above by interchanging
z and y. In particular
1— z3t* 4 2648

Cov((3.00i2:0) = T — o) — 1 — A= )

7. Ternary quartics

In this section we give an outline of the computation of the generating
functions associated to some types of covariants of the ternary quartics.

We consider the representation M = V{4,0). Introduce the two functions
ht; : Z2 — Z, for i = 1 or 2, by ht1((n, m)) := n 4+ m and hty(n, m) = n + 2m.
Write N; for the sum of the T-eigenspaces of M corresponding to u € Z? with
ht;(#) > 0. The union of GN; and GN, is the cone defined by the invariants.

We used the following procedure to obtain a set of relations. Define S :=
SOOLN:_1f 341 > py put S# = §N1 | else put S¢ = S4Na If Uues S# is
larger than S, replace S by this union and repeat the procedure.
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This algorithm stops at the set of weights u € N? with ht;(u) < 7 together
with {(8,0), (7, 1), (6,2), (5, 3), (3, 5),(2,4), (6,3)}. It consists of 43 elements.
Write A := k[M] and, for ¢ = 1 or 2,

1

M=o

then we have 43 relations

B(ef:)' = Y eV He(4® V),
Aes

with 4 € S, and i = 1if 3y > o, else i = 2. We observe that of(t := 0) = 0,
unless A = y; in that case it is 1. It follows that the matrix (af)aues is
invertible; hence Hg(A ® Vi), A € S, can be expressed in the B(e” f;)* and the
coefficients of.

We were not able to calculate B(e”f;)* completely, but at least we can
give the coefficient of z%y°.

7.1 Lemma

(i) Ifu # 0 € N? then the coefficient of z%y° in B(e* f;)* is zero, for i = 0 or
1.

(i) The coefficient of z°y° in B(f1)* equals (1 —t3)~2.

Proof Any ) such that e occurs with a non-zero coefficient in the expansion
of e#f; at t = 0 has ht;(A) > 0, because any T-eigenvector of N; has a eigen-
character v with ht;(v) > 0, by definition of N;. If u # 0, then ht;(x) > 0,
hence ht;(\) > 0.

Suppose that ¢ € Z? such that Dy(e¥) £ 0. If D1(e¥) # ¥, then ¢y < —1
and Dy(e¥) = e(~¥1-2¥1+¥3+1)  We have

hty (=91 — 2,91+ Y2+ 1)) = =1+ 92 > 91 + 2 = ht1(¥)
bty (=91 — 2, %1 + %2 + 1)) = 1 + 22 = ht(¥).

Now suppose that Dy(e¥) # 0. If Dy(e¥) # ¥, then ¢ < —1 and
Pi(e?) = e¥1+¥a+1,-¥2-2)  We have

bty (1 + b2 + 1, =92 — 2)) = ¥1 — 1 > o1 + 2 = hty (¢)
hta(($1 + %2 + 1, =92 — 2)) = ¢1 — ¥2 — 3 > hta(¥).

It follows that if 4 # 0 and e* occurs with non-zero coefficient in B(e” f;),
then ht;()) and htz(X) both are greater than zero, hence A # (0,0). This
proves (i).

It also follows that the coefficient of °y° in B(f1)* equals the coefficient
of £%¢° in

g:= ! = 1

" Ihempay=o(1 =€) (1= 22y~ 2t)(1 - 2~ yt)(1 — z~%y%)
1
(1—2728)(1 — 2t)(1 — 2%)’
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if we write z = 2z~ 'y. Now there is a partial fraction decomposition with
respect to z of the form

~ A B
A g gy S e g

Only the first gives non-negative powers of z in the development at ¢ = 0. With
Maple we computed that

1

Alz:=0)= Aoy

which is the coefficient of z%y° we searched for. O

By comparing the coefficient of z°y° on both sides of the equations we
get equations involving H((A ® V1)%; s,t). By solving the equations we found
H((A ® V,)¢;t), p € S. This Hilbert series is the generating function of the
concomitants of the form V(3 ) — V. They are of geometrical interest in the
case y = (n,0), for some n € N. We give some of the results in the next
proposition.

7.2 Theorem The Hilbert series H((k[V(4,0)] ® V“)G;t), for p € S as above,
can be written as a rational function with denominator

(1—3)(1 —t8)(1 —£2)(1 — %) (1 — ¢15)(1 — ¢*8) (1 — ¢27).

For p = (m,0) (m =0,...,8) the numerator is

form=20:
£75 4 466 | 63 4 160 4 9457 | 9454 | o451 | 3448 | 4,45 | 3442 4 4,39
+4t36+3t33+4t3°+3t27+2t24+3t21+2t18+t15+t12+t9+1,

form=1:
181 4 2458 1 5455 4+ 8452 4+ 9¢%% 4 13¢%6 1+ 1613 + 14140 + 17437+
+ 1813 + 13431 + 12428 + 11425 + 5122 4 3¢1° + 3416,

form=2:
17 4 2¢%8 + 3¢5 4 5152 4+ 8¢5° + 1056 + 14¢%3 + 1950 + 20¢*7+
241% 1 27¢* 1 25138 4 27435 4 26437 + 21¢%° + 19426 + 1613+
11820 4 8417 4 7414 4 31 4 248 4 245,

form=3: "
1% 4+ 2¢%3 4 6¢%0 + 1257 4 17¢%* + 28¢5 4 381%8 4 42¢%° 4 51142+
+5513° 4 50t + 50432 4 46¢3° + 34127 4 28¢2* + 21421 4 10¢18+
+ 6115 + 3t12,



Hilbert series for ternary forms : 17

form=4:
t7 ¢ 4 4457 4 8% + 11451 4 20458 + 301%° + 3652 + 491*° + 60¢*°+
+62t*3 + 6910 4+ 73437 + 6513% 4 62¢3* + 5728 4 43¢2° 4 35472+
+27t1° + 16116 + 10413 + 7410+ 2¢7 + 1 + ¢,
form=>5:
35% + 852 + 15¢%° + 3056 + 48¢%3 + 6250 + 82¢*7 + 99¢** + 1031+
+ 110438 4+ 112¢3% 4 97132 4 87¢%° 4 74126 + 50423 + 35420 + 22417+
+ 9t 43411 448,
form=26:
172 4+ 31%° + 6% + 15153 4 26 ¢%° + 38157 4 59¢5* + 80151 + 94¢48+
+116¢*° + 131¢*2 + 130¢3° + 135¢3 + 131¢33 + 111¢3° 4+ 97427+
+ 8112 4+ 55¢21 + 3918 4 2745 + 13412 4 7¢° + 445 + ¢3,
form="7T:
187 + 5184 + 175 4+ 36158 + 57¢5% 4 90452 + 124¢%° + 145¢%6 + 173¢*3+

+192¢%0 + 185637 + 183 ¢3* + 17143 + 136¢2® + 110¢2° + 83422+
+4811° 4+ 2716 4 14413 4 3410,
form=28:
t7 4 4158 4 12455 + 2352 4+ 45¢%° 4 7356 + 100¢%° + 138¢%° 4+ 1737+
+192¢** 4 216 ¢* + 228138 + 214¢35 + 203¢32 + 183¢%° + 143¢%5+
+ 11222 4+ 84120 + 50417 + 3041 + 17¢1 + 618 + 2¢° + 42
7.3 Remark We did not calculate H((k[V(4,0)] ® Wg’o))G), i.e., the generating

function of all covariants V(4,0) = V(s,0), but H((k[V(4,0)] ® V('g’o))G). But they
are related to each other by a general result of Stanley, see [St79].

8. Systems of ternary forms

In an analogous way we computed the generating functions of some systems
of ternary forms. We give the results.

For a system of a quadric and a cubic form the generating function of the

invariants ’H(k[V(g,o) @ V(a,o)]G;t) can be written as a rational function with
numerator

T4+t 4+t7+ 8+ %+ 2610 + 3¢12 4+ 3¢13 + 4414 + 6415 + 7416 + 7417+
+ 918 4 9¢1% 4 8220 4 921 4 9122 4 7123 4 742 4 6425 4 4426+
+ 3t27 + 3t28 + 2t29 + t31 + t32 + t33 + t39 + t40,

and denominator

(1+8)(1 =) (1 —t*)(1 - t°)(1 = t8)(1 - t7)(1 — ¢8)(1 — t°)(1 — *3).
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. For a system of two ternary cubic forms the generating function of the
invariants H(k[V(3,0) ® V(3’0)]G;t) can be written as a rational function with
numerator

1—2¢+¢2 — 263 + 5t — 45 + 95 — 167 + 188 — 22¢° + 29¢10 — 244114
+40t12 — 42413 4 3814 — 42¢15 + 40¢16 — 24417 + 29¢18 — 22194
+ 18t20 _ 16t21 + 9t22 _ 4t23 + 5t24 _ 2t25 + t26 _ 2t27 + t28,

and denominator
(1 =441 =) (1 - 3)%(1 - t)2
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0. Introduction

In their listings [McK], [Bre] of decompositions of characters of semisimple
Lie subgroups obtained by restriction from overgroups or by tensor products of
irreducible representations, McKay et al. often use generating functions that
turn out to be rational. In this paper, we prove that they are always rational
and provide an example of how to derive an explicit expression for this rational
function in the case G2 | A,.

Let G be a semisimple complex connected Lie group of Lie rank n with
maximal torus 7. The group of all rational characters of T, called weights,
is denoted by A(T). As groups, we have A(T) = Z". The set of all roots
(that is, all nonzero weights occurring in the restriction to T' of the adjoint
representation of G), is denoted by ®¢. A set of fundamental roots ay, ..., an
is chosen with respect to a fixed Borel subgroup B of G containing 7. We
write Wg = Ng(T)/T and (-,-) for the canonical Wg-invariant inner product
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on A(T). We also fix the fundamental weights w1, . .., w, as the basis dual to the
fundamental roots in the following sense: 2(w;, aj)/(aj, ;) = 65,1 < ,5 < n.
The set AT(G,T) of dominant weights is the N-span of these fundamental
weights. As semigroups we have A*(G,T) = N™. The set of positive roots is
&} = {a € ¥g|(a,wi) >0 fori=1,...,n} and pg = Y ;. wi is the half sum
of all roots in ®&. A partial ordering < on A(T) is given by X < y if and only if
g — X is a non—negative integral linear combination of positive roots. AT(G,T)
is used to indicate irreducible representations of G' and V) is the irreducible
G-module with highest weight A. This module can be obtained as {f € C[G] |
f(gd) = A(b)f(g)}; here X is viewed as a character of B by A(b) = A(t) for
b = tu, with ¢t € T' and v € U, where U is the maximal unipotent subgroup of
B. There is a straightforward extension from semisimple to reductive groups.
If G is a reductive group we also use elements of A*(G, T') to indicate the set of
all weights that are dominant with respect to the semisimple part of the torus.
Thus for example AT (T, T) = A(T).

1. Rational generating functions

Assume that G is a semisimple Lie group. Let p1,..., 4, € AT = AT(G,T)
and set M = NP with standard basis ej,...,e,. For the G-module V=V, &
-+ @ V,,, the algebra C[V*] of polynomial functions on the dual V* of V' can
be M—graded in such a way that C[V*],, = V), for each i € {1,...,p}. Given
m = (my,...,mp) € M, the homogeneous part C[V*],, is a homomorphic
image of V' ® --- ® Vo in which Vi, pa+-4mpu, OCCUrs with multiplicity 1
and has a unique G-stable complement J,,. Clearly C[V*],, - Jr C Jmgms
s0 J = ®memIm is an M-graded G-stable ideal in C[V*]. Since the algebra
C[V*] is Noetherian, J must be finitely generated. In fact

1.1 Theorem ([Bri, 4.1]) The ideal J is generated by the J., ., for all 1 <
i<j<n

The quotient algebra A = C[V*]/J can be provided with the induced M-
grading and is preserved by the induced G-action. By comstruction, 4, =
Vinips4--+mpu,- In particular, putting p = n, yu; = w; foralli € {1,...,n} and
M = AT, the direct sum 4 = @ica+ Vi over all irreducible representations of
G is a At-graded G-algebra, with Ay = V. The Poincaré series of A is the
expression

Pd,'m(il:) - Z (dlm VA):IBA,
AEAT

where z stands for (z1,...,z,) and z* stands for z}* -+ -z} if A = Y1, hiw;.
Thus, z; = z*. As A is finitely generated, Py,,(z) is a rational function
in z1,...,2, (this will later be abbreviated to: rational in z). The rational
function can be explicitly given:
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1.2 Theorem (Weyl’s Dimension Formula, cf. [Hum]) The dimensions of the
highest weight modules of G are given by the formula

Punte) = ¥ [T SPeda

AEAt aedt pG’

(wi a)——(?—— z
i) 6:5,' © g n 1
a H PG,a) (gl_mi).

acdt

The first identity gives an explicit formula for the dimension of V) and
is more convenient for actual computation. The second identity expresses
Dgim(z) as a rational function in z; it can easily be derived from the first

by use of 66 czi(z™) = (mi + 1)™ and (A + pg, ) = D oiey (A + 1)(wi, ).

1.3 Example Let G be a Lie group of type 4;. Then pg = w; and &% =
{a1} = {2w1}, so

D e Y (=)

m>0 m>0
1
C (-2

We shall extend these observations to Weyl’s Character Formula. Let H
be a reductive closed Lie subgroup of the semisimple Lie group G. The fact that
H is reductive ensures that any finite-dimensional rational representation of H
decomposes into a direct sum of irreducibles. Branching is the decomposition
of a representation of H that is obtained by restriction from a highest weight
module of G. Let S be a maximal torus of H and m the Lie rank of H.
Then, there is a maximal torus of G containing S, which we may take (up
to conjugacy) to be T. Thus for dominant weights A = (A1,...,),) of G
and g = (p1,..., 4m) of H, we are after the multiplicity (Vy,Vx lg) of the
highest weight representation V, of H in the highest weight representation V)
of G restricted to H. In terms of formal power series in the indeterminates
T1y..y Ty Y1y - -+ Ym, We want to find an explicit description of the branching
series

Poiu(zy) = Y _ (Vi Va L)z*y?
A p
of H in G.

The coefficients of the branching series have a second interpretation. Given
a highest weight module V, of the subgroup H there is a unique (possibly in-
finite dimensional) induced G-module V,, 1¢. The multiplicity of the highest
weight module V), in the module V, 1€ is denoted by (V, 1¢,V,). Frobenius
Reciprocity gives that (V, 16, %) = (Vu, Va lu), which is a second interpre-
tation of the power series. However, considered as a power series in z, the
coefficients of the series are power series in y that need not be polynomials.
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1.4 Lemma Pg g(z;y) is a rational function in  and y.

Proof Denote by B = @#€A+(H,S) V. the A*(H, S)-graded H-algebra of all
dual irreducible H-representations, and by 4 = @, ea+(c,7) V> the A (G, T)-
graded G-algebra of all irreducible G-representations. Then the tensor product
A®Bisa At (G, T)®A*(H, S)-graded algebra with a G x H-action preserving
the grading. Considering H as a diagonally embedded subgroup of G x H, we
get for A € AY(G,T) and p € AT(H,S)

(A ® B)g\’”) = (V)‘ ,'LH ®V‘:)H = HomH(V,\ lH, V,,,).

Since the dimension of the latter complex vector space is the multiplicity
(Vu, Va L), the Poincaré series of (A ® B)¥ is precisely Pg g(z;y). On
the other hand, it is a rational function too, as (A ® B)¥ is finitely generated,
for H is reductive and acts grade preserving on the finitely generated graded
ring A® B. (cf. [Spri, Proposition 2.4.14]). O

Weyl’s Dimension Formula handles the special case H = 1. In the case of

the reductive subgroup H = T, an explicit rational form is known. For any
A € AT(G,T) set Ox(z) = Y, cw, det w ¥,

1.5 Theorem (Weyl’s Character Formula, c¢f. [Hum]) The branching series
of the maximal torus T in the semisimple Lie group G is

Oxrype(z
P r(z;y) = Z —(;i(—a(:)—)y’\
XeA+(g,T) PO

! A
= s Hae§+ i=o ) Z sgn(w)a:wpa( Z v y’\) )

wEWa AEAH(G,T)

This is indeed a rational function since z¥*y* is rational for
A€AH(T) y

each w € Wg. If G is of type Eg, the expression consists of |[Wg| = 696729600
summands, which is unrealistically high for computations.

1.6 Example Let G be a simply connected Lie group of type 4;. Then

1 T z!
Poiz(=;y) = z(1-2z-2) (1 —zy 1-— :c—1y>
T (1-=zy)(1 —z-1y)
= Z(mm +2™ 42t ™)™,
m

which is a well-known fact.

2. Tensor decomposition and plethysms

Computing the decomposition of the tensor product Vy ® V, of two irre-
ducible G-modules can be viewed as branching the irreducible G x G-module
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VA ®V, to the diagonal subgroup isomorphic to G. Denote by (Vx,V,®V,) the
multiplicity of Vj in V, ® V,, and identify A*(G x G, T x T) with A (G, T) x
A*(G,T). Then, as we have seen in the previous section, the power series in
TlyeeeyTnyYlyeeoyYnyR1lyeoey2n

Pg(z;y;2) = Z (M Vu® V,,):c)‘y‘"z”
A u,v€AT(G,T)

is rational in z,y, z. Again, let A = @A€A+(G 7y Vi and 4* = @Ae/ﬁ(e T) Vi,
By the proof of the lemma in the previous sectlon, the power series can be
considered as the Poincaré series of'(A®A®A*) , where G must be considered
as the diagonal subgroup of G x G x G. If we use an automorphism of G
to identify A* with A, the entries of the multidegrees in AT (G,T) must be
permuted in an appropriate way. Therefore the series can be considered as
the Poincaré series of (A ® A ® A)® and is invariant under permutation of the
names z, y, 2.

2.1 Example Take G a Lie group of type A;. Then A = @, 5, Va is a
polynomial algebra in two variables. (A ® A)(1,1) = V2 ® Vo, and if we take
p € (A® A)(1,1) a generator for Vo, then it follows by Theorem 2.1 that A ®
A/(p) = ®n,m>0Vnt+m. On the other hand (A®A)G = C|p], because (V,QVp, )¢
has dimension 1 if n = m and dimension 0 otherwise. Therefore, A® A is a
free (A ® A)®-module, or equivalently A® A = (A® A/(p)) ® (A ® A)C. This
yields the generating function for the tensor product of G:

1
(1 —zy)(1 — zz)(1 —yz)
This formula can also be used to compute the power series of the [-fold tensor
products. If P(z1;...52;9) = Y Ck,my,...,m yRa .. -z;* , where the sum is
taken over all k,my,..., m; > 0 and ¢k, m,,...,m;, denotes the multiplicity of V;
in Vo, ® -+ - ® Vi, then Pp = 1 and, for I > 0,

iy Pi(ze; .. enaiya) — yPi(ee .. 25 y)
(1= yzr41)(T141 — y)
The factor z;41 — y in the denominator always divides the numerator.

Py =

As we will see, also symmetric and skew-symmetric powers, and more general
plethysms, lead to rational functions. Let d € N. Identify AT(G¢, T¢) with
(AT(G,T))%, and set p; = wf = (w;,...,w;), d times w;, for i = 1,...,n.
Then B = @,,cpr Vimaps 4 +mnpn, Where M = N”, is a M-graded algebra,
which is preserved by the G¢ action. Restncted to the subgroup G, embedded
diagonally in G¢, we get B = Drcm Vm (w1t tmaw, - Lhe action of Symg
on B, given by permuting the factors of the d-fold tensor product in each
degree, preserves the degree and commutes with the G action. Suppose T is
any irreducible character of Symg. Denote by V,; the T-homogeneous part of
the Symg-module V‘?d, and by (Vi,V)]) the multiplicity of Vj in V. The
Plethysm of V,, with respect to 7 is the decomposition of V] as a G-module.
The symmetric and skew-symmetric d-tensors are special cases corresponding
to the trivial character 7 = d+ and the sign character 7 = d—, respectively.
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2.2 Theorem Let 7 be a character of Symgy. The power series

Z (V/\a V/I)w}‘y#

\uEA+(G,T)

is a rational function in z and y.

Proof Note that for given 7 the power series is the Poincaré series of
(B™ ® A*)€. The algebra C = (BSY™¢ ® A*)€ is finitely generated and has
rational Poincaré series. This proves the case where 7 is the trivial character.
(B® A*)€ is finitely generated and integral over C, thus is a finitely generated
C-module. We have the C-module decomposition (B® A*)¢ = @, (B"®4*)¢,
where the sum is taken over all irreducible representations 7 of Symg. Thus
(B™ ® A*)C is a finitely generated C-module for each 7, and therefore its
Poincaré series is rational. O

2.3 Example Take G = A;, d = 2 and set S = Sym,; = {+1}. We have
B =@;50Vk @ Vi and A* = @ Vi Let C = C[(V1 ® V] an N-graded
polynomial algebra provided with the natural S x G action. There is the
natural surjective homomorphism C — B, which preserves the degree and
commutes with the § X G action. The kernel, I say, is graded and S x G
stable. Let p be a generator of the skew-symmetric part Vp of C1 = V2 @ Vp.
We have C = C° @ C°p. By Brion’s theorem I is generated by elements of
degree 2 and from that it follows I N (C%p) = (I N C®)p = I°p. But then
B=C/I=C%/I°®C%/I°p= B ® B p. Thus if P, is the Poincaré series
of (B®° ® A*)S corresponding to the series for the symmetric 2-tensors, then
P,_ = yP,, is the series corresponding to the skew-symmetric 2-tensors. The
Poincaré series P,y = Poy + P,_ of (B ® A*)? can easily be derived from the
tensor product series of G above:

-
(1-2%)(1-y)

The series of the symmetric 2-tensors becomes

P2® =

1

B =Ty -

and for the skew-symmetric 2-tensors

_ Yy
B =iy

Write Pzg = Ek,l>0 ck,lzckyl, where cg; is the multiplicity of V3 in V,3®, then
straightforward computations using the above formulas give

22y + 2y + 1
(1-2%y)(1 - zy)(1 - )

P3® =
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3. Branching

We now return to the general situation. G is a reductive group with
maximal torus T' and H a reductive subgroup with maximal torus S, such that
S C T. The most straightforward way to compute a coefficient (V,, Vo |u) of
the branching series Pg g (z;y) is by determining the set of all weights of the
G-module V3, next computing their restrictions to S and then decomposing
this set with the inverse of Freudenthal’s formula as an H-module. In this
section we give an explicit formula for the coefficients of the branching series.
Let r : A(G) — A(H) denote the linear map restricting the weights of T' to
weights on S. Also, by choosing appropriate Borel subgroups, we may assume
that for @ € ®% we have r(a) ¢ 5. Let ® = {a € ®¢ | r(a) = 0},
®t = &n @2 and Wy the subgroup of W generated by ®. Each coset in
We relative to Ws has a unique representative in Wg of minimal length, the
set of these representatives is denoted by W. Put A = »(®%)\{0} and provide
each element o € A with a finite multiplicity mo = |[{8 € &} | r(8) = o} if
a ¢ ®; and my = [{B € 3% | r(B) = a}| - 1if & € &};. Let L be the lattice of
non-negative integral linear combinations of elements in A. Kostant’s partition
function p4 on L is defined by

ot~ 0

BeL

and is extended to the real span of L by putting p4(8) = 0if 3 ¢ L. Finally

put
H )\ a)

acd®t (P<I>,

3.1 Theorem ([Hec])

(Vi Va Lar) = D det(w)D(w(X+ pe))pa(r(w(A + pa)) — (1 +7(ps))-
weW

The theorem can be proved using Weyl’s dimension and character formulas
above. Conversely Weyl’s formulas are special cases of the theorem. The
theorem suggests how the branching series can be written as a sum over W of
power series, which represent rational functions. Below we indicate by means
of a rank 2 example how the actual rational functions can be obtained. Again,
a higher rank case such as Ejg seems intractible. Here is a simpler one.

3.2 Example Let G be a Lie group of type G, with root system &g and
fundamental roots (31, 32, where (3; is long and 3; is short. There is a subgroup
H of type A, whose root system ®g is the root subsystem of long roots of
®¢, and with fundamental roots ,81 and B; + 3832. We want to give the power
series Peig = )2y ,(Vi, Va lg)ztiy*2z#1u#? | where the sum is taken over
all A € AY(G,T) and p € A*Y(H,T). The restriction map with respect to the
bases of fundamental weights is given by 7((1,0)) = (1,1) and 7((0, 1)) = (0, 1).
Thus & is empty, so D =1, Ws = {1} and W = Wg. The multiplicities of the
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elements in A = 7(®}) are one for the images of the short roots and zero for
the long roots. The short positive roots are y; = 81 + B2, y2 = (B2 and v1 + 72.
Kostant’s partition function p4 at the lattice points my; + nyz, m,n > 0, is
given by ‘

1
(1—a)(1-b)(1 - ab)

= Y pa(mm +nyz)a™"

m,n>0
and is zero outside these points. We need the following more general formal
power series expansion defining the function g4 on the same lattice, whose
values are polynomials in z and u.

. min
(1- a’)(l - b)(l — ab)(l — a,z)(l — abu) = Z qA(m')'l + n’}’z)a b (*)

m,n>0

The values of g4 are taken to be zero outside the lattice. Thus,

qa(v) = ZPA(U = (pay1 + p2(y1 + 72))) 2 ub2.

Since the fundamental weights of the A, subsystem of long roots are y; and
¥1 + ¥2, we have g = p1y1 + p2(y1 + v2). Consequently, substitution of the
formula of Theorem 3.1 in the formal power expansion Pg|m, yields

Poim =y Y aa(r(w(A + pc)) — r(pc))z ™y,

weW A

Now Pg g is computed by finding rational functions for the power series cor-
responding to each w € W separately. Let s; and s, denote the reflections in
W corresponding to the fundamental roots 31 and (32 of G, respectively. In
light of the support of g4, a non-zero series occurs only when w is one of the
four elements 1, s, 32, $133.
We indicate how to compute the rational function corresponding to w = 1.
As r(X) = A1(2v1 +72) + A2(71 + 72), we have to compute the rational function
expression of
Y aaa(@r1+72) + da(n +72))2N v (+%)
A

But, writing ¢ = a?b and y = a b, we obtain the subseries of (*) in which pre-
cisely those monomials a™b™ occur that can be written in the form (a2b)(ab)’
for certain ¢,j > 0. The following general identity is useful in finding the
required rational function

ny mna MNp My pma mp
E: aylay’ - oaptb by by =
nyn2,.. >0
my.ma,...,m; >0
nitnztodnp2mytmato4my (* % *)
k l k—171-1
a,; b] 1

;; Hp;gi(ai — G'P)Hq;éj (bj — bq) (1 — aibj)(l — ai).
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We first compute a rational expression for the subseries of (*) in which only
monomials a™b™ occur that are at the same time monomials in the variables
ab and a. To this end we need only consider the fraction

1
(1—-a)(1-25)(1-az)

of (*). Letting k = 2 and ! = 1 and substituting a; = a, a2 =az and b; = b in
(***) we obtain the rational expression for the relevant subseries of the above
fraction of (*). Thus, the rational expression for the subseries of (*) itself
becomes

( a 3 az ) 1 1
(1-ab)(1—a) (1-abz)(1—-az)) a—az (1—ab)(1l— abu)

(1 - a?b2)
(1 - a)(1 — az)(1 — ab)(1 — abz)(1 — ab)(1 — abu)’

A look at the denominator of this function shows that a similar step, with k = 4
and ! = 2, and substitution a; = a; = ab, a3 = abz, ag = abu, by = q, and
b2 = az in (***) yields the required expression for (**) upon substitution of =
for a%b and y for ab. The resulting rational function for the w = 1 summand
of PG \H is

—(=1+ 2%uz? — 2z + 2222 + yz + 2%z — 22ua® + 2322 — 23uxd — B2y -
o2yu + y?222? — uzdz — yPzu — yizz — 2%z + 3yzz + 22%2u + 22%yz +
2zyu+ 3yzzu+ 23 ulaly + ulyzdz + 2223yu? + 2yzlzu — 322 2%y + 2t ulx5y? +
4z°22y%u + 22%22y%u? — 22%uz?y + 2823y%u? — 2222y — 622zyu + 2lzyu —
222 zyu? — 2ulztz3y? —ulz?2ly+ 2tetyPul —rtelytu— Pl z2ul + 232ty tul —
2tzty?u — 220z + 28y%2du + 222y uz + 22yPulz — 6ux?2ly + 2¥ytux +
242lyu + 32323yu + 3232%yu — wly?ziz? — 2yzuz? + yPrzu — 3yPzzu +
y?2223u — 28yPadu — yPalau — 28yPzdu?)

(1—2)%2(1 — zuz)(1 — z2)(1 — y)?(1 — 222)(1 — y2)(1 — zu)(1 — yu)

For w € {s1, s2, 5152} one can follow the same procedure. In these cases,
an additional summand r(w(pe) — pg) occurs in the argument of g4. However
this requires only a shift in the grading or removing some terms of the series.
The corresponding rational functions are, respectively,

viedzu+ yiz?zu — 22%y%uz — y¥e?u — ez zyu 4 yzz + 2yz — T — Y
(1 —=zu)(1—zz)(1 —2)?(1 — yu)(1 — yz)(1 — v)®

—z?

(1-9)(1 —-2)2(1 —zz)(1 — zu)

3 3, m3 3 2,,m2

uz?y — 23ux® — 2322y + 2328yu + 222z — 2%yz + y2°® — 2Puz
— 22 + 2%zu — 2%zyu + 22 + yz — 2 + zuz — 1)
(1 - zuz)(1l —zz)(1 — 2%22)(1 — y2)(1 — zu)(1— 2)?(1 — y)

—z(2*z3yu — 2z
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- Adding these series gives the rational form of the branching series of G,
to the subgroup A,:

1—zyzu
1—yu)(1 —zu)(1 — y2)(1 —y)(1 — z2)(1 — zuz)’

Pg,14,(z,y;2,u) = (

An immediate consequence of the obtained rational function expression
is the following recursive expression for the coefficient g(A1, A2) of z*y* in
Pg, 4,

Ye2o Lo 2u™ if A1 =0
g(A1,A2) = T T ML ammytdm if A1 >0,2=0

q(A1,0)g(0, A2) — zug(A1 — 1,0)g(0, A2 — 1) if Ay > 0,22 >0

We recall that g(A1, A2) is a polynomial in z and u expressing the decomposition
into irreducibles of the restriction to A; of the G representation with highest
weight (A1, A2). The computation of g(A1, A2) via this method is much faster
than the general method as implemented in, e.g., the software package LiE (cf.

[Co]).
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0. Introduction

In this paper we describe some of the surprising results which appeared in

29

the study of invertible polynomial maps during the last few years. Our main

motivation is the well-known Jacobian Conjecture, formulated by O. Keller in

1939, which asserts that a polynomial map F' : C* — C" is invertible, if the

determinant of the Jacobian matrix of F' is a non-zero constant.

Since the literature concerning the Jacobian Conjecture is extensive, we

only describe some of the highlights in the first section. At the end of section

one we also give references to other papers concerning the Jacobian Conjecture.

In section two we give new criteria for the invertibility of a polynomial map

and apply these results to the study of the Jacobian Conjecture. Finally in the

last section we make some remarks on the automorphism group of a polynomial

ring in several variables over a field.
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1.. The Jacobian Conjecture

Let F: C® — C™ be a polynomial map, that is a map

(Z1,-. -, 2n) = (Fi(Z1,- -y Ta)y oo oy Fu(z, ..oy 20))

where each F; belongs to C[X] := C[X},...,Xy]. The central question in this
paper is

1.1 Question How can we decide if a given polynomial map is invertible, i.e.,
has a polynomial map as inverse?

Let us assume that F' is invertible with inverse G. Then G(F (X)) = X,
where X = (Xy,...,X,). So if we put

JF = <6E )
an 1<3,5<n

then by the chain rule we get (JG)(F(X)).JF = I, so det (JG)(F(X)) -
det JF = 1, whence det JF € C*. Summarizing: if F is invertible, then det
JF € C*.

Jacobian Conjecture: If det JF € C*, then F is invertible.

This more than 50 year old conjecture is still open for all n > 2. Before we
give some of the history of the Jacobian Conjecture, let us first give a useful
criterion for invertibility of F'. To this end, observe that if F' is invertible with
inverse G = (Gy,...,G,) then X = G(F(X)), i.e.,, Xi = Gi(F1,...,Fn). So
X; € C[F] := C[Fy,..., F,] for all ¢, implying C[X] = C[F]. Conversely, if
C[X] = C[F] then X; € C[F] for all i, i.e., X; = Gi(Fy,...,F,) for some
G;. Hence X = G(F (X)), where G = (Gy,...,Gr). It is a well-known fact
that this relation also implies that F(G(X)) = X (see [11], §4). Hence F is
invertible. So we obtain

1.2 Lemma F is invertible if and only if C[F] = C[X].
1.8 Some history of the Jacobian Conjecture

For two nice survey papers concerning the Jacobian Conjecture, we refer the
reader to [7] and [46].

The Jacobian Conjecture was first formulated by O. Keller ([25], 1939)
with Z instead of C. In fact he was considering the problem of describing all
transformations between several Z-transcendency bases of a given ring (with
finite Z-transcendency bases). The main result of his paper states that if
F : C™ — C" is a polynomial map with det JF € C* and which has a rational
inverse, i.e., X; = a;i(Fy,..., Fp)/bi(F1,..., F,) for some a;,b; € C[F], b; # 0,
then actually this inverse is a polynomial inverse. So writing the quotient field
of C[X] as C(X) we have
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1.4 Theorem (Keller) Let F = (F,..., F,) withdet JF € C*. IfC(F) :=
C(F,...,F,) = C(X), then C[F] = C[X].

In a completely different setting the Jacobian problem was studied by
Arne Magnus ([29], 1955). He considered volume preserving transformations
of complex planes given by analytic functions in two variables, i.e.,

(21, 22) — (f(21, 22), 9(21, 22)) with det J(f,g) = 1.

Let now f, g € Clz1, z2] with n = deg f, m = degg. Then Magnus showed that
(f,9g) is invertible if n or m is a prime number. This result was generalized by
Nakai and Baba ([41], 1977): if n or m is prime or nor mis4orm > n, m = 2p
and p > 2 is prime, then (f, g) is invertible. This result was in turn generalized
by Appelgate and Onishi ([6], 1985): if n or m has at most 2 prime factors,
then (f,g) is invertible. This result was recently reproved by Nagata ([40],
1988). In this context we also refer to the paper [42] of Nowicki.

Also several wrong “proofs” of the Jacobian Conjecture were published.
The first one appeared in 1955, [19]. Engel “proved” the Jacobian Conjecture
for n = 2. It took 18 years until Vitushkin [55] discovered two errors in Engel’s
proof. In the meantime Segre had produced three incomplete “proofs” in 1956,
’57, 760 [48], [49], [50], all using topological methods. In the third paper he
asked for a purely algebraic proof. This was given in 1961 by Grobner [22].
However Zariski showed that formula 14 was wrong. A more dramatic “proof”
was given by S. Oda in 1980, [43]: he cited a lemma from a book of Murre [38]
incorrectly.

After all these negative results one more positive result in case n = 2. In
1983 Moh [36] showed, using a computer search, that the Jacobian Conjecture is
true if both deg F; and deg F» < 100. He reduces the problem to four problem
cases namely (deg Fy,deg F3) € {(64,48),(75,50),(84,56),(99,66)} and then
eliminates these cases by a reduction of degree trick. The reduction to the
above four cases is also obtained in a recent paper [23] by Heitmann.

Now we return to the study of the Jacobian Conjecture. The first question
which comes up is: what is the connection between the Jacobian Conjecture
(over C) and Keller’s problem (over Z)? Can we replace C by an arbitrary
field, or even better by a “nice” ring such as Z? The example F(X) = X+X? €
F,[X] (n = 1) shows that, for characteristic p > 0, the Jacobian Conjecture
does not hold; for 48 = 1, but for every G € F,[X] we have deg G(X + X?) =
pdeg G > 1 so that G(X + X?) # X.

Therefore, let R be a subring of a Q-algebra and Fi,..., F, € R[X] :=
R[X;,...,X,]. Arguing as above we obtain: if R[X] = R[F] then det JF is a
unit in R[X]. Denoting the units of R[X] by R[X]* we get
1.5 Generalized Jacobian Conjecture (JC,(R)): let R be a subring of a
Q-algebra. If det JF € R[X]*, then R[F] = R[X].

So in the case R = C we get the usual Jacobian Conjecture and if R = Z we
get Keller’s problem. Now the question arises: how much more general is the
generalized Jacobian Conjecture then the usual Jacobian Conjecture? It was
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shown in [7] that for each n € N the conjecture JC,(C) implies JCy,(R) for
every R as above. However at the cost of enlarging the number of variables we
obtain

1.6 Theorem Let R be a subring of a Q-algebra. Then JCy(R) is true for
all n > 1 if and only if JCo(C) is true for all n > 1.

Proof By the observation above we only need to show that if JCy(R) is true
for all n > 1, the same holds for all JC,(C). Observe that R has no Z-torsion
since it is a subring of a Q-algebra. Hence R contains Z. Suppose now that
there is a number n for which JC,(C) is not true. Then there exists an n
variable counter example. So by [16], Theorem 1.5 there exists an m (> n)
variable counter example with integer coeflicients and hence with coefficients
in R, a contradiction. So JC,(C) is true for all n > 1, as described. O

So by this theorem we can safely return to the study of the usual Jacobian
conjecture (over C). The advantage of working with C (instead of R as above)
is that you can use methods of complex analysis (see for example the paper of
Campbell, [13] and the papers [53] and [54] of Stein and Comment 1.14 below).

A question which arises in this context is: can we generalize the Jacobian
Conjecture to analytic functions on C", i.e., if Fy,..., F, are analytic on C"
with det JF € C* does there exist an inverse G = (G4, ..., G,) where each
G, is analytic on C"? Already for n = 2 we get a counterexample namely
Fy = X, Fy = Ye™ X, which satisfy det JF = 1, however F(27ik,0) = (1,0)
for all k € N. So F is not injective. In this example the map F is not injective.
It can even be worse. There exists an F = (Fy, F3) : C? — C? where each F;
is analytic on C?, det JF = 1 and F is injective. However C*\ F(C?) contains
a non-empty open set ([10], Chapter III, §1). In the light of this example the
next result is a surprising contrast (see also remark 1.13 below).

1.7 Proposition Let F : C® — C™ be a polynomial map with det JF € C*.
If F is injective, then F is invertible.

Proof Since det JF € C* certainly det JF # 0 in C[X]. Hence Fi,..., F,
are algebraically independent over C ([45], Satz 61). So both trdgoC(F) =
trdgcC(X) = n, which implies that C(F) C C(X) is an algebraic, hence finite
extension. Let e = |C(X) : C(F)|. Then by [26], AI 3.5 for almost all z € C"
(i-e., for all z in a Zariski open set of C™) the fiber F~1(z) contains e points.
Since F' is injective it follows that e = 1. So C(X) = C(F) which implies
C[X] = C[F] by Keller’s theorem. Hence F' is invertible by Lemma 1.2. O

So the Jacobian Conjecture is equivalent to: if det JF € C* then F is
injective. In other words it is equivalent to: if F' is not injective then F’ :=
det JF ¢ C* so F' has a zero in C™. So we obtain
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1.8 Corollary (“Rolle” formulation of the Jacobian Conjecture) The Jaco-
bian Conjecture is equivalent to: (R) If F(a) = F(b) with a # b in C*, then
there exists £ € C™ such that F'(£) = 0.

Let us give one more application of Proposition 1.7.

1.9 Theorem (S.S. Wang [56], 1980) Let det JF € C* and deg F; < 2 for
all i. Then F is invertible.

Proof By proposition 1.7 it suffices to prove that F is injective. So suppose
F(a) = F(b) for some a,b € C*, a # b. We first show that we can assume
that b = 0. To see this, we define G(X) := F(X + a) — F(a). Then deg G <
2, G(0) = 0 and putting ¢ := b — a we have ¢ # 0 and G(c) = 0. Observe
that (JG)(X) = (JF)(X + a), so det JG € C*. Now write G = Ga) + G2y,
its decomposition in homogeneous components. Consider G(tc) = tG(1)(c) +
t2G(2)(c). Differentiation gives

G(1)(c) + 2tG(z)(c) = %G(tc) =(JG)(tc) #£0, all teC

since ¢ # 0 and det JG € C*. Substituting ¢t = 1 gives G(c) # 0, a
contradiction with G(c) = 0. So F is injective as required. O

One could object that this result is only a very special case of the Jacobian
Conjecture. However the next theorem, proved independently by Yagzhev in
[67] and Bass-Connell-Wright in [7] (1980) shows that theorem 1.9 is “almost”
the general case:

1.10 Theorem (Yagzhev, Bass-Connell-Wright, 1980) If the Jacobian Con-
Jjecture holds for all n > 2 and all polynomial maps F with deg F; < 3 all ¢,
then the Jacobian Conjecture holds.

1.11 Remark One may wonder where the three in theorem 1.10 comes from:
the idea in the proof given in [7] is to get rid of all monomials of degree d
to obtain a reduction of the degree by multiplying F' by so-called elementary
polynomial maps (see §3). By the method used a monomial M of degree d can
be eliminated if it can be written as a product PQ of two monomials which are
both of degree < d — 2. Therefore take P a divisor of M of degree d — 2. Then
degree @ = 2 and 2 < d — 2 as soon as d > 4. So all monomials of degree > 4
can be eliminated and one remains with polynomials of degree < 3.

The following improvement of theorem 1.10 was obtained by L. Druzkowski
([18], 1983).

1.12 Theorem (Druzkowski) If the Jacobian Conjecture holds for all n > 2
and all F of the form

P <X1 4 (Zajlxj)s,...,Xn + (Zaanj)3>
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then the Jacobian Conjecture holds.

1.18 Remark The result in Proposition 1.7 even holds without the assumption
det JF € C*: every injective polynomial map F : C* — C™ is invertible ([9]).
See also [46], Theorem 6.2 and [47] where C™ is replaced by an (irreducible)
affine algebraic variety over an algebraically closed ground field.

1.14 Comment In two recent papers Y. Stein takes the example F; = eX,
F; = Ye X as a starting point for a new analytic approach to the Jacobian
Conjecture: Let E be the Frechet space of entire functions on C2. Let f,g € E.

Analytic Jacobian Conjecture: if det J(f,g) = 1, then %(E) is dense in

29__6_)
8X Y /°

E (where % is the linear operator %%
It is proved in [53] that this conjecture for polynomials implies the Jacobian
Conjecture. Furthermore the conjecture is proved for f = eX, g = Ye %. In
[54] it is shown that %(E) is closed in E (with the standard Frechet space

topology).

1.15 Comment A topic which we will not discuss in this paper is the global
asymptotic stability Jacobian Conjecture (see [34] for a nice survey). This
conjecture, which is due to Markus and Yamabe ([30], 1960) asserts that if
f:R™ — R" is a C'-function with f(0) = 0 and such that for each p € R™ the
origin is a locally asymptotic rest point of the linearized system y = (JF)(p)y,
then the origin is a globally asumptotic rest point of z = f(z). For n = 2 this
conjecture was recently solved in the affirmative by Meisters and Olech ([35],
1988). In this context we also mention the paper [21] of the author.

2. New Criteria for the Invertibility of a Polynomial Map and the
Relationship with the Jacobian Conjecture

Now we return to Question 1.1. In 1986 I gave an answer to this question
based on methods from computer algebra, namely from the theory of Grobner
bases for ideals in polynomial rings (for a nice survey of this subject we refer
the reader to the paper [12] of Buchberger).

Before recalling the main definitions in order to understand the following theo-
rem let us first mention the main point of the Grébner basis theory. In a poly-
nomial ring in one variable over a field every ideal is generated by one element.
If we choose this element to be monic it is unique. Furthermore this unique
element can be constructed by using Euclidean division several times (every
reduction gives a polynomial of lower degree). In a completely analogous way
one can proceed in the case of a polynomial ring k[X] := k[X1,..., X,] (n > 1)
over a field k. Let us give some more details: to have the notion of “degree”
one has to order the set T' of terms X’i‘ ...Xi, 41,...,i, > 0. More precisely,
a total order < on T is called admissibleif 1 < ¢t forallt € T, t # 1; and if
s < t then su < tu for all s,t,u € T'. (An example of an admissible order on
T is the lexicographical order with X; < X3 < --- < X,,).
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Now choose a fixed admissible order on T'. For each f € k[X] we write
fFEY fit, i€k, te€T. If f+#0 define Lp(f) = max{t € T | fy # 0} and
Le(f) := the coefficient of Lp(f) in f. If f = 0 define Lp(f) = 0 and Lc(0) = 0.
Let E be a finite subset of k[X] and g € k[X], then we say that g is reducible
mod E if t = sLp(f) for some ¢t € T' with g: # 0, s € T and f € E. The
set of all terms ¢t € T which are reducible mod F is denoted by Lp(E). Let I
be an ideal in k[X]. A finite subset E C I is called a Grébner basis of I in
I = (E) (= the ideal generated by E) and Lp(I) = Lp(E). A Grbbner basis G
of I is called a reduced Grébner basis of I if for each f € G we have: f is not
reducible mod G\{f} and Le¢(f) = 1. It can be shown that for each ideal I
there exists a unique reduced Grébner basis (only depending on the admissible
order < chosen on T'). Furthermore, given an arbitrary finite basis E of I there
exist algorithms with input E and output the reduced Grébner basis of I.

Now we are able to describe the first invertibility criterion for a polyno-
mial map F : k™ — k™ when k is an arbitrary field. So let Fy,...,F, €
k[X1,...,Xn]- Introduce n more variables Y7,...,Y, and consider the ideal I in
k[X,Y]:= k[Xy,...,Xn,Y1,...,Yy,] generated by Y1 — Fi(X),..., Y, — F(X).
On k[X,Y] we choose a fixed admissible order such that any power product in
Yi,...,Y, any power product in Xi,..., X, (for example the lexicographical
order withY; <YYo < -+ <Y, < X1 < -+ < Xp).

2.1 Theorem (van den Essen, [20], 1986) Let G be the reduced Grébner
basis of I. Then F = (Fy,...,F,) is invertible if and only if G = {X; —
G1(Y),...,Xn — Go(Y)} for some G; € k[Y]. Furthermore, if F is invertible
the inverse is given by G = (G, ..., Gp).

Let us compare the possible Jacobian criterion “F is invertible if and only
if det JF € k*” with Theorem 2.1.
+ our theorem works for all characteristics. The Jacobian criterion only when
char k = 0.
+ our theorem also computes the inverse. The Jacobian criterion doesn’t.
— our algorithm is slow if the number of variables or the degree is large. The
Jacobian criterion is comparable faster.

2.2 Remark Some theoretical applications of Theorem 2.1 are mentioned be-
low.

As already observed before, for practical computations the above algorithm
is too slow. So the question arises: How can we make the algorithm faster?
The idea is to make bigger steps in the reduction process: looking at the
Grobner basis G above we see that the ideal I contains an element of the form
X1 — G1(Y). So in the case n = 2 this means that I contains an element from
which X, is eliminated. This observation guides us to elimination theory. Its
main tool is the resultant, a device which was often used in the early days of
algebraic geometry, but which was gradualy eliminated from the theory and
replaced by methods from modern algebra. However, together with the birth
of computer algebra there was a renewed interest in the study of resultants.
Several new papers appeared see for example [14] and [15]. Now let us recall
the Resultant (see [45], §43 for more details).
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.Let A be a commutative ring without zero divisors, K its quotient field
and A[T] the polynomial ring in the variable T' with coefficients in A. Let
f=faT®+ faiT* 1+ - -+ fo € A[T] with f, # 0 and g = gT™ +
gm-1T™ 1+ -+ go € A[T] with g # 0.

i) If n,m > 1 the resultant of f and g, denoted Rr(f,g) is defined as

fa oo fo
. } -
L In fo
Ry(f,g) := det A . }
n
Im do

ii) If m = 0 we put Rr(f,9) = g3, if n = 0 we put Rr(f,9) = f3*-
The main property of the resultant is

(2.3) f and g have a common zero (in some finite field extension of K) if and
only if Rr(f,g) = 0.
Furthermore

(2.4) Rr(f,9) € A[Tf + AlTlg.

Now we are able to formulate the main theorem of [3].

2.5 Theorem (Adjamagbo, van den Essen, 1988) Let k be an arbitrary field
and F = (Fy, F;) : k? — k? a polynomial map. There is equivalence between
i) F is invertible.
ii) There exist A1, A2 € k* and G1,G2 € k[Y] such that Rx,(F; — Y1, F2 —
Y2) = M1(X1—G1) and Rx, (F1—Y1, F2—Y3) = A2(X2—Gz). Furthermore,
if F' is invertible then G = (G1, G2) is the inverse of F.

This algorithm is extremely fast, works in all characteristics and computes
the inverse (in case F is invertible). A generalization of this result to rational
maps in two variables, can be found in [2].

In the remainder of this section we derive two consequences from Theorem
2.5. Each of these conclusions will be generalized to the case of several variables.
At the end of this section we relate these results to the Jacobian Conjecture.

2.6 Border polynomials To derive the first corollary from Theorem 2.5 we
substitute X; = 0 resp. X, = 0 in the two resultant expressions of Theorem
2.5. We obtain

RX:(Fl(O’ X2) - Yl; F2(01 X2) - Yz) = )\1(—G1(Y))
(2.7)
{ Ry, (F1(X1,0) — Yy, F5(X1,0) — Y2) = Xao(—G2(Y)).

From (2.7) we see that up to some constants A1, A; G is completely determined
by the so-called border polynomials Fy(0, X3), F2(0, X2), F1(X1,0), F2(X1,0).
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In fact also A1, Ay are determined by these border polynomials which can be
seen as follows: the linear part of G and hence of G; is determined by the
linear part of F' and so by its border polynomials. Obviously the left hand side
of the first equation in (2.7) is determined by the border polynomials of F'. So
equating the linear parts in this equation we see that A; is determined by the
border polynomials of F'. The constant A, is treated similarly. In [31] explicit
formulas for Ay and A are given: A; = (—=1)"cJ, A = (—1)"‘+1d.], where
J = det JF, n = deg F1(0, X2), m = deg F1(X1,0), ¢ = Rx,(F1(0, X2)/X>2,
F5(0,X,)/X>), and d = Rx,(F1(X1,0)/ X1, F2(X1,0)/X1) (here it is assumed
that F(0) = 0). These formulas show once more that A\; and \; are determined
by the border polynomials of F'.

Summarizing: the inverse G of an invertible polynomial map F : k? — k? is
completely determined by the border polynomials of F'. Since F is the inverse of
G, F is determined by the border polynomials of G. However G is determined
by the border polynomials of F. So we obtain our first conclusion.

2.8 Corollary If F : k2 — k2 is invertible, then F is determined by its border
polynomials.

This result was first obtained in [31], Corollary 13. See also [3], Corollary 2.2.

2.9 Remark For formal power series a similar result as Corollary 2.8 does not
hold as can be seen from the following example:

Fi(X1,X3) = X1(1 — aX1X3), Fa(X1,X2) = X2(1 — aX:1X2)™Y, ac€k.

Then det JF = 1 and for each a € k the border polynomials of F are the same
as the border polynomial of the identity map (a = 0).

The following generalization of Corollary 2.8 to several variables was given by
McKay and Wang in [32], 1988.

2.10 Theorem (McKay, Wang) Let ¢ = (Fy,...,F,) define a k-automor-
phism of k[ X]. Then ¢ is determined by its face polynomials

Fi(X1y.o s Xi21,0, X1, -, Xn)-

Proof Let ¢ = (ﬁ'l, . ,ﬁ’n) be another k-automorphism of k[X] with the

same face polynomials. This can be expressed by saying that m; 0 ¢ = m; 0 ¢

for all 1 < % < n, where m; : k[X] — k[X] is the k-endomorphism defined

by mi(X;) = 0 and m;(X;) = X; if j # i. We show that =1 = ¢~1. So let

R; = ¢71(X;) and R; = J)‘I(Xi). We show that R; = R;. Observe that
kermy 0 ¢ = {g € k[X] | 4(g) € (X1)} = (R1).

Similarly ker 7rlo$ = (IA21) Since m10¢ = 7r10<;$ we get (Ry) = (1%1) and hence

Ry = AR, for some ) € k[X]* = k*. Applying ¢ gives ¢(R1) = AX;. Also
¢(R1) = X1. Now apply 72. Then '

X, =m0 ¢(Ry) = w20 $(R1) = AXy.

So A = 1 implying R = 1%1. Similarly we get R; = E for all ¢z, which
implies ¢ = ¢, as desired. O
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2.11 Remark The above proof is given in [17] and also works in the case that
k is a reduced ring (since then k[X]* = k*).

2.12 Remark The generalization to the case that k is a reduced ring was first
obtained by Li in [28]; his proof is based on a result from [20].

2.13 Remark If k£ is not a reduced ring, the result of Theorem 2.10 does not
hold: to see this take the example of Remark 2.9 where a is an element of k
satisfying a # 0 and o2 # 0.

2.14 Remark For more results concerning the connection between invertible
polynomial maps in two variables and border polynomials, we refer the reader
to [37] where the authors establish a one-to-one correspondence between the
invertible polynomial maps F : k% — k® and the matrices (fi(t), f2(t)) €
M;(k[t]) having the property that the curves ¢t — fi(¢) and ¢t — f,(t) only
intersect at 0 and have independent tangents at 0 (k is an algebraically closed

field).

2.15 The degree of the inverse of an invertible polynomial map From
the definition of resultant one immediately obtains that degy Rx,(Fy—Y1, Fo—
Y;) < max(deg Fy, deg F3), all <. So by Theorem 2.5 we see that deg G < deg F'
(and hence we have equality by interchanging F' and G). This is a special case
of

2.16 Theorem (Gabber) Ifk is a field and F : k™ — k™ is an invertible poly-
nomial map with inverse G, then deg G < (deg F)"~! (deg F := maxdeg F;).

For an elementary proof of this result we refer the reader to [46], theorem 5.1.

Theorem 2.16 forms the basis for another invertibility criterion and a new
inversion formula. Let K be a field of characteristic zero and F : k™ — k™

a polynomial map with det JF € k*. Define a sequence of polynomial maps
FU F@ . k2™ k™ inductively

oFF\"
FU(x,v):= (JF)Y(x)-v, FFU(X,V) ::( I -FU(X, V).
3,j=1

0X;

2.17 Theorem (Adjamagbo, van den Essen, [4], 1988) Let F' be a polynomial
map of degree d, D = d*~1. Then F is invertible if and only if det JF € k*
and FIP+1 = 0. Furthermore, if F is invertible the inverse G is given by

D
G(V)=>_ %F[’“](O, V — F(0)).
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2.18 Remark An inspection of the proof of Theorem 2.17 shows that we can
replace the field k by any Q-algebra R for which we can show the inequality of
Theorem 2.16.

So one could wonder for which kind of Q-algebras R the inequality of
Theorem 2.16 holds? As in the case of border polynomials the result of theorem
2.16 can be extended to the case that k£ is a reduced ring. This can be seen
as follows. First observe that in case k is a ring without zero-divisors the
conclusion of Theorem 2.16 still holds (by embedding & in its quotient field).
Now assume k is a reduced ring. Let p be a minimal prime ideal of £ and
consider the ring homomorphism ¢ : k — k := k/p. If F is invertible with
inverse G then the induced map F is invertible with inverse G. Since k/p has
no zero-divisors it follows from the previous case that deg G < (deg F)"~! <
(deg F)"~1. Soif a is a coefficient of a monomial of G of degree > d"~! then
#(a) = 0i.e. a € p. So a belongs to the intersection of all minimal prime ideals
of k i.e. to the nilradical of k, which is the zero-ideal since k is reduced. So
a = 0, which implies deg G < d"~1.

However, if k is not a reduced ring the conclusion of Theorem 2.16 is not
true; in fact there is no bound for the degree of the inverse which depends on
n and deg F' only. This can be seen as follows. Let d € N. Take n = 1 and
F = X — aX?, where a® # 0 and a%t! = 0 (in some ring k). Observe that
det JF =1—2aX € k[X]* (the inverse is 1+ 2aX + (2aX)? +--- + (2aX)?).
Let G(F(X)) = X. Then G'(X — aX?)- (1 —2aX) = 1 (by the chain rule) so
G'(X—aX?)=142aX +---+(2aX)%. Sod = deg G'(X —aX?) < 2(deg G-1),
whence deg G > %-I— 1. So deg G can be arbitrarely large in spite of the fact
that n = 1 and deg F = 2. The cause of the trouble is the strict inclusion
k* C k[X]*, for if we had assumed that F is invertible and det JF € k* then
the conclusion of Theorem 2.16 is true in case n = 1. So for n = 2 we can hope
that the answer to the following question is, yes:

2.19 Question If k is a Q-algebra, F : k* — k? is invertible and det JF € k*,
does it follow that deg F~! < deg F'?

The answer to this question is still open, in fact a positive answer to this
question would imply the Jacobian Conjecture for n = 2. This is a special case
of the following theorem of Bass, [8].

2.20 Theorem (Bass, 1982) The Jacobian Conjecture is equivalent to: given
n and d, there exists a constant C(n,d) such that for any Q-algebra R we
have, if F : R — R" is invertible with deg F' < d and det JF € R*, then
deg F~! < C(n,d) (i.e. the degree of the inverse is bounded by a number
independent of the Q-algebra).

This result was used by Abhyankar and Li in [1], 1989 to open a new
approach to the Jacobian Conjecture. Therefore they first generalized Theo-
rem 2.1 to the case of polynomial rings over arbitrary commutative rings ([1],
Corollary 4.3). Then the next step is to investigate the following: given a set of
generators f; of an ideal I (in a polynomial ring R[X}, ..., Xy], where Ris a Q-
algebra) and an admissible order on R[X]. Let d = maxdeg f;. Does there exist
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a uniform bound C(n,d) (i.e. independent of the Q-algebra R) for the degrees
of the elements g; of the reduced Grébner basis you find? If such a bound exists,
then the Jacobian conjecture would follow from Theorem 2.20 and the general-
ized version of Theorem 2.1 (take as input ideal (Fy(X)—Y1,..., Fo(X)—-Y32)).
However it is shown in [1] that such a bound does not exist even if the ring R
is a polynomial ring in one variable over a field.

2.21 Comment Several generalizations of Theorem 2.1 have been obtained.

i) In an unpublished note André Heck (CAN, Amsterdam) has given the fol-
lowing improvement: let K = k(Y') the quotient field of the polynomial ring
k[Y]. Put K[X]:= K[X4,...,Xy]. Let T be the set of monomials X} --- X3~
with 21,...,4, > 0. Choose on T an arbitrary (!) admissible order <. Let I be
the ideal in K[X] generated by the elements Y; — F;(X). Let G be the reduced
Grobner basis of I. Then F is invertible if and only if there exist polynomi-
als G; € k[Y] such that G = {X; — Gy,..., X, — G,}. Furthermore, if F is
invertible the inverse of F is given by (Gy,...,Gy).

ii) In [51] and [52] Shannon and Sweedler and in [44] Ollivier use Grdobner
bases to study the problem how to decide if a polynomial (resp. rational) map
F : k™ — k™ (k a field) admits a polynomial (resp. rational) inverse. The
technique is similar to the one used in [20].

2.22 Comment In 2.6 we showed that an invertible polynomial map F :
k? — k? can be reconstructed from its border polynomials by means of (2.7)
and the formulas for A; and A;. One could try to generalize this proce-
dure by studying more variable resultants i.e. consider Fy(Xy,...,X,) —
Yi,..., Fo(X1,...,Xs) — Y, as polynomials in the variables X,..., X, and
then compute the resultant with respect to these variables:

Rxsyo X (F1(X1y .oy Xn) = Y1y, Fu(Xa, .o, Xp) — Ya),

which is an element in the remaining variables, so belongs to k[Y, X;]. One
could hope that this resultant has the form A(X; — G1(Y')) for some X € k*
and G; € k[Y]. However one can prove that in general this resultant is zero
and hence contains no information at all about the inverse of F. So we are lead
to

2.23 Question How can one reconstruct an invertible polynomial map from
its face polynomials if n > 37

3. The Automorphism Group of a Polynomial Ring and some Con-
jectures

In this last section we make some remarks about the automorphism group
of a polynomial ring in several variables over a field k. If n = 1 the only
automorphisms of k[X] are of the form X +— AX + u for some A € k* and
uEk.

From now on let n > 2. A polynomial map E = (Fi,...,E,) : k™ — k™ is
called elementary if there exist j such that E; = X; for all < # j and E; — X
does not depend on Xj.
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3.1 Theorem (Jung [24], 1942, van der Kulk [27], 1953) Every invertible
polynomial map F : k? — k? is a finite product of invertible linear maps and
elementary polynomial maps (we call such an F tame).

3.2 Remark Several proofs of this theorem appeared. See [33], where a survey
of all these proofs is given.

It was conjectured for a long time that the conclusion of Theorem 3.1 is also
true for n > 3: the so-called tame conjecture. However in 1972, [39] Nagata
constructed an example of an invertible polynomial map which is most probably
not tame, namely :

y— y+2(zz + y?)

22

{ z+— z —2y(zz + y?) — z(zz + y?)?
o

3.3 Remark In [5] Alev and Le Bruyn give a general method to constuct
such “weird” automorphisms, by using some elementary properties of Clifford
algebras.

8.4 Conjecture (Nagata) The map o is not tame.
However it is believed that polynomial maps of degree < 2 are nicer.

8.5 Conjecture (Rusek, [46], 1989). For every n > 2 an invertible polynomial
map F : k™ — k™ of degree < 2 is tame.

We conclude with two more conjectures.

3.6 Conjecture (Adjamagbo, van den Essen [3], 1988) If F : k% — k? sat-
isfies det JF € k*, then #RX,(Fl, Fy) € k* (this conjecture is equivalent to
the Jacobian Conjecture, [3’], Proposition 2.6).

3.7 Conjecture The Jacobian Conjecture is false if n > 3 !
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0. Introduction

Two applications of the theta functions based on the root and weight
lattices of simple Lie algebras to exactly-solvable statistical mechanical models
are described. In the first part of this paper, viz. §§2-7, we reformulate Baxter’s
8-vertex model in terms of the Lie group SU(2), its associated root and weight
lattices and the theta functions based on them. To be more precise, we will
make use of the abelian subgroup of SU(2) only. We will see that Baxter’s
model, which is the basic building block of almost everything that we know
about exact solutions of statistical mechanical models, is directly related to
the spin 1/2, or vector representation of the Lie group SU(2). This material
has appeared, in a shorter form, in [Fo].

The second part is a report on work in progress: a study of a class of
models that describe the coupling of n copies of the 8-vertex model. Statistical
mechanical models are described in terms of parameters called the Boltzmann
weights. The condition for exact solvability is that these weights satisfy a set
of equations called the Yang-Baxter equations. The above statements will be
explained in an elementary way in the following section. What we wish to
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mention here is that the weights obtained in the second part of this paper, are
the most general that can be considered. I have not managed, as yet, to prove
or disprove, that these Boltzmann weights satisfy the Yang-Baxter equations,
or equivalently, that this class of models is indeed exactly solvable. In fact, it is
likely that only special cases of these weights lead to exact solutions. However,
I find these models sufficiently interesting to report on.

In the rest of this section, I would like to motivate both the first and the
second parts of this work.

It can be argued that, in the subject of exact solutions, two major issues
need to be addressed. Firstly, almost all exact solutions that we know are 2-
dimensional. The only exception is the Zamolodchikov model: a solution of the
tetrahedron equations: the 3-dimensional analogue of the Yang-Baxter equa-
tions. But it is not entirely satisfactory, since some of the Boltzmann weights
are negative; this makes the model non-physical: the Boltzmann weights are
probabilities, and furthermore, the solution cannot be extended away from crit-
icality. (We will explain in the following section what these words mean.) How
can we go beyond 2 dimensions? Recasting the 8-vertex model in the language
of group theory, as described in the first part of this work, might give us ideas
on how to go in this direction. After all, higher-rank groups are usually associ-
ated with transformations on higher-dimensional spaces. This is the motivation
of the first part.

Next, we come to the second limitation on known exact solutions. Al-
most all solutions that we know are ‘symmetric’. An example of a ‘non-
symmetric’ exact solution that describes a physical system in an external
symmetry-breaking field, is the 6-vertex model in an external field. There
are more, but not many. Hopefully, once we learn how to solve models that
correspond to coupling more than one copy of the same model, or even differ-
ent models, one can consider certain limits in which one of these components
‘freezes’ (in the sense that its variables remain fixed in a certain direction, thus
breaking the spatial symmetry of the entire system), and acts as an external
field that breaks the symmetry of the other components. This is the motivation
of the second part, though as we will see, we will come way short of what we
wish to obtain.

The presentation is informal and elementary. It is not the intention here
to give an introduction to statistical mechanics, or the relevant mathematics.
Instead, references to original works and reviews are provided.

1. Exact solutions in Statistical Mechanics

All known physical phenomena that can be theoretically investigated, be-
long to one of two classes: those with a very small number of degrees of freedom,
and those where the number of degrees of freedom is very large. Later, we will
be more specific about what we mean by ‘very small’ and ‘very large.” The gen-
eral case of an arbitrary number of degrees of freedom is simply too complicated
to handle.

Only in the above limits can we hope that a small number of features
remain dominant, while all others vanish, or could be safely ignored. When that
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is indeed the case, then things become sufficiently simple that one can describe
them in terms of an abstract model that can be mathematically investigated.

Naturally, the above scenario can work with different degrees of success:
There may be situations where one ignores certain effects that are small but
not vanishing. In such cases, one can regard the small but non-vanishing ef-
fect as a perturbation, and work in terms of a perturbation expansion up to
a certain order in a small parameter. The most successful example of that
approach is Quantum Electrodynamics: a theory that describes the electro-
magnetic interactions between elementary particles. No other known example
of a perturbative expansion is nearly as successful. The reason is that the per-
turbation effects that one wishes to include are typically small, but not small
enough to guarantee that the perturbation expansion converges.

There are cases where things can go even better: a very small number
of features are important, all others are strictly vanishing; however the model
remains far from trivial: one can write down a non-trivial set of equations that
describe the model exactly. If one can find an exact and non-trivial solution to
such a set of equations, then one has an exactly-solved model. Such solutions
can be found in the limit where the number of degrees of freedom is three. (The
cases of one and two degrees of freedom are trivial.) In these cases, things are
simple because we strip all complications off the problem. Astronomers, and
nuclear physicists are typically interested in such cases. Here, one talks about
an exact solution of a ‘few-body problem’. We will not be concerned with these
in this work.

One the other hand, statistical mechanists and quantum field theorists
are interested in the other limit: that of systems with a very large number of
degrees of freedom. This is usually referred to as the infinite-volume limit.

In that case things become simple because almost all complications cancel
each other out. Furthermore, there are certain systems, typically 2-dimensional,
where what emerges in the infinite-volume limit can be described in terms of
an exact model: an exact set of equations, for which exact and non-trivial
solutions can be found.

These models typically describe 2-dimensional critical phenomena. Let us
explain what we mean by that. Given the right conditions: temperature, pres-
sure, etc., matter can change its state: a solid, such as ice, can melt into liquid:
water; and liquid can evaporate into gas: vapour. Each of these transformations
is an example of a ‘phase transition.’

Depending on the conditions under which they occur: temperature and
pressure in the case of water boiling, or external electric and magnetic fields, in
the case of transitions in electric and magnetic materials, phase transitions can
be ‘sudden’ and non-homogeneous: watching water freezing, one can actually
distinguish, here and there, chunks of ice forming; or gradually and homoge-
neously: in that case, at no point can one say that part of the system is in one
phase, while another part is in the other. Phase transitions that occur freely
in nature are almost always first order. Continuous phase transitions require
delicate conditions that can be achieved only in the controlled environment of
the laboratory.
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- Sudden and non-homogeneous phase transitions are called ‘first order’
phase transitions, for a reason that we need not go into. Continuous and homo-
geneous transitions are second, or higher order phase transitions. Second and
higher order phase transitions are collectively known as ‘critical phenomena’.
They are the subject of our interest here.

Phase transitions can be further classified from a different point of view.
They can occur in the ‘bulk’: think of water boiling in kettle. These are 3-
dimensional phase transitions: they take place in systems with a finite volume.
Or, they can occur on a surface: the way that the liquid crystal display in a
digital watch reacts to a change in an applied electric current, thus indicating
the time of day, is an example of a surface phase transition. These are 2-
dimensional phase transitions. But any physical system, no matter how thin,
has a definite thickness, even a single layer of atoms has the thickness of a single
atom; how could we still talk about a 2-dimensional physical system? The point
is that, in discussing critical phenomena, we will be mainly interested in the
way that the variables of the system fluctuate. In a very thin system, all
fluctuations will take place in the two extended dimensions of the system. In
other words, critical behaviour will not take place in the third direction. It is in
that sense that we can talk about a 2-dimensional system, and 2-dimensional
critical phenomena. How about one-dimensional phase transitions? : they are
trivial!

In the rest of this work, we will be concerned with one solution in 2 di-
mensions: Baxter’s model.

2. Baxter’s model

Baxter’s symmetric 8-vertex model [Baxt] is central to studies of exactly-
solvable lattice models in two dimensions: all known off-critical solutions can
be regarded as special cases or generalizations of it. For reviews of recent
developments, see [JMT], [Bow].

Let us explain what we mean when we mention that a solution is ‘off-
critical.” We are interested in describing critical behaviour. That includes not
only the behaviour of a model right at the critical point, but also the way
it approaches criticality. For that last purpose, we need a solution that is
valid also off criticality. There do exist exact solutions that are valid only at
the critical point, such as the 3-dimensional Zamolodchikov model, referred
to previously, but these are considered as incomplete. Now, back to Baxter’s
model.

The model is formulated on a 2-dimensional square lattice. Each site on
the lattice has 4 nearest-neighbours. Oune-dimensional line segments, called
bonds, extend between each pair of nearest-neighbour sites. We attach to each
bond an arrow, that can point in either direction. A site, together with its 4
bonds, and the attached arrows, is called a vertex. One can think ofan N x N
square lattice: a lattice with N? vertices. The bonds at the edges are attached
to a single site only. Each vertex can take one of 16 possible configurations. In
the following, by ‘a vertex’ we will mean a vertex with a given configuration of
arrows.



Theta functions, lattices, and statistical mechanics : 49

To each vertex one associates a weight: a probability that the vertex can
occur; more explicitly, it is the probability that a certain site on the lattice,
together with the attached 4 bonds, can have a certain arrow configuration. A
vertex that has weight zero cannot occur. A configuration of the entire lattice
has a weight equal to the product of the weights of the individual vertices.

To recall, we are interested in describing the critical behaviour of a model,
including its behaviour as it approaches criticality. An important characteristic
of approaching criticality is that certain quantities that characterize the system
behave in a peculiar way.

These quantities are typically ‘correlation functions.” They give us the
answer to questions such as: if the variable located at the origin is in a certain
state, what is the probability that the corresponding variable at a point at
distance r is in the same state? At criticality, these correlation functions are
inversely proportional to the distance r, raised to some power. This power is
called a critical exponent: a number that describes the decay of the correlation
functions at large distances.

The reason this behaviour is regarded as peculiar is that these critical ex-
ponents are typically non-canonical: they are different from what one would
naively expect on the basis of classical considerations, e.g. dimensional anal-
ysis. They are also important because they can be measured in computer
simulations, or even in the laboratory. An exact solution of a model means
that we can compute quantities such as the critical exponents exactly. The
reason why this is important is that—if we are fortunate—the models that we
are dealing with can be descriptions of physical systems that can be studied
in the laboratory. When this is the case, then the critical exponents can be
measured, and the measurements can be compared with the predictions of the
theory.

To the best of my knowledge, the theoretic predictions of the exact solu-
tions, have always agreed with the experimental results, whenever it was possi-
ble to carry out a relevant experiment, and within the bounds of experimental
accuracy.

Now back to our model on a lattice: The general 16 vertex model, where
all 16 vertex configurations have non-vanishing and independent weights has
not been solved. There is no guarantee that an arbitrary model can be exactly
solvable. The most general exact solution, of a special case of the 16 vertex
model that we have is that of the symmetric 8-vertex model, where only the 8
vertices shown in Figure 1 are allowed.
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Figure 1. The vertices of the symmetric eight vertex model
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The model is symmetric in the sense that vertex configurations that are
related by inverting all arrows have the same weight. The fact that the non-
symmetric vertex models has not been solved gives an example of what we
mentioned in the above section, regarding the lack of non-symmetric exact
solutions.

The weight of a vertex is called a Boltzmann weight. The basic step in
solving a model is to find a set of Boltzmann weights that satisfy a certain set
of conditions called the Yang-Baxter equations.

Baxter’s model is important since it serves as a starting point for further
generalizations. The basic observation that underlies these generalizations can
be phrased as follows: the model is related to the 2-dimensional, or spin 1/2
representation of the Lie group SU(2) in the sense that each bond can take ei-
ther one of two states, and these correspond to the weights of the 2-dimensional
representation of SU(2): spin-up and spin-down.

Accordingly, we can think of generalizations that correspond to higher
dimensional representations of SU(2), and beyond that to any irreducible rep-
resentation of any Lie group [JMT] and [T].

Once again, a basic step towards solving a lattice model exactly is to
show that one has a family of Boltzmann weights that satisfy the so-called
Yang-Baxter equations. By a family of Boltzmann weights one means that
the weight of a given vertex configuration depends on a continuous complex
parameter, known as the spectral parameter, in addition to other dependences
that will be considered later. The spectral parameter can be interpreted as
a parametrization of the shape of the underlying lattice. In other words, it
describes the deformation of the unit cells of the underlying lattice.

The reason one requires such a dependence on an extra parameter is,
very briefly, as follows: Suppose we would like to generate all possible vertex
configurations on a given N x N lattice. We can start from a row of N vertices at
a boundary, with a given configuration of arrows, with non-vanishing weights.

We can think of this configuration as a boundary condition. To generate
the rest of the lattice, we can proceed adding rows, row by row. This can
be done using a certain operator that acts on the row at the boundary of the
lattice to generate the next, and so on.

This operator has a matrix representation, which should be obvious from
the fact that it acts on a ‘row’ of variables. It is called the transfer matrix. The
elements of the transfer matrix can be expressed in terms of the Boltzmann
weights, since it has to do with the arrow configurations. If the Boltzmann
weights depend on a spectral parameter, then so would the transfer matrix,
and we end with a family of transfer matrices. Why do we need an entire
family of transfer matrices, and not just one? The reason is as follows.

The condition of exact solvability can be expressed in terms of the re-
quirement that one has as many conservation laws as the number of degrees of
freedom. In the infinite volume limit one has an infinite number of degrees of
freedom, therefore one needs an infinite number of conservation laws. Where
can we get these from? Let us first try to find out what exactly is being
conserved.
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Let us digress and give a ‘space-time’ interpretation to our lattice model.
We are familiar with the idea of 4-dimensional space-time: 3 space dimensions
and 1 time. Disregarding the fact that the metric on our lattice is Euclidean,
we can think of our lattice model as a space-time with 1 space and 1 time
dimensions. (In fact we can reformulate our entire discussion in terms of a
Minkowskian metric, but we avoid that here.)

One can think of each row as a space-like slice, that propagates forward in
time. The transfer matrix is the operator that takes care of propagating our 1-
dimensional space forward in time. It is roughly the equivalent of a Hamiltonian
in classical and quantum mechanics. More precisely, it is the equivalent of the
exponentiated Hamiltonian, up to factors that do not concern us here. In this
description, a row with a given configuration of arrows represents the state of
our 1-dimensional space at a given moment in time.

A conservation law means that certain quantities remain constant as the
system propagates in time. When this is the case, then the state of the system
at any given moment of time: a row configuration, is the eigenvector of some
operator, while the corresponding eigenvalue is the conserved quantity.

We need an infinite number of these operators. Where can we get them
from? It turns out that if the transfer matrix is a function of a spectral pa-
rameter, then the coefficients of a Taylor expansion, in the spectral parameter,
around a suitable value, are the operators that we are looking for.

These operators can be explicitly given as N x N matrices. Since we
wish that their eigenvalues be simultaneously well defined and conserved, these
matrices should be simultaneously diagonalizable. From that it follows that
they should be all mutually commuting. This will be indeed the case if the two
original transfer matrices, with different spectral parameters, commute.

The condition for this commutativity to take place is that the Boltzmann
weights, the building blocks of the transfer matrices, satisfy the Yang-Baxter
equations.

Typically, there are many more Yang-Baxter equations than Boltzmann
weights. Therefore one is faced with a highly over-determined system of equa-
tions. Thus, it is no wonder that solutions could be found only in the presence
of a symmetry that reduces the number of constraints by making many of them
equivalent.

In this work we are interested in off-critical systems that exhibit critical
behaviour in certain limits. All known off-critical solutions to the Yang-Baxter
equations are given in terms of elliptic functions. Why is that so? One can say
that this simply follows from the computations. But this is not satisfactory.
The deeper reasons behind that fact are beyond the scope of this work. Let us
accept this as a fact.

Elliptic functions are infinite series in a complex parameter q, called the
modulus or nome, that parametrize the departure from criticality. In the crit-
ical limit, ¢ tends to zero, and the Boltzmann weights reduce to trigonometric
functions.

Back once again to the connection between Baxter’s model and the vector
representation of SU(2). Baxter’s original parametrization of the Boltzmann
weights does not make the connection with SU(2) manifest. In fact, it does
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not make a connection with group theory at all. However, as explained above,
the connection with group theory is necessary once we attempt to study more
general models.

Here, we wish to re-derive Baxter’s parametrization, in a way that makes
this connection clear. The purpose of the exercise is to formulate things in such
a way that generalization to models based on other representations and/or other
Lie groups becomes straightforward.

What we wish to do here is to rewrite Baxter’s model in terms of the
vector representation of SU(2). To go beyond Baxter’s model, we would e.g.
replace the vector representation everywhere by another representation, or re-
place SU(2) by another group.

8. The Zamolodchikov Algebra

Let us recapitulate some of the statements we made above. A necessary
condition for a lattice model to be exactly solvable is that it has a number of
conserved charges that is equal to the number of degrees of freedom. In the
infinite-lattice limit, one should have an infinite number of conserved charges.
The operators corresponding to these charges are obtained as terms in a Taylor
expansion of the transfer matrix with respect to a ‘spectral parameter’.

The dependence of the transfer matrix on the spectral parameter is equiva-
lent to the presence of a one-parameter family of commuting transfer matrices.
A sufficient condition to ensure the presence of a family of commuting transfer
matrices, is that the Boltzmann weights of the model satisfy the Yang-Baxter
equations. Obtaining new exactly-solvable models amounts to finding new so-
lutions of the Yang-Baxter (YB) equations.

In [Z] Zamolodchikov noticed that the YB equations are related to a non-
commutative algebra: Consider an algebra generated by the set {4;(z)}, where
1 is a discrete index, and z is a continuous parameter. The generators satisfy
the following braiding operation:

Ai(z) * A;(y) = SE (z — v) Ak () * Ai(z) (1)

If the algebra is associative:

(4i(2) « 45(9) ) * Ak (2) = Ai(2)  (A;(0) * Ax(2)) 2)

and all third degree monomials in the generators {A4;(z)} can be shown to be
independent with respect to variations that leave the coefficients {S} constant,
then the latter satisfy

ST (WSE (w4 0)SEL, (1) = SLLL(W)STo (v + )5 (W) (3)
which are the YB equations, once we interpret Sl‘jl (u) as a Boltzmann weight,

and its argument u as the spectral parameter.
Let us explain what we did above. We start from the triple product:

Ai(ilil) * Aj(mg) * Ak(:E3),
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where in the *-product of two A operators the order from left to right is relevant.
Then we start braiding. We will do that in two different ways, and compare
the results.

1. We braid the operators with arguments z; and z;. Then we braid
the result with the operator of argument z3. This means braiding it firstly
with an operator that has argument z;, and then with an operator that has
an argument z,: remember that the relative positions of z; and z; have been
interchanged in the first braiding.

2. We repeat the same exercise, but then in the reverse order: firstly we
braid the operators with arguments 2 and 3, and then braid the result with
the operator with argument z;. That means that the latter has to go first, from
left to right, through an operator that has an argument 3, and then through
another with argument z,.

Demanding the equality of the two final results obtained above, is an
expression of the associativity of the braiding operation, or equivalently, the
Zamolodchikov algebra. However, the final results have the form of a sum
of terms, each consisting of the product of 3 A operators, with a coefficient
that consists of the product of 3 S coefficients, one from each time that an A
operator was braided with another A operator. Now here comes a complication:
If these coefficients were numerical constants, then one could use the fact that
triple products of A operators, all with different indices are all independent,
and equate the coeflicients of identical terms on each side. This would give us
directly, the Yang-Baxter equations in (3). However, the S coefficients, or S
matrices, depend on the parameters that appear in the A operators. Therefore,
one has to work harder in order to extract the Yang-Baxter equations. We will
indicate below, once we work in terms of an explicit representation of the 4
operators, one way of doing this.

We can find new solutions to the Yang-Baxter equations by looking for
new realizations of the Zamolodchikov algebra (1). Although in principle one
can think of the Yang-Baxter equations as functional equations and proceed to
find solutions to them, it should be easier to find new candidates for associative
Zamolodchikov algebras.

4. Cherednik’s Representation

In [Ch] Cherednik proposed a realization of the Zamolodchikov algebras in
terms of theta functions, that leads to off-critical Boltzmann weights satisfying
the YB equations. Let us begin with a few definitions.

4.1 Theta functions
Our main reference on theta functions is [KP]. The classical theta functions
©,,m of degree m, parameter g, characteristic x, and complex argument z are

defined as ,
Oum(z)= Y g emmim (4)
v€Ztp/m
The parameter g is the modulus, or the nome. It can also be rewritten as

q = €™, where 7 is a complex number, with positive definite imaginary part,
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called the period matrix. In the rest of this work, we will only consider 7 with
Im 7 > 0, so that the theta functions in (4) have a very fast rate of convergence.
(See page 1 of [M] for a discussion; [M] is recommended as an introduction to
the subject of theta functions.)

Notice that the definition given in (4), is different from the standard one
used in [M], [Fa]: we have only one characteristic rather than two, since the
second can always be absorbed in z. (Our functions are those of characteristic
(11/m, 0) in [M].) For fixed m € N and 3 € C, define H,, g to be the vector space
of all analytic complex functions f satisfying f(z + 1) = f(z) and f(z +7) =
e~2mimz—mif  Then H,, s has dimension m. Moreover, for 8 = 7m then the
space Hp, g contains the theta functions O, ., (¢ € {0,...,m — 1}); they form
a basis.

4.2 A realization of the Zamolodchikov algebras
Next we turn to Cherednik’s realization of the Zamolodchikov algebra [Ch].
Since Cherednik’s work is quite technical, we will follow the clear exposition
given in Appendix II of [TF], with modifications that suit our purposes.
Consider the operators that act on H,, g as follows:

Ain(2)f(2) = Oin(z — 2) f(z — ). (5)

That is, they act on f by shifting the argument by a constant 7, and
multiplication by a degree n theta function. This results in an operator A4; , :
Hmp — Hpmynn(r—20)+p—2qm- This can be verified directly by use of the
definition of Hy, g or by observing that the result of multiplying two degree
my and my theta functions can be expanded in terms of degree m; + my theta
functions:

eﬂ'lyml (zl)eﬂz,mz(zz) = Z d7@u1+m+m1'y,m1+mg(zl + 22), (6)
v€Z/(mi+ma)Z
where
d“/ = @‘mzlu-—‘m:lltz+m1m27:m1m2(m1+m:)(z1 - 22). (7)

For, applying (6), (7) with z; = z — z and 2, = z — 7, we see that d, does not
depend on z, and that the argument of the theta functions depending on z is
2z—z—n. ‘

Clearly, the action of 4, ,(z), as explained above, is not the most general
that one can consider, but it is what we need in this work. Next, we consider
the compositions:

i) A3 (1) Orm,
Ak (Y) At,m (2) O -

Both operations map Hy, rm into H3y 2m(r—c—y)4(r—6n)m- As the images
lie in each other’s span, we can relate them by a matrix:

(8)

Ai,m(EB)Aj,m(y)@ﬂ,,m = Szl(m - Y n)Ak,m(y)Al,m(x)Gp.,m- (9)
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The justification for the choice of arguments in the matrix S follows form the
equation below, which is gotten from (9) by some obvious rewritings.

Oi,m (2)0),m(y + 1) = SH(z — ¥,1)0i,m (v)Oj,m(z + 1) (10)

To derive the Yang-Baxter equations in this formalism we consider the
action of the triplet A; n(w)A;jm(z)Ar,m(y), braid them in two different ways
as discussed above, then consider the action of each result on the state ©, n,,
expressed in terms of theta functions.

Next we wish to show that the structure constants Sfjl(m — y) satisfy the
Yang-Baxter equations. The basic idea is to make use of the linear indepen-
dence of the triple products of theta functions with different characteristics,
which follows from the independence of the single theta functions. But then
the problem, as we mentioned above, is that the S coefficients are not entirely
constant but depend on the variables z, y, z and 7. However, we can use the
fact that the S coefficients depend only on differences of the arguments z, y, z.
This together with a study of the behaviour of the various terms under discrete
shifts in 7 allows us to separate the various terms in the sums obtained, and
prove the Yang-Baxter equations.

The S matrices obtained above are given in terms of theta functions and,
therefore, are candidates for the Boltzmann weights of an off-critical model.
This was Cherednik’s realization of the Zamolodchikov algebra. But how can
we obtain the Boltzmann weights of a specific lattice model? Let us consider
Baxter’s symmetric eight vertex model. The allowed vertices are shown in
Figure 1.

At this point, we can make use of another idea, also due to Zamolodchikov:
one can think of each vertex as a description of a scattering process between
two particles. Recall our space-time description of a lattice model: think of a
vertex as a picture that describes two particles, each carrying a spin variable: an
attribute, that can take one of two values. They approach each other, collide,
then proceed ahead. All that can happen during the collision, is that particles
exchange their spins, or change it. It is also possible that nothing happens at
all.

We refer to the two particles coming in, and before they participate in a
collision, as the incoming states. We refer to the two particles that go their
separate ways after the collision, as the outgoing states. Of course, each out-
going state of a collision later becomes one of the incoming states of another,
and so forth.

We wish to associate theta functions with the incoming states 7 and j,
and the outgoing k and [, for definite values of the indices, then compute the
Boltzmann weight from (10). Since each index has two values, we wish to have
a 2-dimensional vector space of theta-functions. For that we take m = 2in (4).
The rest of the computation is straightforward, and has been outlined in [TF].

We wish to redo this computation in a way that makes the connection
with the spin 1/2 representation of SU(2) explicit. For that we propose to use
a Cherednik-type representation of the Zamolodchikov algebra based on theta
functions that are related to SU(2). We will see that they reduce to the theta
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functions used above. However, as we have mentioned before, we expect that
the relationship with Lie groups allows one to extend the derivation to more
general vertex models.

5. Theta functions based on SU(2) lattices

There is a direct generalization of the classical theta functions (4) to func-
tions based on symmetric quadratic forms v — Y@Ly (cf. [Sch]). Following
the notation of [KP], these are defined as

@im(z): Z qm(1Q Me—2mim(1Q%2) (11)
yeL+ £

where L is an r-dimensional lattice, u and z are r-dimensional vectors, and the
quadratic form Q¥ acts as a metric in the space of the lattice L.

An important class of theta functions are those based on quadratic forms
associated to Lie groups. Here we are interested in those related to SU(2).

5.1 The weight and root lattices of SU(2)

Our main references on lattices associated with Lie groups are [Serre], [CS].
Here we wish to recall some simple facts, and phrase them in a very elementary
language. In a matrix representation of a rank r Lie group, r torus generators
can be simultaneously diagonalized. They form the ‘Cartan subalgebra’ of the
corresponding Lie algebra. For SU(2) we have r=1, and only one generator
can be diagonalized. The states that form the irreducible representations of
the group are eigenvectors of the diagonalized generators. The corresponding
eigenvalues are the ‘weights’ associated with the representation.

For a rank r group, the weights form r-dimensional vectors, and can be
represented as vertices of an r-dimensional lattice called the weight lattice of
the group. For SU(2) the lattice is one dimensional.

The normalization of the weights will be explained below. The weights
of the adjoint representation—for SU(2) this is the spin 1, or 3-dimensional
representation—are called the ‘roots’. Any root is an integral linear combina-
tions of r ‘simple’ roots; they generate a ‘root lattice’.

We shall only consider the irreducible root systems in which the squared
norm of each simple root equals 2 (these are the root systems with the so-called
simply-laced diagrams). The weight lattice can be shown to be dual to the root
lattice: it is generated by the ‘fundamental weights’, which are defined as the
duals to the simple roots. Notice that the root lattice is a sublattice of the
weight lattice.

The inner product of the vectors that generate a lattice defines a matrix.
The matrix corresponding to the root lattice is the Cartan matrix. The matrix
of the weight lattice is the inverse Cartan matrix. In the case of SU(2), these
are one-by-one matrices.

We can write down a theta function based on a quadratic form as in (11).
In this case, the characteristics would take values in the dual lattice modulo
the lattice corresponding to the quadratic form. It is therefore natural to write
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dowrn theta functions based on the root lattice of a group with characteristics
taking values in the weight lattice modulo the roots.

We can do that for the lattices based on SU(2), and obtain a parametriza-
tion of the eight-vertex model that way, since the unit cell of the SU(2) root
lattice contains two sites from the weight lattice. However, the characteristics
do not take values in the weights of the spin 1/2 representation. Therefore,
we wish to proceed differently. We start with theta functions based on L*,
the weight lattice of SU(2), with characteristics taking values in the root lat-
tice L. But since L is only a sub-lattice of L*, we will have to work with level
m > 1 theta functions, where the characteristics take values in L mod mL*, and
choose m such that there are precisely two independent characteristics. This
way, the characteristics, and consequently the incoming and outgoing states in
a vertex, can be directly related to the weights of the spin 1/2 representation
of SU(2).

6. The Boltzmann weights of the eight-vertex model

In the normalization where the squared norm of the simple roots is 2, the
Cartan matrix of SU(2) is simply the scalar 2. The inverse Cartan matrix is
1/2. The level m theta functions based on the weight lattice of SU(2) are:

oy _2mimy- 3.
Oum(z)= 3 qmrEreImmIe,
1€Z+ L

The above is identical to (4), up to the ‘inverse Cartan matrices’, which are
simply factors of 1/2. In this case, this can be absorbed in the other parameters,
but we wish to leave it this way, to remind us that in more general cases, if we
deal with theta functions based on groups of a higher rank, full matrices will
show up.

The only possibility that leads to a 2-dimensional space of theta functions,
where the characteristics have the correct periodicity properties, is m = 4. In
this case, the characteristics, that take values in L mod 4L*, can be chosen
as {—1/2,1/2} or {0,1}. The two choices are equivalent, since they differ by
shifts of the origin of the weight lattice, and the first coincides with the weights
of the spin 1/2 representation.

To simplify the computations, we will make use of the invariance of the
theta functions under shifts by vectors in the weight lattice, so that the char-
acteristics can be in the second set {0,1}, and write our theta functions as

Oualz)= 3 et

YEL+p/2

Note that these are identical to what one obtains starting with theta func-
tions based on the root lattice and m = 1. These are precisely the theta
functions used in [TF] to compute the weights of the symmetric eight-vertex
model.
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Next we proceed with the derivation of the Boltzmann weights. For each
vertex, we associate theta functions with the incoming states, take their prod-
uct, and expand it in terms of a basis of weight 2m theta functions using
equation (6). We do the same for the outgoing states, and relate the two ex-
pansions using equation (10). Then, we solve for the Boltzmann weights, using
the orthogonality relation

/GL’m(z)@ﬁ’,m(z)dz ~ Oy Lt

where the proportionality factor will not concern us. This above orthogonality
relation can be proven quite simply using the series expansions of the theta
functions involved.

The S coefficients can be obtained starting from (10), with all allowed
values of indices. In each equation, taking the product of the theta functions
on each side, one obtains the analogue of a vector equation in theta functions
of degree 2 (those whose arguments are the sum of the arguments of the initial
thetas that entered the product).

Using the fact that these are orthogonal, and that all other terms are
constants with respect to their arguments, we find that each equation separates
into two independent linear algebraic equations in two S coefficients, that we
can solve. The answer is

58(2) = 51(2) = (@o(—2+)O0(z + 1) — Oa(=2 + )0y (z +m) ) /ds
S13(2) = SB(z) = (©o(—2 + 1)y (2 + 1) — Op(z + M)@a(~2 +1) ] /ds
$18(2) = $81(2) = (©1(—2 + )0, (2 + ) — Oa(~ Z+17®3Z+77)]/dz
2) = 839(2) = (©@1(—2+m)Os(z + 1) — ©4(2 + m)Os(—z + 1) ) /d

= 03(—z+1) — ©3(—z +17),
dy = ©3(—z+1n) — O3(—z + 7).

This is not manifestly equivalent to Baxter’s parametrization [Baxt], but
one can show that it is, cf. [TF].

7. What next?

The purpose of the above exercise was to elucidate Cherednik’s realization
of the Zamolodchikov algebra, and to parametrize the weights of the symmetric
eight-vertex model in a way that makes the connection with Lie group theory
clear. In fact, we wanted to do things in such a way that a generalization to
other models becomes straightforward. The next obvious step is to generate
parametrizations of extended models based on higher representations of SU(2),

and beyond that to models based on arbitrary representations of Lie groups of
type A‘TL) D‘n) En-
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"In the rest of this paper we will look at another direction for generalizing
Baxter’s model: We remain with the fundamental representation of SU(2), but
consider Boltzmann weights that describe the coupling of n copies of the basic
8-vertex model. '

8. Coupled vertex models

In the previous sections, we discussed Baxter’s model: a vertex model that
has 2 states per bond. Thinking of a vertex as a scattering process, where two
particles come in, collide, then go their separate ways, we have represented the
scattering states: the incoming and outgoing states in terms of theta functions
that belong to a 2-dimensional vector space of theta functions.

We used the two elements of the basis of that vector space to represent
the two possibilities for incoming and outgoing states: states with spin-up or
spin-down.

These theta functions are genus-1 theta functions: their period matrices
are 1 x 1 complex matrices, i.e., complex scalars. More generally, there are
theta functions of genus n: their period matrices are n X n complex symmetric
matrices. Can we obtain statistical mechanical models that generalize Baxter’s
model, where the genus-n theta functions play the same role that the genus-1
thetas played in Baxter’s model?

Consider a vertex model with 2" states per bond. We propose a represen-
tation of the scattering states in terms of the level-2 n-loop theta functions.
Here we wish to consider the n = 2 case in some detail. It should be evident
that the discussion generalizes directly to all n.

Just as we did above, we represent the scattering states by operators {4;}
that act as

Ai(2)0;(z) = 0;(z — z)O(z — 7). (12)

We will restrict our attention from now on to the multiplicative factor of the
action of the {4;} operators on the states ©;. Up to the shift in the argument
by 7, it contains all the information we need: keeping track of the anisotropy
introduced by 7, these theta functions will stand for the bond states.

The vector space of level-2 2-loop theta functions is 2 x 2 = 4 dimensional.
Therefore we can associate the basis elements with the bond states of a 4-state
model. Representing these by 2 arrows on each bond, and using the notation
©[u1, pz] for the theta functions, where y; is the i** characteristic, we associate
the basis theta functions with the bond states as follows:

[spin-down, spin-down] ~ ©[0, 0], [spin-up, spin-down] ~ O[1, 0]
[spin-down, spin-up] ~ ©[0,1], [spin-up, spin-up] ~ O[1, 1]

There are 42 = 16 possible pairs of initial/final states. As a consequence of
the product relation (6), the set of all initial states divides into four subsets, the
elements of each sharing the same subspace of intermediate states, exclusively.
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Therefore, we can divide the set of all scattering processes, into 4 distinct ones.
Giving only the characteristics that denote the bond states, these are:

[00] [00] = S5g G [00] [00] +
[10] [10] = $75 76 [00] [00] +
[01] [01] = 63 67 [00] [00] +
[11] [11] = S99 [00] [00] +
[10] [00] = 15 0 [10] [00] +
[00] [10] = Sgg 2 [10] [00] +
[11][01] = S17 67 [10] [00] +
[01] [11] = Sp 97 [10] [00] +
[01][00] = 551 6o [01] [00] +
[11][10] = 577 9 [01] [00] +
[00] [01] = Sgg 67 [01] [00] +
[10][11] = S35 37 [01] [00] +
[11]{00] = 537 66 [11][00] +
[01]{10] = Sg7 7 [11][00] +
[10]{01] = S35 o7 [11][00] +
[00] {11] = Sgg 77 [11][00] +

+ S50 g6 [10][10] +
S18 16 [10][10] +
01 01 [10]

[10] +

10 10

11 11 10

[10]

(10]
10 10[10]

[10][10
00
10
5"8
+57

0

1

00
So1

01 10
ll 00

01 10
01 10

% o1 [01

01 10
00 11

10]
[01][10]

Soo 0o [01][01] +
S0 16 [01][01] +
Soi o1 [01][01] +
S 11 [01][01] +

+ 510 00 [11]01] +

+ S50 10 [11] 01]

+ 811 o1 [11][01] +

+ So1 11 [11]01] +

+ 51 6o [00][01] +
+ 511 16 [00] [01] +

+ 560 01 [00][01] +

+ 515 11 [00] [01] +

+ 511 oo [10] [01] +

+ So1 16 [10][01] +
+Si8811[ 0][01] +
+ Sog 11 [10][01] +

+ 55 1

11 11
00 00

11 11
10 10

11 11
01 01

11 11
11 11

[11][11]
[11] [11]
(11] [11]
[11][11]

5% 00 [01][11]
[01][11]

S Ao1][11

Sot 11[01][11

101
010

1
1110
10 11
11 10 10
1
1
1
1

]
[01]
[01]
[10][11
[10]
(10]
[10]
[00]
[00]
[00]

0]

[
[
[11]
[11]
[11]
[11]
So0 o1 [10][11]
[11]
[11]
[11]
[11]
(11]

101

101 10

11

011
100

00 11
01 10

00 11
10 01

00
00
00

11
11
11

00 11[ 11

00 11

To obtain the S matrix elements that appear in the above equations, we
consider each in turn. Let us illustrate the procedure for the first. We begin

by writing it explicitly:

©[00] (2)©[00] (v + 1) =

560 00© [00] (v)© [00] ( + n)
+ 550 00© [10] (v)© [10] ( + 1)
+ 560 00© [01] (¥)© [01] ( + )
+ S00 00© [11] (¥)© [11] ( + )

This corresponds to the scattering process in Figure 2.

Figure 2. A two-particle scattering process

Oly) Olx+7)
\ /
AN
AN
©lx) Oly+n)

Notice that it is the presence of a non-vanishing 7 that leads to non-
trivial scattering. We expand the product of level-2 theta functions in terms of
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level-4 functions using (6), the coeflicients of each level-4 function must vanish
separately, since the latter form a basis. This leads to the following 4 equations:

0[00] ©[00] ©[20] ©[02] ©[22]7 TSP Y
o[20]| _ [e[20] ©[00] ©[22] ©[02]| |S334S 13
o02]| = |efo2 o[22 efoo] e[20]| |sg o (13)
0224, ©[22] ©[02] ©[20] ©[00]J, LS5 a3

where the argument of the initial states with subscript i, is (y — z — 7), and
that of the final states with subscript f is (z —y —n). Notice that the S matrix
elements depend only on the difference of the variables z and y, up to shifts by
the parameter 7. This is the difference property, as in the 8-vertex model. The
matrix of theta functions in (13) has non-vanishing determinant; this can be
seen from the fact that the components of each column are independent theta
functions, and that subsequent columns are formed by independent permuta-
tions of the components of the first. Thus, the S matrix elements in (13) can
be computed explicitly.

Notice that though we have 64 S matrix elements to consider, they are not
all independent: the representation of the scattering states is given in terms of
n-loop theta functions that are based on a product of n copies of the weight
lattice of SU(2). Since each such lattice is Z; symmetric, our solutions possess
(Z2)"-symmetry. These are symmetries under flipping all spins that belong to
each copy of the n-coupled vertex models independently. In our n = 2 example
these are: .. .

Sty = S = SR (14)
where k1 = (k1+2) mod 4, etc. This reduces the number of S matrix elements
that we need to compute explicitly by a factor of 2 x 2 = 4.

Let us end this section with an outline of the procedure for general n:

1. Each bond is assigned n arrows. Thus we have 2" states per bond.

2. Associate to each bond a level-2 n-loop theta function, the :** characteristic
being 0 or 1, depending on the direction of the it* arrow.

3. Relate the 22" possible final pairs of states to the initial in terms of $ matrix
elements. A given final state is related with non-vanishing S matrix elements
to 2" initial states only, due to the (Z2)" symmetries (14).

4. Expanding the products of level-2 theta functions in terms of level-4 func-
tions, only 2" of the latter contribute. This can be deduced from (6), and
the symmetries (14). Thus we obtain 2" equations in 2™ unknowns that can
be solved since the matrix of coefficients is invertible: the column vectors are
independent permutations of 2" independent level-4 theta functions.

9. Interpretation and discussion

An interesting aspect of the Boltzmann weights that we have obtained is
that the spectral and crossing parameters are multi-component vectors. How
do we interpret that? A clue is obtained from the fact that in the limit where
all off-diagonal terms in the period matrix vanish, an n-loop theta function
degenerates into the product of n 1-loop theta functions (cf. [M]). Consequently
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our weights degenerate into a product of n solutions that are based on 1-loop
theta functions, and these correspond to the 8-vertex model.

That is the reason we interpret the multi-loop weights as coupled 8-vertex
models. The coupling between two copies ¢ and j is proportional to the off-
diagonal elements of the period matrix.

In our approach, the basic building blocks of a vertex model are not the
vertices — these are regarded as composite objects — but rather the scattering
states associated with the bonds. Consequently, one does not start by looking
for a set of Boltzmann weights by solving an overdetermined set of YB equa-
tions, that can be complicated; but for a representation of the scattering states
with an associative algebra. Once we settle on an acceptable representation,
the Boltzmann weights are obtained using simple algebra.

We have reported on a derivation of the Boltzmann weights of Baxter’s
model that makes the relationship with the group SU(2) very explicit. We
can explicitly show that the Boltzmann weights obtained do satisfy the Yang-
Baxter equations. Furthermore, we have presented a class of models, that can
be considered as direct generalizations of Baxter’s model, but based on higher
genus theta functions. What has not been shown is whether the Yang-Baxter
equations remain satisfied.

It is very likely that only a restricted class of these higher-genus models,
where the Boltzmann weights are restricted by extra conditions, are exactly
solvable.
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0. Introduction

The subject of this paper has a history that is somewhat unusual within
the field of computational mathematics. Instead of the usual order of events
that an algorithm is devised in order to answer effectively a problem arising
in some field of mathematics, we have here the case of a pair of well known
combinatorial algorithms, whose properties have been extensively studied for
their own sake, which have been found to occur as solutions of certain math-
ematical questions of relatively recent study. The algorithms referred to are
an algorithm first formulated by G. de B. Robinson in 1938 [Rob], and inde-
pendently rediscovered in 1961 by C. Schensted [Sche]|, which is now known
as the Robinson-Schensted algorithm, and a related algorithm formulated by
M. P. Schiitzenberger in 1963 [Schiil], which we shall call the Schiitzenberger
algorithm. The related mathematical questions have arisen in the study of the
unipotent variety of the general linear group GL,, and the relationship with
the Robinson-Schensted algorithm was found by R. Steinberg in 1976 [Stb1];
statement and proof of this relationship can be found in [Spa I19.8] and [Stb2].
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In the latter article part of the material of the present paper is treated in a
very succinct form. The relationship with the Schiitzenberger algorithm does
not appear to have been noted before, although it is quite natural in view of
the known combinatorial relation to the Robinson-Schensted algorithm. Be-
cause of the historic order of discovery, we shall consider the mathematical
questions involved, and their solutions, as ‘interpretations’ of the indicated al-
gorithms. Although they are certainly not the only problems that are related to
the Robinson-Schensted algorithm, we believe the interpretations to be rather
fundamental, since they actually give more insight into the combinatorial prop-
erties of the algorithms.

Our paper is organised into two sections, the first giving the combinatorial
definitions and properties (without proofs) of the algorithms, the second section
giving the indicated interpretations with proofs, which effectively also proves
the combinatorial properties stated in the first section.

1. The Robinson-Schensted and Schiitzenberger algorithms

In this section we present the algorithms under consideration in a purely
combinatorial fashion. First, the combinatorial concepts such as partitions,
Young diagrams and Young tableaux are introduced, in terms of which the
algorithms operate. Next the Robinson-Schensted is given, which establishes a
bijection between pairs (P, Q) of Young tableaux of equal shape on one hand,
and permutations on the other hand. From the representation theory (over C)
of the group S, of permutations of n symbols it is known that its irreducible rep-
resentations are parametrised by partitions of n, and for such a partition A the
corresponding representation has a dimension equal to the number of Young
tableaux of shape A. Therefore the bijective correspondence defined by the
Robinson-Schensted algorithm can be considered as a combinatorial realisation
in this particular case of the general fact that the sum of squares of the di-
mensions of the irreducible representations of a finite group equals the order of
the group. Finally we introduce the Schiitzenberger algorithm, which defines
a shape preserving bijection from the set of Young tableaux to itself. The cor-
respondences defined by these two algorithms are related in many ways: their
definitions are quite similar, they can be characterised by simple recurrence
relations, for both an identity can be proved that exhibits a symmetry which
is not at all obvious from the definition, and most importantly, there is an
identity that interrelates them in a very strong way.

1.1. Partitions and tableaux.

In this subsection we introduce some combinatorial concepts for later use.

A partition ) of some n € N is a weakly decreasing sequence Ay > Ay > ---
of natural numbers, that ends with zeros, and whose sum || = >, \; equals n;
the terms ); of this sequence are called the parts of the partition. Although
conceptually partitions are infinite sequences, the trailing zeros are usually
suppressed, so we write A = (A1,..., Ap) if A; = 0 for ¢ > m. We denote by P,
the (obviously finite) set of all partitions of n, and by P the union of all P,, for
n € N.
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"We associate to each A € P, an n-element subset of Nyo X N5, namely
its Young diagram Y (1)), defined by (3,5) € Y(A) <= j < Ai. The elements of
a Young diagram will be called its squares, and we may correspondingly depict
the Young diagram: the square (¢, j) will be drawn in row ¢ and in column j;
e.g., for A = (6,4,4,2,1) € P17 we have

[ ]

Y(\) =

Clearly any partition A € P is completely determined by Y (}), and it is often
convenient to mentally identify the two; in this spirit we shall use certain set
theoretical notation for partitions, which is defined by passing to their Young
diagrams, e.g., A C pfor A, u € P means Y (A) C Y (). The set Ny o x Ny ¢ has
a natural partial ordering given by (¢,j) < (¢/,j') whenever 7 < ¢’ and j < j'.
A finite subset S of Nyo X Ny is a Young diagram if and only if for any
square s € S we also have s’ € S for all s’ < s. From this characterisation it is
clear that the set of all Young diagrams is closed under transposition of all of
their squares (written (3, )* = (j, 7)), hence we have an involution on each P,
(also called transposition and written A — A*) defined by Y'(A*) = Y/(A)%. The
parts of A’ can be interpreted as the column lengths of Y'(}), from which we
get X! = #{4| X > j} (the operator ‘#’ denotes the number of elements of a
finite set).

When ¢ C A and |u| = |A|—1, the difference Y (\)—Y (1) consists of a single
square, which lies both at the end of a row and of a column of Y'()), while it lies
one position beyond both the end of a row and of a column of Y (1). We call
such a square a corner of ), and a cocorner of p (so for A = (6, 4,4, 2, 1) whose
diagram is displayed above, we have as corners (1,6), (3,4), (4,2), and (5, 1),
and as cocorners (1,7), (2,5), (4,3), (5,2), and (6,1)). There is a corner in
column j of Y(A) if and only if j occurs as a non-zero part of A, while there is
a cocorner in column j if and only if j — 1 occurs as a part of A (here we allow
zero); consequently, the number of cocorners exceeds that of the corners by 1.

The principal reason for referring to the elements of a Young diagram
Y () as squares (rather than as points), is that it allows one to represent maps
f:Y(A) — N by filling each square s € Y(A) with the number f(s). We
shall call such a filled Young diagram a Young tableau (or simply a tableau) of
shape ) if it satisfies the following two conditions*: all numbers are distinct, and
they increase along each row and column. This is equivalent to requiring that
the map f:Y(A) — N be injective and monotonous (a morphism of partially
ordered sets). If T' is a Young tableau of shape A we write A = shT. Any
tableau 7" that can be obtained from T' by renumbering the entries in an order

* The term Young tableau is used by different authors for quite different
classes of filled Young diagrams, and several adjectives are used to indicate
certain subclasses, in particular standard; unfortunately its meaning is not
standard. Our use of the term is quite common in the literature about the
Robinson-Schensted algorithm.
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preserving way is called similar to T' (written T' ~ T') (for the corresponding
maps f, f':Y(A) — N this means f' = g o f for some monotonous g: N — N),
and we call T' normalised if its set of entries (i.e., Im f) equals {1,2,...,|\|}.
Clearly ‘~’ is an equivalence relation, and every equivalence class contains a
unique normalised element; let 7, denote the set of normalised Young tableaux
of shape A.

Another way to characterise tableaux among the filled Young diagrams is
by the following recursive predicate P. Let T' consist of a diagram Y (2) filled
with numbers, then P(T) holds if either A = (0) or the highest occurring entry
appears in a unique square s, which is a corner of ), and the restriction 7" of T
to Y(X) — {s} satisfies P(T'). An elementary verification shows that indeed
P(T) holds if and only if T is a tableau. We introduce operators [] and |
on non-empty tableaux, by defining [T'| as the corner of shT containing the
highest entry of T, and T' as the tableau obtained by removing that square
from T (so in the above definition of P we have s = [T] and T' = T!).
Repeatedly applying the operator | to T until reaching the empty tableau, we
obtain a sequence of tableaux whose shapes form a decreasing chain

¢hT % (shT D shT! >shTH 5 -+ > (0) (1)

in P. Conversely, from any chain A D M D A D ... D (0) in P with |X\#)| =
n—i for all ¢, a tableau T' € 7, may be constructed for which the sequence equals
ch T, namely by assigning the number |)| to the unique square in Y (1) —Y ()'),
and filling the squares of Y()') in the same way according to the chain X' D
M D ... D (0). Itis also clear that for an arbitrary tableau T', this construction
applied to ch T" will yield the normalised tableau similar to T'. To illustrate the
correspondence, consider the tableaux

31611 1[316]
5(8 215

T = i ~ T = 7 € 7(3,2,1,1)
1 7

both of which correspond to the chain
] ] O
chT:chT':(j——' D H- DBEIDB:IDBH Z)HZ) 30)).

So 7, corresponds bijectively to the set of maximal strictly decreasing chains
in P that start in M.

I

1.2. The Robinson-Schensted algorithm.

We shall now define the Robinson-Schensted correspondence in its traditional
form. It should be noted that in the literature there exist many different defini-
tions of this correspondence, often seemingly without much resemblance, except
that they all are of an algorithmic nature. Indeed, the oldest definition, in a
paper by Robinson [Rob, §5] (where it appears as a special case of a rather ob-
scurely defined construction used in a proof of the Littlewood-Richardson rule)
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is so unlike the algorithm given independently by Schensted almost a quarter
century later [Sche], that it was not recognised for quite a few years that two
algorithms had been defined giving rise to essentially the same correspondence.
Schensted’s definition, which we shall reproduce, may be considered to be the
basic one since it is doubtlessly the easiest one to understand and to perform
by hand.

The algorithm is based on a procedure to insert a new number into a
Young tableau, displacing certain entries and eventually leading to a tableau
with one square more than the original one. More precisely, there is a pair of
mutually inverse procedures that convert into each other the following sets of
data: on one hand a tableau P and a number m not occurring as entry of P,
and on the other hand a non-empty tableau 7" and a specified corner s of shT.
The procedures are such that the following always holds: the set of entries of T
is that of P together with the number m, and the shape of P is that of T' with
the corner s removed.

Given a tableau P and a number m, the insertion procedure I computes
the pair (T, s) = I(P, m) as follows. The first step is to insert m into the first
row of P, where it either replaces the smallest entry larger than m, or, if no such
entry exists, it is simply appended at the end of the row, and the procedure
stops. Then, in case a number has been replaced, the following (similar) step is
repeated until it tells you to stop: the entry replaced by another in the previous
step is inserted into the row succeeding its original row, where it either replaces
the smallest entry larger than itself, or, if no such entry exists, it is appended
at the end of that row and the procedure stops. If an empty row is encountered
during this process, a one-square row is created and the procedure stops, so
termination is guaranteed in all cases; the tableau then obtained is T, while
the square occupied in the last step is the corner s.

The inverse procedure E extracts a number from a tableau T, clearing a
specified corner s, and yielding (P, m) = E(T,s) as follows. The first step is
to remove the square s and the number it contains from 7', then repeat the
following step until it tells you to stop: if the number removed or replaced in
the previous step was in the first row then m is that number, P is the current
tableau, and the procedure stops; otherwise the number is moved to the row
preceding its original row, where it replaces the largest entry smaller than itself
(such an entry exists, since the number originally directly above it is certainly
smaller). A more formal and elaborate description of these algorithms can be
found in the excellent exposition [Kn2].

Although we have yet to show that after each of these procedures has acted
the tableau properties still hold, it can be verified immediately that the two
procedures are inverses of each other in the sense that the effect of one can be
undone by applying the other (even if the intermediate array of numbers were
no tableau). We illustrate the rules by an example that involves four steps.
We show the intermediate stages of the procedure I; for an example of the
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procedure E, read from right to left.

2[5[6]8] [2[5[6[7] [2]5]6]7]
10[12 10[12 12
9 [13[15 9[13[15 9[13[15

w

m="TP =

w
w
oo

2[516]7] [2[5]6]7]
8|12 3812
9 [10[15 9 [10[15

13

w

=T,s=(4,1)

At each stage except the rightmost there is one number missing: this is the
entry that has been superseded but not yet inserted into another row.

Before we prove that the arrays of numbers returned by the procedures
will always be tableaux, provided that the input is as specified, we establish
a recurrence relation that the results of these procedures satisfy. We compare
the computation of I(P,m) with that of I(P!, m), under the assumption that
the highest entry h of P exceeds m. The presence of h can only affect the
insertion steps if at some point it is the only entry in its row that exceeds a
number being inserted into that row. If this occurs then the next step will
be the final one of the computation of I(P, m) (since h can replace no other
element) while in absence of h (as in the computation of I( P!, m)) the insertion
procedure already terminates without this last step. Therefore if T' is the result
of inserting h into P, then inserting A into P! will yield T*. More formally, we
may write

if I(P,m) = (T, s) then I(P!, m) = (T!, s') for some square s'. (2)
The relation between s and s’ can be expressed as follows. In the first place

we must have
{s, [P} ={s', [T} 3)

because both sets are equal to Y (sh T') —Y (sh P!); in case s' # [P] this already
implies that s = s’ and [T"] = [P], which is in agreement with the case that h
is not displaced during the insertion. The remaining case that h is displaced is
fixed by the additional condition

if s' = [P] then s lies one row below s'. (4)

For E(T, s) we get a recurrence by replacing (2) by the equivalent
if E(T,s) = (P,m) then E(T!,s') = (P!, m) for some square s,  (5)
where again s and s’ are related by (3) and (4), although in this case it is more
natural to replace the condition s’ = [P] in (4) by s = [1], which is equivalent
by (3). Recall that for (2) we excluded the case that m exceeds all entries in P;

we must correspondingly exclude in (5) the case that s = [T'] and this square
lies in the first row.
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‘Now we prove that the insertion procedure preserves the tableau proper-
ties, i.e., that if P is a tableau and (T, s) = I(P, m), then T is also a tableau.
First consider the set of squares that are occupied by numbers during the inser-
tion process; this changes only in the last step. Since the number appended to
some row in the last step is higher than all other entries in that row, it cannot
have been displaced from a square directly above any of them, which excludes
the possibility that this row has become longer than its predecessor; therefore
the shape will remain a Young diagram. Now by the recursive characterisation
of tableaux in the previous subsection, to prove that T' is a tableau it remains
to show that T is a tableau. By our remarks above this follows by a trivial
induction, for if m exceeds all entries of P then T = P, which is a tableau by
assumption, while otherwise 7' may be obtained by inserting m into P!, and
therefore is a tableau by induction. The proof for the extraction procedure is
easier still, since the shape will remain a diagram simply because s is required
to be a corner of shT. Then P is a tableau because either P = T! (in the
case excluded above) or P! can be obtained by extraction from T, hence is a
tableau by induction.

Having verified the proper behaviour of the auxiliary procedures, we can
now define the full Robinson-Schensted algorithm. This establishes a bijection
between the group S, of permutations and the set |J, ep,, Ih x Ty of pairs (P, Q)
of normalised tableaux with sh P = sh@ € P,,. Given a permutation o € S,
represented as a sequence (01, ...,0,) of distinct numbers (so o maps i — 0;),
we build up the pair (P, Q) in n stages as follows. Let (P;_1,@Qi—1) be the
pair at the beginning of stage ¢ (we put Pp = Qo equal to the empty tableau),
and compute (P;,s) = I(P;_1,0;); then Q; is obtained from @;_; by adding
the number ¢ in the position of square s. Since the number added to @Q;_; is
the highest until then, it is clear that each @Q; is a (normalised) tableau; the
set of entries of P; is {01,...,0;}, so the last one P, is a normalised tableau.
Also, the shapes of the two tableaux will be the same after each stage, in
particular it holds for (P, Q) = (Pn, @x), so that P and @ are as required. Like
the auxiliary procedures, this algorithm too can be directly reversed: starting
with (Pp, Q) = (P, Q) repeatedly transform (P;, Q;) into (P;_1, Q;—1) (fori =
n,...,2,1), meanwhile determining the numbers p,, ..., p;, namely Q;_; = Qzl
and (P;_1,0;) = E(P;, [Q;]). We illustrate the algorithm by an example; again
one may read from right to left for an example of the inverse process.

3 5

oi 6 2 7 4 1
(6] [2] [2]7] [2]3 2[3]5] [2]3]4] [1]3]4]
P 6] |6] 6|7 6|7 5|7 2[7
’ 6] 5
6
113] [1]3 113]5] [1]3]5] [1]3]5]
Q; 2] 4 2[4 2[4 24
1 6] 6]
7]
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If by these bijections the permutation o € S,, corresponds to the pair of nor-
malised tableaux (P, Q), we write ¢ = R(P,Q) and (P,Q) = R~ (o) (so we
let R stand for the function defined using the extraction algorithm, mainly
because functions with multiple arguments are notationally more convenient
than those with multiple results). The procedures I and E have obvious trans-
posed counterparts I and E*, whose definition can be obtained by replacing
all occurrences of the word ‘row’ by ‘column’. These transposed procedures
can be used to define another bijection R®: Urer Tr x Tn 2 S, in exactly the
same way that R is defined; it obviously satisfies R(P, Q) = R(P?, Q*).

We now turn to the first of the “remarkable properties” announced above.
Recall that the set S, of permutations forms a group, so its elements can be
inverted; in terms of sequences of numbers, the inverse o= of o = (071, ...,0n)
is the sequence (07 !4,...,071,) whose term o~1; is the unique index j such
that o; = 1.

1.2.1. Theorem Forall (P,Q)c U, T x Ty
R(Q, P)= R(P,Q)™".

In view of the asymmetry between P and @ in the definition of R, this
is unexpected indeed. This theorem was first stated (without proof) in [Rob],
and first proved in [Schiil]. A better proof (and of a slightly more general
statement) can be found in [Knl] while an elementary proof may be given
using the recursion relation for E given above; however, the theorem will also
follow from the interpretation given in the second section of this paper.

We defer the statement of other properties of the Robinson-Schensted cor-
respondence to the next subsection, as they require other definitions not yet
introduced. However, to give some indication, we mention a fact that will
follow from a stronger statement given later. Let I, denote the operation
of inserting a number m into a tableau P not containing it, where only the
tableau yielded is considered (so if I(P,m) = (T,s) then T = I, (P)); also
let I, be its transposed counterpart. Then every I,, commutes with every
I ., ie., for m # m' and every tableau P not containing m or m' we have
In (It (P)) = It,,(Im(P)). Since moreover the operations I, and I?, are in-
terchangeable when applied to the empty tableau, we have that reversing the
order of the sequence of numbers of a permutation has the effect that the left
tableau (‘P’) obtained by applying R~! will be the transpose of the original
one (but nothing is said about the right tableau). Historically, it is this fact
that led to the formulation of the Schiitzenberger algorithm described in the
next subsection.

We close this subsection by describing a convenient method of performing
the Robinson-Schensted algorithm, especially useful for computer program-
ming. It is an iterative procedure, but it is based on the recursion relations
for I and E. For this purpose tableaux are represented not by 2-dimensional
arrays, but rather by linear ones: the i-th entry of the array describes the po-
sition of the square whose entry is i (or has a special value if no such square
exists). A very convenient circumstance is that it is sufficient to record the
row numbers of the squares, since the tableau property guarantees that the
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c-th occurrence from left to right of some number r corresponds to a square
in column ¢ of row r. In fact the array of numbers must satisfy an extra con-
dition in order to denote a tableau, namely, if » > 1 then the c-th occurrence
of » — 1 must precede the c-th occurrence of r (for all applicable r,¢). The
number 0 can be used to denote an absent square. We call such an array of
numbers a row-encoded tableau; in the literature they are known under the
hardly informative names ‘lattice permutations’ and ‘mots de Yamanouchi’.

The computation of (T,s) = I(P,m) is performed by modifying a row-
encoded tableau P with entries P[i] for 1 < ¢ < n, into the row-encoded-
tableau T'. This is done by making an increasingly large subtableau correspond
to T rather than to P; an index 7 indicates up to which number the entries have
been incorporated, and a variable r records the row number of the square s
by which the shape of the subtableau has been extended due to the insertion.
The according to (2) all that is needed when the index ¢ is increased by 1
is to possibly update the values of P[] and r. By (3) nothing needs to be
done if P[i] # », and if P[i] = » then by (4) both values should be increased
by 1. Therefore, it suffices to put » := 0, and then repeat the following for
t = m,...,n in that order: if P[:] = r then increase both P[i] and r by 1
(otherw1se do nothing). Note that the condition P[¢] = r is satisfied the first
time, since we assume that m does not occur in P initially; the final value of »
represents the row of the square s. The complete computation of R~!(c) for
o € Sp consists of initialising P to all zeros and then performing the above
loop successively for m = o7y, ..., 0, in that order, each time inserting the final
value of r into the next position of a row-encoded tableau @. The procedure
can be reversed in an obvious way (but the number of iterations of the inner
loop can not be predicted in this case: it stops when r becomes 0, which will
not fail to happen if we start with proper values for P and Q). In the limit of
huge n these procedures are theoretically less efficient on the average than a
straightforward 2-dimensional approach, but their extreme simplicity probably
makes them more favourable in most practical situations.

1.3. The Schiitzenberger algorithm.

In this subsection we introduce an algorithm due to Schiitzenberger that is
intimately related to the Robinson-Schensted algorithm. The Schiitzenberger
algorithm defines a shape preserving transformation of normalised tableaux,
i.e., for each A € P it defines a map S: Ty — T,. Like the Robinson-Schensted
algorithm, it is based on the repeated application of a basic procedure that
modifies a given tableau in a specific manner. In the current case we shall
call this the “deflation” procedure D, since it starts by emptying the square
in the upper left-hand corner, and the proceeds to rearrange the remaining
squares to form a proper tableau. Like the other procedures we have seen,
D can be reversed step by step, giving rise to an “inflation” procedure D~1.
More precisely, these procedures convert into each other the following sets of
data: on one hand a non-empty tableau P, and on the other hand a tableau T,
a specified cocorner s of shT, and a number m. These are such that sh P is
obtained by extending shT with s, and the entries of T are those of P with
the smallest entry m left out.
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Given a tableau P, the deflation procedure computes (T, s, m) = D(P) as
follows. The first step is to put m equal to the smallest entry of P, and remove
that entry, leaving an empty square in position (1,1). Then the following
step is repeated until the empty square is a corner of the shape sh P of the
original tableau: move into the empty square the smaller one of the entries
located directly to the right of and below it (if only one of these positions
contains an entry, move that entry). Because the empty square moves down
or to the right in each step, termination is evidently guaranteed; s is defined
to be the final position of the empty square, and T consists of the remaining
non-empty squares. The latter is indeed a tableau, since at each stage of the
process the entries of the non-empty squares remain increasing along each row
and column. In fact, when there are entries both to the right and below the
empty square, the choice to move the smaller one is dictated by the tableau
property.* By the same consideration it is also clear that each intermediate
state of the tableau determines the previous position of the empty square, and
hence the previous state: this position is directly to the left of or above the
empty square, whichever contains the larger entry. Consequently, given T, s,
and m the deflation procedure can be run in reverse to determine P, and this
defines D~!. We demonstrate these procedures by an example:

1[2]5]10] 2|5]10] [2] [5]10] [2]4]5][10] [2]4]5]10]
p_[314]9 3149 31419 31 19 3[71]9
67|11 67|11 67|11 67|11 6| |11

8 8 8 8] 8

2[4]5][10| 2[4]5][10|

31719 31719

61 so that we have T = 6T , §=1(2,2), m=1

8 8

There are recursion relations for D and D~ similar to those for I and E.
For any tableau P with at least two squares we compare the computation
of D(P) with that of D(P!). Since the highest entry h of P lies at some corner
of sh P, it can only be moved in the final step; like in the case of I we conclude
that if applying D to P yields a tableau T', then applying D to P! will yield T*.
This may be formalised as

if D(P) = (T, s,m) then D(P!) =(T!, s, m) for some square s'.  (6)

As in the case of I the relation between s and s’ is expressed by a pair of
requirements, of which the first is

{s, [T} ={s, [P]} (7)

* The rule stating which square to displace during the insertion procedure
of the Robinson-Schensted algorithm cannot be characterised in such a way,
since displacing the last smaller entry might equally well preserve the tableau
property; the definition given in [Schiil] of that insertion procedure is therefore
incorrect.
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since both sets are equal to Y (sh P) — Y (sh T'!). For the second requirement
we use the notation = || y to express the fact that the squares z and y are
adjacent, either horizontally or vertically; to be precise z || (r, ¢) holds if either
z = (r—1,¢) or z = (r,c— 1) (it is not necessary to include the case that z lies
to the right or below y). Then if s’ || [P] no additional condition is needed,
since s = [P] is forced because s’ is no corner of sh P. It therefore suffices to
require

if ' f [P] then s = 5. (8)

The recurrence relation for D~! is obtained by taking
if D~Y(T, s,m) = P then D~}(T',s',m) = P! for some square s’, (9)

where again s and s’ are related by (7) and (8), and T should not be empty.

As is the case for the Robinson-Schensted algorithm, the full Schiitzen-
berger algorithm essentially consists of repetition of the basic procedure. To
compute S(P) for P € T, with A € P,, put P = P,and fori = 1,...,n
compute (P;, s;,m;) = D(P;_1); we will have m; = ¢ and P, will be the empty
tableau. The sequence of shapes A = sh Py D sh P; D --- D 0 equals ch P* for
a unique P* € 7,, and we define S(P) = P*. Note that while the smallest
entries of P are removed first, it is the largest entries of P* whose position is
determined first, as we have [P*] = s1, [P*!] = s etcetera. The values m;,
being entirely predictable, play no role whatsoever; they were only introduced
to make the procedure D fully invertible. In fact the concrete values of the
entries are more a nuisance than that they are of any help for this procedure,
as it essentially deals with chains of partitions only. The inverse algorithm
S~1 of S is obviously the following: set P, equal to the empty tableau, and
successively compute P;_; = D™Y(PB;, P*[n+ 1 —],4) for i = n,..., 1, where
P*[j] denotes the square with entry j in P*; then S™!(P*) = Py. Again we
give an example; here we display the successive stages P = Py, Py, P, ...,
and meanwhile the entries of P* that are determined up to this point. Reading
from right to left for the inverse algorithm, those entries of P* that have already
served their purpose are erased.

1[2]4] [2]4 3[4 47] 5[7] [617]

3[7 3[7 5[7 5 6
A £ N 3 I I 0

6] 6] - -

| 7] 7] 7] 7] 7] 2[7] [1]2]7]

* 5 5 3[5 3[5 3]5
P ] B ] | 4 4 4] 4

N u €] €] [6] (6] 6] (6]

It is obvious from the definition that S commutes with transposition: S(P?) =
S(P)*; however, like the Robinson-Schensted algorithm, it also has an unex-
pected symmetry, which is expressed by the following
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1.38.1. Theorem The Schiitzenberger algorithm S defines an involution, i.e.,
S(T) = S~Y(T)

for all T € |J, T».

This fact was first stated and proved by Schiitzenberger in [Schiil §5], but
the proof is indirect, being based on the relation of the Schiitzenberger algo-
rithm with the Robinson-Schensted algorithm that we shall formulate below.
We do not now of any published direct proof of this fact, although such a
proof can be given on the basis of the recursion relations for D and D~!. We
shall see that the fact also comes about quite naturally in our interpretation
of S. The most important combinatorial fact about the Robinson-Schensted
and Schiitzenberger algorithms that we shall discuss is the interrelation, ex-
pressed by the following far reaching

1.3.2. Theorem Let A € P, and P,Q € T,, and let o € S,, be determined
by

o = R(P, Q).
Then we also have
b0 = R(S(P), Q) (10)
o = RY(P,5(Q)) (11)
0w = R(S(P), 5(Q)) (12)

where @ € S, is the “order reversing” permutation given by w; = n+ 1 — 4.

The permutation o has as sequence of numbers the reverse of that of o,
so (11) generalises our earlier statement that this reversal of terms leads to
transposition of the left tableau. That statement about the left tableau was
proved by Schensted [Sche Lemma 7], while the remainder of the identity is
proved in [Schiil §5]; from (11) one immediately deduces 1.3.1, and using 1.2.1
one also obtains (10) and (12). The current formulation of the theorem (more
or less) is due to D. E. Knuth, and can be found in [Kn2 Theorem D]. He
expresses the remarkable character of these facts as follows (p. 60)

“The reader is urged to try out these processes on some simple ex-
amples.. The unusual nature of these coincidences might lead us to
suspect that some sort of witchcraft is operating behind the scenes!
No simple explanation for these phenomena is yet known; there seems
to be no obvious way to prove even that case {(12)} corresponds to
tableaux having the same shape as P and Q.”

There are more interesting properties of these algorithms, such as the
following (due to Schensted): the first part of the partition sh P = sh@ is
equal to the length of a maximal increasing sequence of numbers obtainable
by deleting 0 or more terms from (oq,...,0,). We do not go into any such
properties here, which generally interpret only partial information about the
tableaux, although it may be interesting to reconsider them in the light of
the geometric interpretations to be given in the next section. We conclude
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this first section with remarking that there exists an apparently completely
different approach to the Robinson-Schensted and Schiitzenberger algorithms,
which is followed in [Schii2]. It is based on a generalised version of the deflation
procedure that is non-deterministic, i.e., there is an element of choice in the
prescription of the actions to be performed. In this approach most of the
results we mentioned become almost trivial, but the hard part is to prove
that the correspondences are well defined, namely that the final outcome is
not affected by any of the choices made. Although Schiitzenberger does not
mention how his alternative definitions have come about, we deem it likely that
this non-deterministic scheme could be deduced from the theorems given above,
in combination with more obvious properties of the correspondences involved,
such as that truncating the sequence of o to an initial subsequence will imply
truncation of the right (‘Q’) tableau to a subtableau.

2. Interpretations

The combinatorial facts of the previous section are quite remarkable, even
if they can be proved in a fairly straightforward combinatorial manner. In this
section we present a geometric construction, encountered in the study of the
general linear group GL,, in which partitions, Young tableaux and permuta-
tions have natural interpretations. The algorithms of the first section emerge
in this setting as procedures for computing certain geometric correspondences.
In this interpretation the combinatorial identities given above become quite
natural.

More precisely stated, we have the following. Partitions of n parametrise
unipotent conjugacy classes in GL,, and for any unipotent u in the class
parametrised by a partition ), there is a corresponding subvariety F, of the
flag variety of GL,, whose irreducible components are parametrised by nor-
malised Young tableaux of shape A. Also there is a concept of relative positions
between elements of the flag variety, which associates to each pair of flags a
permutation. Now the Schiitzenberger algorithm describes the effect of passing
to the dual vector space on the set of irreducible components of F,, and the
Robinson-Schensted algorithm computes the relative position between a pair
of flags generically chosen in a specified pair of irreducible components of F,.
The transpose Robinson-Schensted algorithm has a similar interpretation in
case one of the irreducible components is specified in the ordinary way, and the
other is given in terms of the dual flag variety; this provides an interpretation
for theorem 1.3.2.

2.1. The group GL,, unipotent elements.

Our intended interpretations of the Robinson-Schensted and Schiitzenberger
algorithms involve certain geometric structures related to the general linear
group GL, over some field. As we shall be using the Zariski topology on alge-
braic varieties defined over this field, a natural choice for it is any algebraically
closed field; however, all that matters is that such varieties have a well-defined
dimension, such that the complement of any subvariety of codimension > 1 is
dense, and therefore the milder requirement that the field is infinite will suffice.
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Let V be a vector space of dimension n, and view GL, as the group of
automorphisms of V. An element u € GL, is called unipotent if all of its
eigenvalues (over the algebraic closure of the ground field) all are 1, or equiv-
alently if » = u — 1 is nilpotent, i.e., ™ = 0. By the theory of Jordan normal
forms, V can then be decomposed into a direct sum of Jordan blocks for u, i.e.,
u-stable subspaces each of which admits a basis z1,. .., z4 (for varying d) such
that 7(x1) = 0 and 7(z;) = z;_1 for 1 < ¢ < d. This decomposition is generally
not unique, but the multiset of dimensions of the blocks (i.e., disregarding or-
der but counting multiplicities) is determined uniquely by u. Arranging these
dimensions in weakly decreasing order, we obtain a partition of n, that we call
the Jordan type of u, denoted J(u).

Denote by P(V) the projective space of V; its elements are lines through
the origin in V. For | € P(V) the conditions u[l] = I, 9[]] C ! and n[l] = 0
are equivalent (since 7 is nilpotent), so the set of fixed points of u in P(V) is
P(Kern). For such fixed points I, there is a transformation wup; induced by u
in the quotient space V/I, and it is also unipotent; we also define 7y = up — 1
which is nilpotent. We have J(up) C J(u) by the following argument. If
p:V — V/l denotes the natural projection then we have by definition Im 17{1] =
plIm77]. Putting A = J(u) we have A} = dim (Im7’~!) — dim (Im7?), as each
Jordan block of dimension > j contributes 1 to this number. Comparing this to
the same formula for 41 = J(upy)), we find that uf = X unless I € P(Im7/~1) —
P(Im7’), in which case p} = A} — 1. This establishes u C A, and moreover
determines the square by which Y () differs from Y'()). Since by assumption
1 € P(Kern), we are led to define for j > 0 subspaces W; = Imn/~! NKerp
of V, and subvarieties U; = P(W;) — P(W;1) of the projective space P(V);
then there is a unique j for which ! € U;, and it is the column number of
abovementioned square in Y'(A) — Y (x). The centraliser Z, in GL, of u acts
on each variety U;, and using linear algebra it can be shown that these actions
are transitive; therefore the non-empty sets among the U; are in fact the orbits
in P(Ker ) under the action of Z,. The number of these orbits is finite; in fact
one easily shows that U; is non-empty if and only if j occurs as a part of J(u).

To determine for a hyperplane H C V the Jordan type J(u|g), we may
reason similarly using the dual vector space V*. Since the decomposition of V
into Jordan blocks induces a similar decomposition of V*, we have J(u*) = J(u)
for the (unipotent) transformation u* induced by w in V* (sometimes called
the transpose of u); we define W} C V* and U} C P(V*) analogously to
W; and Uj;, but using u* instead of u. Denote by H° the subspace of V* of
linear forms vanishing on H; since H is a hyperplane, dim H° = 1 and therefore
H° € P(V*). In the same way as above, the unique j > 0 for which H° € U}
determines the square by which Y (J(u|g)) differs from Y (J(u)).

2.2. Flags.
A (complete) flag f in V is a chain fo C fi C -+ C fn = V of subspaces,
where dim f; = 1; the individual spaces f; are called the parts of f. We

define F to be the set of all such flags, called the flag variety of V', which is a
(projective) variety on which G L, acts; the subset of flags fixed by u is denoted
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Fu. There are (GLy-equivariant) maps a: F — P(V) and w: F — P(V*) given
by a: f +— f1 and w: f > fr_1°. For [ € P(V), each flag f € a~[l] determines
aflag f! in V/I by f,-l = p[fiy1] for 0 < ¢ < n, where as before p: V. — V/l is the
natural projection; it is easily seen that this defines an isomorphism between
a~1[l] and the flag variety of V/I. Similarly for each hyperplane H C V,
the inverse image w~![H°] is isomorphic to the flag variety of H, where the
image f~ of f € F is obtained by simply forgetting the largest part f, = V
of f.

In the case of flags f € F, we have | = a(f) € P(Kern) and f! lies in the
subvariety F,, of the flag variety of V/l. We may repeat this process for f!
in place of f, and thus obtain a sequence of flags f, f!, !, ... in the spaces
V, V/fi, V/f2, ..., which flags are fixed by the unipotent transformations
U, U[f,], U[f,] - - - Tespectively induced by u in these spaces. Taking Jordan types
we obtain a decreasing chain of partitions J(u) D J(ugz,)) D J(y[s,]) D -+
which determines a normalised Young tableau g,(f) of shape A = J(u). The
column number j of any entry d of this tableau is determined as above by
the position of the 1-dimensional part of the flag fi*! in the space V/fn_a
relative to the nilpotent transformation us,_,} — 1 of that space. Using re-
striction to hyperplanes instead of dividing out lines, we similarly define flags

fy f~, f~—, ... in the spaces V = fn, fa-1, fn—2, ..., which flags are fixed
by the unipotents wu, u|s,_,, u|s,_,, ... respectively; from this we obtain a
decreasing chain of partitions A\ = J(u) J(uls,_,), J(ul,_,), - .., determining

a tableau 7,(f) € 7. Defining for each flag f € F a dual flag f* in the flag
variety of V* by f! = fn_:°, we obviously have g,(f) = ry-(f*). The two
tableau-valued functions g, and r, on F, can be used to distinguish a finite
number of subsets of F,: for T' € 7, we define

fu,T:'{fEf'u |"'u(f):T} and f;,T:{fefu lgu(f) =T}

(13a,b)
these sets are non-empty by a simple inductive argument. Note that we have
“switched preferences” by using 7, rather than g, for the unstarred notation;
this follows the notation in [Stb2], but [Spa II.5.3] effectively uses g,, not r,.
The advantage of using 7, is that it is somewhat easier to define (using re-
strictions rather than quotients), and the numbers in the tableau r,(f) relate
more directly to the parts of f (for instance, J(uls,) is the shape of the sub-
tableau of 7,(f) containing entries < 3); moreover the interpretation of the
Robinson-Schensted algorithm comes out more naturally. A disadvantage how-
ever is that when studying 7, in an inductive way, we generally have to work
in P(V*) rather than in P(V) (as we have already seen), and this can be more
cumbersome. Where possible we shall take the “best of both ways” by stating
properties for both F, 7 and ¥ ;, but proving them for ¥, ,» only. In any case
we shall see that our results enable a translation between the two conventions.

2.2.1. Proposition
(a) For each T € T, the sets Fy,r and F; 1 are irreducible.
(b) dim F, r = dim Far = >;(i = 1)); independently of T € T,.

Proof. We give the proof for ¥ 1, by induction on |A| = dim V. Fitst note
that by construction each set F;  is Z,-stable. For each non-empty U; the
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set'a~![U;] is the union of the sets F 5 for those tableaux T € 7, whose
entry n occurs in column j. If T is such a tableau, then for any I € U; the
isomorphism f — f! of a~![l] with the flag variety of V/I maps F 7 N a‘l[l]
isomorphically to .'F T which is irreducible by induction. Because Ujisa

Z,-orbit and connected and therefore already is an orbit for the connected
component Z; of Z,, we find that F} . is irreducible, as it is the surjective
image of the irreducible set Z; x (F; r Na~'[l]) by the map (2, f) — z- f; this
proves part (a). (In fact for GL, every unipotent centraliser Z, is connected,
so Z = Z,, but we can do without that knowledge here.) We also have
dim F3 7 = dim U; + dim F; (T4 SO to prove (b) it suffices to show that

dim U; = ¢ — 1, where ¢ is the row number of the entry n» in 7. But this
is clear since i is the number of parts > j of J(u), which equals dim W},
while U; is a dense part of P(W;). a

It follows from the proposition that the set of irreducible components of F,,
can be described as the set of the closures F, 7 for T € 7, but equally well as
the set of closures .7-' * T for T € 7T,. We sha]l show below that the Schiitzen-
berger correspondence relates these two descriptions to each other:

}-;,T = ]:'""S(T)' (14)

To illustrate these parametrisations of the irreducible components of F,,

we consider the simplest case where there is more than one such component,
which occurs for GL3 with J(u) = (2, 1); we have 7(3 1) = {T,T"} where

T:;2| and T':;SJ.
L2 ] el
To be specific, we take
1 10
u=10 1 0
0 0 1

Calling the standard basis vectors e1, ez, e3 we have W = (eq, e3), W = (e1),
and W; = 0 for j > 2. There are two orbits of Z, on P(Kern) = P(W,),
namely U, which is the projective line P(W;) with the exception of the single
point (e1), and U, = {(e;)}. For any | € U; and flag f € F, Na~[l] we
have f; = [, and since f; D f; must be u-stable, there is no choice but to
take f, = Wi = (e1, e3), and of course f3 = V. Therefore F, N a~1[]] consists
of just one flag for any [ € Uy, and Fq r is the union of these for all | € Uy,
whence it is isomorphic as a variety to U;. On the other hand for [ € U; (i.e.,
I = (e1)) and f € F, Na~[l], we may take for f, any plane containing the
line I, since 7[f2] will certainly be contained in Im7n = (e;) and hence in f5.
This gives a projective line of choice, and it follows that 7} . is isomorphic
to a full projective line. Observe that F; o and F, T, both have dimension 1,
as stated by the proposition. Of the ﬂags in T there is one that lies in the
closure of F 1, namely the one that has f, = (61,€3> Therefore, the whole
variety F, can be depicted as
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*
u, T’

*
u,T

The map a: F, — P(Ker n) corresponds to a vertical projection onto a projec-
tive line in this picture. On the other hand the map w, which discriminates
upon the part f, of flags only, corresponds to a horizontal projection in the
picture. Therefore the set F, 7 is the vertical line in the picture, but-without
the intersection point, and F, 7/ is the horizontal line including that point.
Since S(T') = T' we have agreement with (14); the example also shows that
the closures taken in (14) cannot be omitted.

2.3. Interpretation of the Schiitzenberger algorithm.

In this subsection we prove (14), using the recurrence relation for the “defla-
tion” procedure D. The crucial ingredient is the following lemma which gives an
interpretation of that procedure. Thos procedure may produce non-normalised
tableaux; for such a tableau P we therefore define F, p to be equal to Fy py,
where Py is the normalised tableau similar to P.

2.3.1. Lemma Let P be a non-empty tableau, from which we compute
(T, s,m) = D(P) by the deflation procedure, and let j be the column number
of the square s. Then there exists a dense Z,-stable subset D of F, p such
that a[D] C U;, and f! € Fupasy,r for all f € D. Moreover for any | € U; the
set { f' | f e DNa~[l]} is dense in Fupy,T-

Proof. In the proof we shall be considering the line and hyperplane part of
the same flag; we make the following preliminary remarks. For n > 2 and
f€ Fu,letl =f and H = f,_;. Then ! C H and u induces a unipotent
transformation in H/I, which can be obtained either as (u|m)y) or upy|m/i; we
shall denote it simply by ug/;. The flag induced by f in H/lis f~t=fl=. For
the analogue ay of a on the flag variety of H we have ag(f~) = «(f) = f1.
We shall also need the analogues of the spaces W; and U; defined for the
hyperplane H and using u|p instead of u; these shall be written as W;(H) C H
and U;(H) C P(H).

We now prove the first statement of the lemma by induction on the number
of squares of P. If P has just one square it is trivially true. Otherwise, let
¢ be the column number of [P]; we have w[F, p] = U?. By (6) we have
D(PY) = (T!, s',m) with s’ satisfying (7) and (8); let j' be the column number
of s'. We proceed to formulate the induction hypothesis applied to P! in place
of P. Let H C V be a hyperplane with H® € U}; forany f € F, pNw~1[H°] we
have f~ € Fy|,,pt. The induction hypothesis now implies that by restricting
f to lie in a dense subset Dy of F, p N w‘l[H°], we can achieve that the line
| = a(f) lies in U;/(H) and that the flag f~! lies in Fug,rs; the latter may
be rephrased as: 7y, , (f'7) = T*.
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~ We claim that if we can prove for f in a dense subset of Dy that | € Uj,
then we are done. First of all, the statement can then be extended by the Z,-
action to f in a dense subset of {z - f | z € Z,, f € Dy }, whichis Z,-stable and
dense in F, p. Secondly, the statement f! € Fupy,r to be proved is equivalent
to rum(fl) =T, and of the chain of Jordan types encoded in rum(fl), all but
the first are in order by the induction hypothesis; so it remains to prove only
J(up) = shT. But since Y (shT) differs from Y (sh P) by the square s which
appears in column j, this will follow directly from ! € U;, which proves our
claim.

The induction hypothesis gives us for f € Dy that | € U;/(H), and we
wish deduce, for a dense subset of those f, that I € U;. To this end it will
be sufficient that a dense part of U;/(H) is contained in Uj, because the map
ag:Dy — Uj(H) is open, so that inverse images of dense subsets are dense.
(The openness of ay follows from its equivariance for the centraliser 7,
of u|g in GL(H), which acts on Dy via its isomorphism with { f~ | f € Dy },
and which acts transitively on U;/(H); in the sequel similar arguments will
be tacitly assumed.) We now consider the relation between the spaces of the
form U;(H) and the spaces U;. As it is given that H° € U}, we easily see
that W;(H) = W; for all ¢ # ¢, while W,(H) has codimension 1 in W,. Now
if j' ¢ {c¢ — 1,c}, then we cannot have s’ || [P], so that j = j' by (8), while
U;j(H) = Uj, and we are done. When j' = ¢ on the other hand we must have
s’ || [P] (vertically), and hence j = ¢ by (7); in this case U;(H) is a subvariety
of codimension 1 of U}, and we are done as well. When j' = ¢c—1 we may or may
not have s’ || [P] (horizontally). In the first case we have j = ¢ = j' + 1 and
W;i(H) = Wj_1 = W; # Wj41 (because columns j — 1 and j of P must have
equal length that exceeds that of column j+1), and it follows that U;/(H) C Uj.
Only in our final case j' = ¢ — 1 and s' ){ [P] do we have to resort to a dense
subset of U;/(H). Indeed j = j' and W,;(H) = W;, and Uj is strictly a subset
of U;(H), since its complement in P(W;) is one dimension higher; nevertheless
U;, being non-empty, is dense in P(W;) and hence a fortiori in U;(H).

This proves the first statement of the lemma, the last statement follows
most easily by a dimension consideration (although it can also be proved
directly similarly to the first statement). All fibres D Na~1[l] for | € U;
are isomorphic by the Z,-action, whence they must have dimension dim D —
dim Uj;, and since D is dense in F, p this is equal to dim Fup,T- The map
f — f!is an isomorphism on each F, Na~'[l], and its image of D Na~![]]
is therefore dense in fu[l],T. O

The main theorem of this section follows easily.

2.3.2. Theorem Let P € T,, and let Q@ = S(P) be obtained from it by the
Schiitzenberger algorithm, then the intersection .7-';" p N Fu,q is dense in both
Fupand Fyq.

Proof. By induction on the size of the tableaux, the case of empty tableaux
being trivial. Applying the lemma and the definition of the algorithm S, we
see that J(ufs,)) =shT =sh Q! and fl € Fupyr forall f€DC Fup (using

the notation of the lemma). Of those f, a dense subset has f! € '7:1:[, et by
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the induction hypothesis, and this implies f € F; 5. Using the second part
of the lemma (or a dimension argument), this set is also dense in Fj 5. O

The theorem immediately implies (14). Since f € Fup < f* € Fi. p
and f** = f, it also implies 1.3.1.

2.4. Relative positions.

The interpretation of the Robinson-Schensted algorithm we intend to give also
uses the correspondence of tableaux to irreducible components of F,, but in
addition needs the concept of relative positions of flags. It is obvious that a
pair of flags f, f' € F can be in a number of qualitatively different positions
with respect to each other, depending on for instance whether f; is or is not
contained in f5 and similar questions. The relative position of f and f' is
completely determined if for all 0 < 4,5 < n the values dim (f; N fj) are
given (and vice versa), but these numbers are not entirely independent; it is
therefore convenient to encode a relative position in a different way, namely
by a permutation of n, which we shall denote «(f, f'). Since =(f, f') does not
depend on a choice of basis for V, we have n(g - f,g - f') = =(f, f') for all
g € GL,. On the other hand if f is the standard flag for the basis ey, ..., ey,
given by f; = (eq,...,€;) for 0 < i < n, and f' is the standard flag for this basis
permuted by some o € S,, i.e., f/ = (es,,...,€0,), then 7(f, ') is defined to
be equal to 0. From Bruhat’s lemma for GL, it follows that these two rules
uniquely define «(f, f') for all f, f' € F.

We give some examples. For every f € F we have n(f,f) = e, the
identity permutation. The other extreme occurs when f, f' are generically
chosen: then f;N f]'- is zero whenever possible, i.e., whenever ¢ + 7 < n; in that
case m(f, f') is the permutation & € S, of 1.3.2. In the above GL3; example
with F, consisting of two intersecting lines, we have =(f, f') = (2, 1, 3) for any
pair of distinct f, f' € F; r (since only their 1-dimensional parts differ), and
m(f, f') = (2,3,1) for any f € F; 7 and any f' € F; . except the flag at the
intersection of the two components of F, (since f; # fi C f2 but fi  f3).
It is clear from this definition that =(f’, f) = n(f, f')~! for all f, f' € F, and
also that 7(f*, f"*) = wn(f, f')w (the latter identity comes from the fact that
the dual f* of the standard flag is given by f} = (e}, ,;_;,...,€;) on the dual
standard basis).

We can describe o = 7(f, f') more explicitly in two ways. First, in terms
of the numbers a; ; = dim (f; N f}) for 0 < 7, j < n the permutation o is given
by ¢; =min{: | a;; > a; -1}, and its permutation matrix by

$io; =Qij —a;j_1—ai—15+ai—15-1 for1<i,j<mn. (15)

Secondly, m(f, f') can be determined by a recursive formula, and it is this form
that we shall be using in the sequel. This formula on one hand explicitly gives
the final term in the sequence of o:

on=min{i|fi C fr_1}. (16)

Since this number o, depends only on f and the hyperplane part H = f,_;
of f', we shall also denote it by =(f, H), the relative position of f and H. The
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remaining values of o are computed from the relative position of a pair of flags
in the subspace H, namely f|g and f'~, where f|g is defined as follows. For
those ¢ for which f; C H we put (f|g): = fi, and for those for which f;_; ¢ H
we put (f|g)i—1 = fi N H. (One part f; in not used—in the present case this
is f,,—since for that part f; N H = f;_1.) Now let o' € S,_1 be the relative
position 7(f|g, f'~), then the remaining values of o are defined by

_Joai if o} < on .
U‘_{Uﬁ—i-l if ol > o (for 7 < n). (17)

Note how adding 1 in the second case ensures that we get a proper permutation,
and that in each case the part (f|g ), was obtained from f,,. The latter remark
implies that if we would endow the f>arts of flags derived from f with numeric
labels to indicate which part of f they stem from (setting the label equal to the
dimension for parts of f itself, but keeping the label unaltered when restricting
to a hyperplane) and change the right hand side of (16) so that it returns the
label of f; rather than its dimension 7, then a recursive definition of 7(f, f!)
could be given in which (17) would simply read o; = o} (¢ < n) (but the
recursive calls of # would yield sequences such as ¢’ that are not necessarily
permutations).

The correctness of both explicit descriptions of (f, f') can be verified
easily in the basic case of the definition of =(f, f’), in which f and f' are
respectively the standard and permuted standard flag. Incidentally, there
is yet another recursive description of =(f, f') that starts by giving o1 =
min{: | f; D fi }, and uses w(f[f;],f'l) for suitably defined fis;) to find the
remaining values of o; however, we shall not use such a description.

2.5. Interpretation of the Robinson-Schensted algorithm.

In terms of relative positions the Robinson-Schensted algorithm has a geometric
interpretation analogous to that of the Schiitzenberger algorithm. We need
some additional notation. Since the function 7 on F x F takes only a finite
number of values, we have for every irreducible subset X that 7 is constant on
a dense subset of X; the value it takes on that subset will be denoted y(X), and
is called the generic relative position on X. The geometric interpretation of the
Robinson-Schensted algorithm now states that the generic relative positions on
the irreducible components of F, x F, can be expressed as follows:

(18)

Fr p X Fuq) = WRY(P, Q) (19)
T (20

(

20)
21)

7 Fa

u

7 x Fp g) = WR(P,Q)

By (14) and the properties of 7(f, f'), the last two identities follow from the
first two, so it is those first two identities that we shall focus on. Note that
the last equation implies that to obtain a nice interpretation of the Robinson-
Schensted algorithm using the notation of [Spa], relative positions have to be
conjugated by @.
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Like in the case of the Schiltzenberger algorithm, most of the work is
required in proving an interpretation of the basic step, in the current case the
“extraction” procedures E and E*. In the following lemmas Z, g denotes the
stabiliser in Z, of H.

2.5.1. Lemma Let A = J(u) and let a tableau T € 7, and a corner s of A
be given; put ¢ equal to the column number of s and let (P,m) = E(T,s) be
computed by the extraction procedure. Then for all hyperplanes H C V with
H° € U} there exists a dense Z, y-stable subset Dy of F, T such that for all
f € Dy we have n(f, H) =m and f|g € Fy|y,p.

2.5.2. Lemma Let A = J(u) and let a tableau T € 7, and a corner s of A
be given; put c equal to the column number of s and let (P,m) = E*(T,s) be
computed by the transpose extraction procedure. Then for all hyperplanes H C
V with H° € U} there exists a dense Z, y-stable subset Dy of}';’T such that
for all f € Dy we have n(f,H) =n+1-m (= ¥m) and flg € F;, p-

The proofs of these two lemmas are somewhat similar, and we prove here
only the latter, leaving the proof of the former as an exercise to the reader (a
proof can also be obtained from [Stb2] whose lemma 1.2 is essentially equivalent
to our lemma 2.5.1).

Proof of 2.5.2. We use the notations W;(H) and U;(H) as in the proof of
2.3.1; as we have seen there we have W;(H) = W; unless ¢ = ¢, and W (H)
has codimension 1 in W.. Let f € F, 7 and | = fi; we examine in which
circumstances we can have [ ¢ H, which is equivalent to n(f, H) = 1. If the
square [T'] is in column j, then | C W; C W1, so unless j = ¢ = 11t follows that
I CWi(H) C H. When j = ¢ = 1 on the other hand, U; NP(H) = Uy(H),
which is either empty or of codimension 1 in Uy, so for f in a dense subset
of Fy, v we will have n(f, H) = 1; this is as claimed by the lemma since in this
case E*(T, s) = (T',n). Furthermore, for such f we may decompose V = (@ H
as direct sum of u-stable subspaces, so there is an isomorphism H = V/I
that transforms u|y into up), and also f|g into fl; therefore it follows from
qum(fl) = T! that gy, (f|r) = T, completing the proof for the case j = ¢ = 1.

The proof of the lemma is by induction on |}|, and for |A\| = 1 we are always
in the case j = ¢ = 1 already treated. In the remaining cases we wish to find the
numbers j' and ¢’ such that | € U;/(H) and H° € U},(I°), where [° C V* is the
hyperplane of functions vanishing on the line [ (which is canonically isomorphic
to (V/1)*), and U;*(1°) is defined in analogy to U}, but using u*|;o instead of u*.
Because j' is the column number of the square in Y (J(u|x)) — Y (J(un/1)),
and ¢’ is the column number of the square in Y (J(up))) — Y (J(ug/)), we
must always have {c,j'} = {c, j}, so either one of j',c’ determines the other.
Moreover, if j # ¢ then we must have j/ = j and ¢/ = ¢ (this can also be
deduced directly from U;(H) D U; and U}(I°) D U}). When j = ¢ we have
that W;(H) has codimension 1in W; while W; C W;_; = W,_1(H), so a dense
part of U; lies in U;_1(H), and for f in a dense subset of F, r we will have
jl=d=j5-1

From the transpose counterpart of (5) we know that E*(T!, s') = (P, m)
for some corner s' of shT!, that is together with [P] uniquely determined
from s and [T] by (3) and the transpose counterpart of (4). But we have just
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established that those conditions are met if we take for s’ the corner of sh T
in column j', and for [P] the corner in column ¢’ of sh P. Now we apply the
induction hypothesis, replacing V, u, s, ¢, T and H by V/I, up, &', ¢, T!
and H/I respectively. We obtain that fixing any ! € U; NU;.(H) as determined
above, and for f! in a dense subset of f;[,l,Tl we have 7(f!, H/l) = n—m and

flean e ::lH/,,Pl' Using that «(f*, H/l) = n(f, H) — 1 (since dimensions are

decreased by 1in descending from f to f1) and f!|g/; = (f|z)!, together with
I'= f1 € Uj:(H), the conclusions =(f, H) =n+1—m and flg € F; p of
the lemma follow. The denseness and Z, g-stability of the set Dy of all f
for which these conclusions are valid are obvious. O

Contrary to what was the case for the interpretation of the Schiitzenberger
algorithm, the main results do not follow immediately from the lemma’s here;
this is due to the fact that in general the set { flg | f € Dg } is not dense
in its component of F,|,, despite the fact that Dy is dense in its component
of F,. We resolve the difficulty here in the same way as in [Stb2], using the
invertibility of the Robinson-Schensted algorithm and the following

2.5.3. Fact For each o € S,, there are unique A € P, and P,Q € 7, such
that for any unipotent u € GL, with J(u) = A we have 0 = y(Fu,p X Fu,g).

This fact comes from the general study of the unipotent variety, see [Sprl 3.8],
[Spr2 4.4.1] or [Stbl 3.5, 3.6]. We also use the fact that the closure of a subset
F2={(f,f')|7(f, f') =0} of F x F is the union of similar subsets F? for
certain 7 € S,; putting ¢ > 7 for these permutations then defines a partial
order on S, called the Bruhat order (in fact o > 7 holds if and only if the
numbers a; ; associated to o as in the previous subsection are all greater than
or equal to the corresponding numbers for 7). It is then clear that the generic
relative position on some irreducible component of F, x F, is also maximal on
that component in the Bruhat order.

2.5.4. Theorem Let P,Q € T,, and let 0 = R(P,Q) be obtained from
them by the Robinson-Schensted algorithm, then for (f, f') in a dense subset
of Fy p X Fu,q one has =(f, f') = o.

Proof. We prove first that on a dense subset 7(f, f') < o holds in the Bruhat
order, which implies that it holds on all of F, p x F, . This is done by
induction on |}|, comparing the definition of R(P, Q) with the recursive formula
for 7(f, f'). Let c be the column number of [Q], we have w[F, g] = U}, so
we may choose any hyperplane H with H° € U} and restrict ourselves to the
case f),_, = H. We now apply lemma 2.5.1 with s = [Q] and find for f
in a dense subset Dy of Fy, p that 7(f,H) = o, and f|g € Fy, r, where
(T,on) = E(P,s). Here T differs from its normalised counterpart Ty in that
all entries > o, are increased by 1 in T. Invoking the induction hypothesis
for T, Q! we find that 7(f|g, f~) < R(Tw, Q") for all (f, f') € Dy xw™1[H®];
by (17) and the definition of R this implies = (f, /') < R(P,Q), completing
the proof of our initial claim. To prove that in fact =(f, f') = R(P,Q) for
generically chosen f, f', consider the values y(F, p X m) and R(P,Q) as
(P, Q) traverses UAG’P,, Ty x7y. On one hand, by 2.5.3 and the invertibility of R,
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both values traverse S, meeting each permutation exactly once; on the other
hand the former is always less than or equal to the latter. This is only possible
if both values are equal for each pair (P,Q), which proves the theorem. [

2.5.5. Theorem Let P,Q € 7,, and let ¢ = R*(P,Q) be obtained from
them by the transpose Robinson-Schensted algorithm, then for (f,f') in a
dense subset of F; p x Fy,q one has n(f, f') = do.

This is entirely analogous to the previous proof, using lemma 2.5.2 instead
of 2.5.1. O

Remark The way we have completed the proofs of these theorems is not the
only possible one: there is another approach that is in some ways more satis-
factory than the current one, although it needs a longer proof. That approach
is to prove that, although { f|g | f € Dy } may not be dense, we do obtain
a dense subset from it by applying the action of Z,, to it (note that this is
different from applying the action of Z, y—which indeed has no effect—since
not all elements of Z,),, lift to Z,). Roughly speaking one attempts to realise
a given flag f' in H as f|g for f € F, p by adapting not only f but also u
to the situation, while keeping u|y fixed. Full details shall be given elsewhere;
this technique is also used in a more complicated situation in [vLee 4.6]. This
alternative method makes no use of 2.5.3 or the invertibility of R, and it implies
that either of these facts may be deduced from the other.

2.6. Conclusion.

The above theorems obviously prove equations (18)—(21). Together with (14)
these equations imply the combinatorial statements of 1.3.2. As 1.3.1and 1.2.1
are also immediate from the given geometric interpretations, and the invert-
ibility of R is directly related to the geometric fact 2.5.3, we may conclude
that these are quite natural interpretations of the Robinson-Schensted and
Schiitzenberger algorithms (not only of the resulting correspondences, but also
of the procedures they are built-up from), and indeed we may claim to have
revealed (at least one sort of) the “witcheraft operating behind the scenes” of
those algorithms. The parallel between the recursive definitions of the algo-
rithms and the proofs of our interpretations is so close that, had the algorithms
not been known long before the questions about F, were studied, they could
have been deduced from that study of F,. In fact, the varieties F, have their
analogues for other algebraic groups than GL, (see [Spa]), and in his the-
sis [vLee], the author has studied the question of computing generic relative
positions for them in the case of the other classical groups (Sp2, and O,), and
using analogous methods to those above has derived algorithms similar to the
Robinson-Schensted algorithm to compute the desired quantities.
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0. Introduction

Let G be a simply connected, split semisimple algebraic group defined over
a field k. Fix a maximal split torus T' and a Borel subgroup B containing T'.
For a B—character u let £, be the associated line bundle on G/B (1.1), and if
p is a dominant character, then denote by V, the G-module H°(G/B, L,) of
highest weight .

If k£ is an algebraically closed field of characteristic zero, then the modules
V. are simple (Borel-Weil theorem), and every finite dimensional G-module
is isomorphic to a direct sum of them (Weyl’s complete reducibility theorem).
This is not true in general. The notion of a good filtration of a G-module can
be seen as a substitute for semisimple modules. Here we say that a G-stable
filtration of a G-module M is good if all the subquotients are isomorphic to
V, for some dominant B—character p.

Consider the G-module V3 , := V) ® V,,. If k is algebraically closed, then
the existence of good filtrations for Vj , has been proved in [2,13,20] (in the
first two papers certain restrictions are made on the characteristic of k). For
arbitrary fields, a proof is given in [17] for the case where G has no simple
component of type Fs4, E7, Es.
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The aim of this paper is to give for G = Sl,;1(k) an explicit construction
of a good filtration of V), ,. We wish to give an outline of the construction:
The main tool is the basis of V, given by the standard monomials (see section
2). These monomials are T—eigenvectors, they are indexed by standard Young
tableaux, and we denote by —v(7) the weight of a standard monomial p(7).
Using the geometrical properties of the standard monomials, we define a B—
stable complete flag

OCF1C"'CFm:V;n

such that the F; have as basis a subset of the standard monomials. Enumerate
the tableaux such that F; is generated by the standard monomials p(7}), j < i.
Now let A be another dominant B-character. In [10] we introduced a special
subclass of tableaux, the A-dominant tableaux (see section 2). Let T;,,..., T,
be the A-dominant standard tableaux, and consider the corresponding subflag
0C Fi, C---C F;, = V,. Denote by F;; the vector bundle on G/B associated
to the B-module F;;. We show that the induced G-stable filtration

Vo:=0CVi:=HYG/B,LA®F;,) C+--CVp:=HYG/B,LA® Fi,) =~V

is a good filtration. Moreover, V;/V;_1 ~ Vay,(1,,), so this gives at the same
7
time for char £ = 0 a decomposition rule for the tensor product:

r
Vau = A ® Vi~ @V/\-}-V(Tij)'
j=1

In fact, it is easy to see that the notion of a A~dominant tableau corresponds to
the notion of a lattice permutation in the usual formulation of the Littlewood-
Richardson rule, so the good filtration constructed above gives also a proof of
the Littlewood—Richardson rule.

Moreover, we study the following more general situation: Let @ D B be
a parabolic subgroup of GG, denote by L O T its Levi subgroup, and let ¥
be a union of Schubert varieties in G/B. Denote by H°(Y,L,) the bundle
(see 1.1) on Q/B associated to the B-module H°(Y,L,). Suppose that X is
Q—-dominant (see 1.3). We are going to construct a good filtration of the Q-
module H°(Q/B, L) ® H°(Y, L,)), i.e., the subquotients of this filtration are
isomorphic to H°(Q/B, L,) for some Q-dominant weight ». For char k = 0,
a decomposition rule for the L-module H(Q/B, L) ® H°(Y,L,)) ensues. In
particular, we get a decomposition rule for V,, considered as L-module.

A standard monomial theory has been also developed for other simple
groups (see [6,7,8,9,18]). We give a short introduction into this theory in section
3. Using the notion of a standard Young tableau in the sense of Seshadri et al.,
the notion of a A-dominant tableau has then a straightforward generalization.
In fact, the results for G = Sl,41(k) hold also for all simple groups for which
a standard monomial theory has been developed. We state the results in 3.13
and 3.14 without proof. We refer to [11] for a detailed proof.
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1. Schubert varieties

1.0 The aim of this section is to introduce some notation and to recall the
vanishing theorem for the higher cohomology of certain line bundles on (gen-
eralized) Schubert varieties. To motivate our interest in Schubert varieties, we
would like to consider first the following example:

Let A, u be dominant B—characters and let Y C G/B be a Schubert variety,
i.e. Y is a B-stable irreducible subvariety of G/B (see 1.2). By Theorem 1.3,
the restriction map V,, = H%(G/B, L,) — H°(Y, L,) is surjective, so we get a
short exact sequence of B—modules:

0 — Ker — V, = H%(G/B,L,) — H°(Y,L,) — 0.

To see how this sequence induces a filtration of Vj ,, let H°(G/B, L,) be the
vector bundle (cf. 1.1) on G/ B associated to the B-module V, = H°(G/B, L,,).
But V,, is a G-module, so the bundle #°(G/B, L,) is in fact a trivial bundle

(see 1.1) and we have
H°(G/B,Lx®H°(G/B,L,)) ~ H°(G/B, L)) ® H*(G/B,L,) = Vy,u.

By use of this isomorphism we can view V) , as the global sections of the vector
bundle £, ® H°(G/B, L,) on G/B. Next consider the vector bundles X and
H°(Y,L,) on G/B associated to the B-modules Ker and H°(Y,L,) in the
short exact sequence above. We get a short exact sequence of vector bundles:

0— Lr®K — Ly ®H°G/B,L,) — Lr@H°(Y,L,) — 0.

Now by Corollary 1.4 and Theorem 1.3, the associated long exact cohomology
sequence is in fact a short exact sequence of G-modules:

0 — H%(G/B,LA®K) — V. = H°(G/B, L, ® H°(G/B, L,))
— H%G/B, L@ H°(Y,L,)) — 0.

The next task will be then to investigate the structure of the B-modules Ker
and HO(Y,L,). This will be done in the next section with the help of the
standard monomial theory.

1.1 We shall first recall the construction of the associated fibre bundle. Let Z
be a B-variety. We define a right B-action on G x Z by (g, z)ob := (gb,b~'z).
This is a free B-action, and we denote by G xZ Z the orbit space (G x Z)/B.
Since the left action of G on G x Z, defined by ¢ - (¢', z) := (g9¢’, z), commutes
with the right action of B, the orbit space G x? Z has in a natural way the
structure of a G—variety. The projection G x Z — G commutes with the right
action of B on G and induces a natural map G x®? Z — G/B. In fact, this
map makes G xZ Z into a fibre bundle on G/B with fibre Z (see [4], I, 5.14).
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- Recall that any character A : T — k* extends (trivially) to a character of
B, so the character groups X(7') and X (B) can be identified. For A € X(T)
let M be the one—dimensional B-module corresponding to the representation

A: B — GL(M)) ~ k*. We denote by L) the line bundle G xB M_» on G/B.

If @ D B is a parabolic subgroup of G and Z is a B-variety, then we
denote by @ x® Z the associated fibre bundle on Q/B (same construction as
above). By abuse of notation we write also £ for the line bundle @ xB M_,

on Q/B.

Note if the B—action on Z comes from a Q—action on Z, then the canonical
map v
Qx2Z—-Q/Bx2, (q72)+ (¢B,qz)

is an isomorphism of Q-varieties (where @ acts on the right side via the diagonal
action). For example X := QxBG/B~ Q/B x G/B. Let p1,p2 be the
projection maps. We denote by £ , the line bundle p} £ ® p5L, on X (~
Q/B x G/B), where p; : X — Q/B and p; : X — G/B are the projection
maps.

1.2 Let Norg(T') be the normalizer of T in G and denote by W := Norg(T)/T
the Weyl group of G. For w € W let n,, € NorgT be a representative and
denote by e, the point n, B in G/B (which is independent of the choice of
Ny ). By the Schubert variety X (w) we mean the closure of the orbit B - e, in
G/B. By the Schubert variety X(w) in X = Q x® G/B we mean the closed
subvariety Q x? X(w). (Of course, if @ = B, then X (w) = X(w)). Note that
the isomorphism Q x® G/B — Q/B x G/B induces an isomorphism of X (w)
onto the closure of the Q—orbit Q - (e1,€e,) in Q/B x G/B.

1.3 Let L C @ be the Levi subgroup of @) containing 7. Fix a W-invariant
scalar product (-,-) on X(T)®z Q and set (X, u) := 2(X, p)/(p, p). We say that
A € X(T) is Q-dominant if (A, a) > 0 for all simple roots a of G contained in
the root system of L.

Theorem ([5,11,12,14,16]) Let A, u € X(T) be such that ) is Q-dominant and
p is dominant. For a union of Schubert varieties Y in G/B let Y be the union
of Schubert varieties @ x2Y in X.

(i) HYY,Lx,) =0 foralli>0.
(i) The restriction map H°(X, Ly ) — HO(Y, Ly ) is surjective.

About the proof For = B, this is just a reformulation of Theorem 2
in [16]. For @ = G this has been proved in [5] for char k = 0, and for
char k > 0 in [12] and [14]. The proofs in [12] and [14] easily generalize to
the situation above (see [11]). a

1.4 Suppose that A is Q—-dominant and p is dominant. Let Y be a union of
Schubert varieties in G/B and let ¥ be as above. The cohomology groups
Hi(Y,L),,) can be calculated as the cohomology groups of a vector bundle on
Q/B (cf. 1.0 for the case Y = G/B):
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Consider the bundle map  : Y — Q/B. Since 7 is a Q—equivariant map
and Q/B is a homogeneous Q-space, to calculate the higher direct images
Rim, Ly, (see [3], IIL, §8) of L, , it suffices to calculate the stalk at the point
1-B € Q/B. Now the fibre of 7 over 1-Bis Y, and L1, = piLr @ p3L,. But
the restriction of p} £ to Y is a trivial bundle on which B acts via the character
—), and the restriction of p3L, is the line bundle £,. Since H*(Y,L,) = 0 for
i > 0 (Theorem 1.3), it follows that R'm,Ly, = 0 for ¢ > 0, and T, Ly, =
Q@ xB (M_,® H°(Y, L,)) (see [3], III, Corollary 12.9). So 7. Ly, is the tensor
product of £, and the vector bundle H°(Y, £,) associated to the B-module
HO°(Y,L,). Since the higher direct images of £, , vanish, we get the following
isomorphism in cohomology (see [3], III, Exercise 8.1):

Corollary H(Q xBY, L, ,) ~ H(Q/B, L ® H°(Y, L,)).

2 Standard monomial theory and the Littlewood—Richardson rule.

2.0 The aim of this section is to show the close connection between the standard
monomial theory and decomposition rules for the group G = Sl,;1(k). The
aim of standard monomial theory (SMT) can be described as follows: Let G
be a simply connected, simple split algebraic group and denote by wi,...,ws
the fundamental weights. Let X(w) C G/B be a Schubert variety.

The first step in SMT is to construct fori = 1,...,n a basis f;1,..., fi 44)
of HO(X(w), Lu;). If p = Y7, aiw; is a dominant weight, then the canonical
map

HO(X(w), £s,)®" ® -+ ® H(X(w), La,,)®* — H(X(w), Ly)

is surjective ([15]), so H°(X (w), L, ) is spanned by the monomials [] f;i,, i =
1,...,m,7=1,...,a;. The second step in SMT is now to give a rule for which
monomials to choose to obtain a basis of H°(X(w), £,). These monomials are
then called the standard monomials.

In this section G will always denote the special linear group Si,+1(k). We
keep the other notation introduced in the preceding section.

2.1 Let p = (p1,...,Pn) With p; > p2 > --- > p, be a partition of a natural
number m. We identify p with its associated Young diagram, which consists
of left justified rows of boxes with p; boxes in the first column, p; boxes in the
second column, ..., and p, boxes in the nth column.

By a Young tableau 7 of shape p we mean a filling of the boxes of the
corresponding diagram with positive integers. We identify a row or a column
of a Young tableau with the sequence of integers filled in the boxes of the
corresponding row or column.

The Young tableau 7 is called row standard if the integers are strictly
increasing in the rows and are smaller than or equal to n + 1. We say that
T is standard if 7 is row standard and the integers are non-decreasing in
the columns (from the top to the bottom). Here we enumerate the rows of a
tableau from the bottom to the top. For 1 < ! < p; we denote by 7(l) the
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Young tableau obtained from 7 by omitting the (! + 1)st row up to the top
row.

Below we give an example of a standard tableau 7 of shape (5,2,1) and
of the truncated tableaux 7(1), 7(2), 7(3) and 7 (4):

314]
4

4]

, T(1)=[4], T(2):, 7(3):, T(4) =

|»:s|u>|w o] =
[usluslww

If i is a positive integer, then we denote by c7(¢) the number of boxes in 7 filled
in with the number i. In the example above, we have cr(1) = 1, ¢7(2) = 2,
cr(3)=1and cr(4) =4

22Fori=1,...,nlet w; = €; +--- + ¢ be the i—th fundamental weight. We
associate to a dominant weight u = Y ; a;w; the partition p(x) = (P1,...,Pn)
with p; := Y. a;. For simplicity we will sometimes write that a Young
tableau is of shape y instead of p(u). If T is a row standard Young tableau of
shape p, then we define the weight of 7 as

v(T):=cr(l)er + -+ er(n+ 1enta.

For 1 <1 < p; denote by v;(7T) the weight v(T(1)).

For the tableau 7 in 2.1 we have v1(7) = €4, v2(T) = 2€4, v3(T) = €3+2€a4,
va(T) = €3 + €3+ 34 and v(T) = vs(T) = €1 + 2¢3 + €3 + 4deq.

Definition Let A be a @—-dominant weight. A standard Young tableau of shape
u is called (@, A)—dominant, if all the weights A + (7)), I = 1,...,p1, are Q-
dominant. If Q = G, then we say just that 7 is A-dominant, and if A = 0 we
just say that 7 is —dominant.

If we consider the example above, (where G = Sls(k)), then T is not w,
dominant since wy + v1(T) = €1 + €2 + €4 is not a dominant weight. But it is
easy to see that 7 is (6e; + 4€2 + 3e3)-dominant.

2.3 In this section we assume k& to be an algebraically closed field of charac-
teristic zero. For a dominant weight A ‘denote by V) the simple G-module
H°(G/B, L)), and for a Q-dominant weight 7 denote by U, the simple L-
module H°(Q/B, L,).

Littlewood—Richardson rule.

(i) Let Ti,...,7; be the A-dominant standard Young tableaux of shape p.
Then the decomposition of the tensor product V) ® V,, is given by

1

eV, = @ Vagu(T))-
j=1
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(i) Let Ty,...,T; be the @Q—-dominant standard Young tableaux of shape p.
The decomposition of V,, into simple L-modules is given by

’ 1
IeSLV)\ - @ U,,(TJ.).

i=1

2.4 We wish to show that these decomposition rules can be seen as special cases
of a more general decomposition rule. We shall first recall a few facts about
standard monomial theory. In the following, k is again an arbitrary field.

Let P;,7=1,...,n, be the maximal parabolic subgroup of G associated to
the fundamental weight w;, let W, be the Weyl group of P;, and let w, : W —
W/W; be the projection. Recall that W is isomorphic to the symmetric group
Sn+1, and W; ~ S; x S,41_; is the stabilizer of w; in W.

Form € W/W; let 1 < j; < --- < ji < n+ 1 be such that r(w;) =
€j, + - +¢€;j,. We associate to 7 the sequence (j1,..., j;). It is easy to see this
induces a bijection

W/W, — I(t,n+1):={(j1,...,5) |1 <ji<---<j<n+1}.

In the following, we will identify W/W; with I(¢,n+1). Moreover, on I(,n+1)
we have a canonical partial order: (ji,...,7%) < (41,...,7f) if ji < j] for
l = 1,...,i. Note that this partial order coincides with the usual Bruhat
order on W/W; under the bijection above. Further, if 7 = (j1,...,J), then
T(wi) =€, + -t €.

2.5 Let Y = X(w1) U---U X(w,) be a union of Schubert varieties in G/B.
Denote by Iy the set of elements 7 € I(i,n + 1) such that 7 < m;(w;) for some
j=1,...,7. The following theorem can be found in [19], or [9], Theorem 3.15.

First Basis Theorem There exists a basis {p(7)} of H°(G/B, L.,,), indexed
by the elements of I(i,n + 1), such that p(r) is a T-weight vector of weight
—7(w;). The restriction p(7)|y of p(7) to Y is not identically zero if and only
if 7 € Iy, and the set {p(7)|y | 7 € Iy} is a basis for H*(Y, L,,,).

In what follows, we refer to this basis as the standard basis of H°(G/B, L.,).

2.6 Suppose that p = 37 | a,w; is a dominant weight, and let 7 be a row
standard Young tableau of shape p(y) = (p1,.-.,Pn). For 1 < I < p; let
1 <4 <n,1<j <a; be such that Il = a3 + -+ a;,-1 + ji. The ith row
Ti,5; of T can then be considered as an element of I(¢;,n + 1). Denote by
p(7i,,5.) € H°(G/B, L,,,) the corresponding section. By the monomial p(7) of
type p(p) we mean the product

p(T) = [ p(e1) € HO(G/B, L)

=1
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For simplicity we denote by p(7) also the restriction of this section to a union
of Schubert varieties Y. To give a basis of H°(Y, £,,), we need first the notion
of a defining chain for a row standard tableau 7.

2.7 Let p be a dominant weight and let 7 be a row standard Young tableau of
shape p(u). Denote by 7; the lth row of 7. We have already seen that we can
consider 7 as an element of I(3,n+1). Forl =1,...,p1 let I} € W be such
that m;,(I'1) = . The sequence (T'y,...,T;,) is called a defining chain for 7, if

[y 2T3 22T,

One can prove that 7 is standard if and only if such a defining chain exists
([7]). Moreover, if T is standard, then there exists a unique minimal defining
chain (T'y,...,Tp,); i.e., if (T, ..., T}, ) is any other defining chain for 7, then
Iy <1, ..., Ty, <T}, in the Bruhat order on W.

Definition Let ¥ = X (w;1)U---U X (w,) be a union of Schubert varieties, and
let T be a row standard Young tableau of shape p(u). The tableau 7 is called
standard on Y if I'y < w; for some j = 1,...,r for the minimal defining chain
(T'1,...,Tp,) of T. The monomial p(7) of type p(u) is called standard, if the
tableau 7 is standard. If 7 is standard on Y, then p(7) is called standard on
Y.

The following theorem is taken from [9], Corollary 9.8. In fact, it is stated there
only for Schubert varieties. But the (scheme theoretic) intersection of Schubert
varieties is a union of Schubert varieties ([16]). Now an easy induction on the
number of irreducible components of maximal dimension proves the following
generalization.

Second Basis Theorem Let = Y, a;w; be a dominant weight. The stan-
dard monomials on Y of type p(u) form a basis of T—eigenvectors of H(Y, L,,).
The weight of p(T) is —v(T).

2.7 Using the basis given by the standard monomials, we wish now to define
a complete flag in HO(Y,L,). Recall that we identify W/W; with I(i,n + 1),
and that we can view a row in a standard tableau also as a coset in W/W; for
some ¢ = 1,...,n. Let now [(-) be the length function on W/W;, and fix a total
ordering “<” on W/W; such that {(61) < l(é2) implies §; < é2. Denote by “<”
the corresponding lexicographic order on the set of standard Young tableaux
of shape p, i.e., 73 < T if there exists a number [, 1 < [ < p;, such that the
first (I — 1) rows of the tableaux are equal, and the Ith row of 7, is greater
than the lth row of 7;. Let now Ty,...,7,, be the standard Young tableaux
on Y of shape p, enumerated such that 7; > 7, > --- > 7,,. Denote by F; the
subspace of H(Y, £,,) spanned by the monomials p(7;), j < i.

Theorem 2.8

(i) The complete flag Fo:=0C F; C --- C Fp, = H(Y, L,,) is B-stable.
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(i) Suppose that A € X(T) is Q-dominant and let T;,,...,T;,, 1 <43 <--- <
is < m, be the subset of (@, A\)-dominant tableaux. Denote by F;,...,F;,
the vector bundles on Q/B associated to the B-modules F;;, j = 1,...,s. Set
M; := H%(Q/B, L) ® Fi;). The filtration of Q-modules

Mo:=0C My C---C My~ H(Q xBY, L))

is good, and M; /M;_, ~ HO(Q/B,EA_l.,,(Tij)).

2.9. The Littlewood—Richardson rule Before we prove the theorem note
that (ii) implies the Littlewood-Richardson rule: Suppose now that k is an
algebraically closed field, char k = 0. Set first @ = G and Y = G/B. Since
H°(G/B, L,) is a G-module, we get by Corollary 1.4:

H°(G x® G/B,L),) ~ H(G/B, L, ® H*(G/B, L,)) ~
~ H°(G/B, L) ® H°(G/B, L,).

Now by (ii) the tensor product is a direct sum @;':1 H°(G/B, Lx+v(T:,)), Where
Ti,,...,T;, are the A~dominant standard Young tableaux of shape p.
If \=0and Y = G/B, then we see similarly that

H°(Q x2 G/B, Lo,) ~ H°(G/B, L,),

and by (ii) this module decomposes into the direct sum @;zl H°(Q/B, E,,(Tij)),
where 7;,, ..., T;, are the Q-dominant standard Young tableaux of shape u.

2.10 Proof of the theorem The proof of (i) is by induction on |u| = Y1 ; a;.

For simplicity we assume that a; > 0 (otherwise one has to replace a;,ws, etc.

by a;,,w;, etc., where ig is such that a;, > 0 and a; = 0 for ¢ < 7p).
Enumerate the elements in Iy such that 7o > 7 > .-+ > 7,. Let ¥; be

the union of all Schubert varieties X (w) in Y such that 7 (w) = 7. If we set
Z; = UJ’Zin’ then Z, C Z,_1 C---C Zo =Y.

Let U; be the kernel of the restriction map H°(Y,L,) — H%(Zi+1,L,)-
We obtain a B-stable flag

U:U_1=0CUo C--CUpy CUp=HY,L,).

Let p(7) = p(7j)p' be a standard monomial in H°(Y, £,,) where p' is an element
of H(Y,Ly—w,). If j < i, then 7; £ 7 for all I > i+ 1, so p(r;) vanishes on
Zit1, and p(T) € U;. On the other hand, if j > ¢, then let (I'y,...,T},)
be the minimal defining chain for 7. Now X(T';) C Y and «(T';) = 7, so
X(T) CY; C Z;y1 and p(T) is standard on Z;4;. Hence the set of standard
monomials p(7) € H°(Y, L,,) of the form p(T) = p(7;)p’, j < i, forms a basis
of U;, and the flag U is a subflag of the complete flag F' in the theorem.

Let R;;; denote the scheme theoretic intersection ¥; N Z;1; (which is a
union of Schubert varieties by [16]). The same arguments as above show that
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the kernel N; of the restriction map H°(Y;,£,) — H°(R;;1,L,) has as basis
the standard monomials p(7) in H°(Y;, L,) such that p(7) = p(r;)p’. So
the restriction map H°(Y,L,) — H°(Y;, L,) induces an isomorphism N; =~
Ui/Ui_l. '

Now put p(7) = p(w)p' € N;. Consider the map f; : N; — H(Y;, Lp—u,),
where f;(p(7)) := p’. The map is well defined and injective. Moreover, if
p € H°(Y;,L,—u,), then p(7;)p' is a standard monomial by the construction
of Y;. So we have B—equivariant isomorphisms

Ui/Ui—l ~N; ~ M-‘r‘-(w,) ® HO(Yi) Eu—w;)-

If 4 = wq, then U = F, which proves (i) in this case. Else we proceed by
induction on |u|. Since |p—w;| = || —1, the flags (FNU;)/U;-1,j =1,...,1,
are B-stable by the isomorphism above, so the flag F' is also B-stable, which
proves (i).

To prove (ii), note that the subquotients in the flag M_» ® U are of the
form

M—A—'ri(uu) ® Ho(Yi’ E#—W:)'

Moreover, the subquotient M_» ® U; /U;_; has as basis the images of the stan-
dard monomials p(7), where T has 7; as first row.

If i is such that A 4 7;(w1) is not a @-dominant weight, then we do not
change the flag. Note that if A + 7;(w1) is not @-dominant, then none of the
standard tableaux having 7; as first row is (@, A)-dominant.

If A\+7;(w1) is @-dominant and |u| > 1, then we repeat the construction of
the filtration in the proof of (i) for H°(Y;, £,_.,), and we refine corresponding
to this filtration the flag U. So we get a flag

0C---CM_ARQU;1=M_\QU; .1 C---
o CMAQUip =M_y®U; C---C M_,® H°(Y, L,).

M_» ® U; /Ui j-1 is isomorphic to M—A—n(wl)—r;(wa) ® H(Yij, Lu—wi—w.)s
where @ = 1if a; > 2 and @ = min{s > 2 | a; > 0} else. Further, the
subquotients have as basis the standard monomials p(7’), where 7 has 7; as
first row and 7']{ as second row. Now if A + 7;(w1) + TJ’- (wq) is not @—dominant,
then we do not change the flag. But if [u| > 3 and A + 7 (w1) + 7j(wa) is

@-dominant, the we repeat the procedure.

So if we repeat the procedure |u| times, then we obtain a flag
V:Vai=0CViC--CV,=M_»® HY,L,)

having the following properties:

(a) V is a subflag of the complete flag F'.

(b) There exists a number I, 1 < ! < p;, and a standard tableau S, of shape
W = awi+- -t ai-1wi,—1+ Jiw;, (see 2.6) such that V, /V,_; has as basis
the images of the standard monomials p(7") with 7 () = S,.
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(¢) 8 (1—1)is (Q, A)-dominant, and if S, (= S,({)) is (@, A\)-dominant, then
l = |p|, 8 = T;, for some (Q, \)-dominant standard tableau 7;; of shape
u, and V, /V,_; is isomorphic to M_,\_,,(Tij).

(d) IfS, is not (Q, \)-dominant, then V; /V,_1 ~ M__,(s,) @ H(Y,, Lp_ 1),
where ¥, C Y is a union of Schubert varieties X (k1) U---U X(¢) such
that m;, (k) is equal to the ith row of S, s =1,...,1t.

Denote by V, the bundle on Q/B associated to the B-module V,. Now if S,
is (@, A)-dominant, then by (b) and (c) we get

HO(Q/B’ v"‘ /VT—I) = HO(Q/Ba ['A+V(T;j)))

where S, = T;

Now suppose that S, is not (@, A\)-dominant, so there exists a simple root
« in L such that (A + v(S,),a) < 0. Let () be the lth row of S,. Since
A+ v(S, (1= 1)) is (Q, \)~dominant and (7()(w;,),a) € {~1,0, 1}, this implies
A +v(S),a) = (TWO(w;,),a) = —1.

Let P(«) be the minimal parabolic subgroup of @ generated by B and the
unipotent subgroup G_, associated to the root —a. Note that (7()(w;,), @) =
—1 implies that so7® < 7, and hence sok, < k, for s = 1,...,t, and hence
Y, is P(a)-stable. So by the isomorphism in (d), the restriction of V,/V,_; to
P(a)/B is the tensor product of a line bundle of degree —1 and a trivial bundle,
and all cohomology groups of this bundle on P(«)/B vanish. But this implies
that the Leray—spectral sequence corresponding to the map Q/B — Q/P(«)
degenerates completely, so H'(Q/B,V,/V,_1) = 0 for all | > 0.

Consider the flag (VN M_,® F;;)/M; ® F;,_,. Since the only subquotient
of this flag corresponding to a (@, A\)-dominant tableau is M_» ® F;;/F;, 1 ~
M—A—V(T,;j)a we get

j*

HI(Q/B!EA ® ‘7:’ij/‘7:'ij—1) = HI(Q/Ba['A-i-T-;J-(w;))'

In particular, we see by induction on j that H(Q/B, L ® F;;) = 0 for | > 0,
so we get
HO(Q/Br ‘CX ®-7:1_-,)/H0(Q/Ba£ ® J:'ij-l) s HO(Q/Bvﬁr\ ® j:ij/]:‘ij-—l)
= HO(Q/B)EA+V(T,;J.))1

which proves (ii). O

3. Standard monomial theory and good filtrations

3.0 We wish to give a short introduction into the theory of standard monomials
for the other simple groups. For a detailed discussion we refer to [6,7,8,9,18].

We have already seen in section 2 that one might view a standard Young
tableau as a sequence of elements in W/W;. A Young tableau for the other sim-
ple groups will be a sequence of so—called admissible quadruples of elements in
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W/W;. Note that only for G = Sl, 11 (k) all fundamental weights are miniscule,
i.e., all weights in H°(G/B, L) can be written as —7(w;) for some 7 € W/W;.
So it is clear that in general the cosets in W/W; do not suffice for an indexing
system for a basis of H°(G/B, L,,,)-

The notion of a (@, A)-dominant tableau generalizes in a straightforward
way also to these Young tableaux. We state (without proof) the generalization
of the decomposition rules in 3.13 and 3.14.

Using similar identifications as in the case Sl,41(k), one can associate to
a Young tableau in the sense of 3.5 a Young tableau in the “classical” sense
(see [10]). We discuss the case G = Sps as an example in 3.15.

3.1 Let p be a dominant weight. We say that u is of type () if the following

holds:

(*) Let wi,...,wn be the enumeration of the fundamental weights as in [1].
Then the coefficient a; in p = Z?:l a;w; is greater than 0 only if: =1, 3,4
for G of type F4,1=1,2,3,6,7 for G of type E7, i = 1,7, 8 for G of type
Eg.

Remarks (i) If a fundamental weight w is of type (%), then |(w, )| < 3 for any
positive root 3.

(ii) SMT is also available if a; > 0 for ¢ = 5 for G of type E7, i = 2 for
G of type Eg. But for the B-stable filtration defined later one needs certain
detailed information about weight multiplicities and the indexing system of the
standard basis. This information is only available if y is of type ().

8.2 We recall the indexing system for the standard basis of H°(G/B, L,),
where w is a fundamental weight of type (x). Let P be the maximal parabolic
subgoup corresponding to w, and denote by Wp the Weyl group of P. Let
m: W — W/Wp be the projection map. Recall that Wp is the stabilizer W,
ofwin W.

We use the usual notation 7 > « and I(7) for the Bruhat order and the
length function on W and W/Wp. An m~—chain for a pair (7, k), 7,k € W/Wp,
is a sequence wo,...,w, of elements in W/Wp and a sequence fi,...,53, of
positive roots, such that either r = 0and 1 = wo =k, or T =wo > -+ > w, =
K, and

wj) = Uwj—1) — 1, sp,w; =wj_1 and |(w;(w),B;)| =mforj=1,...,7.

Remark An equivalent way to define an m-chain for a pair (7, k) is the fol-
lowing: Let Ch(G/P) be the Chow ring of G/P. For w € W/Wp let [X(w)]
be the element in Ch(G/P) determined by the Schubert variety X(w) C G/P.
Denote by H the unique Schubert variety in G/P of codimension one. Then

(X (w)]- [H] = Zdj[X(d’j)], d; >0,
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where the summation runs over all Schubert varieties of codimension one in
X(w). Now an m—chain for a pair (7, k) is a sequence of Schubert varieties

X(1) = X(wo) D -+ D X(w,) = X(x),

such that either X(7) = X(wo) = X(k), or X(w;) is of codimension one in
X (wj—1) and the coefficient of [X(w;)] in [X(w;_1)]-[H]ismforj=1,...,7.

Definition 3.8 A quadruple 0 = (v,6,0,¢) of elements in W/Wp is called
admissible if vy > é > o > ¢, and there exist 3-chains for the pairs (v, 6)
and (o, ¢) and a 2-chain for the pair (6,0). The weight v(6) associated to an
admissible quadruple is defined as

v(6) := (2y(w) + 8(w) + o(w) + 2¢(w))/6.

Remark If G is of type A,, then all admissible quadruples are trivial, i.e., they
are of the form (v,7v,7v,7). If G is of type B,, C, or D,, then they are of the
form (v,7,0,0).

8.4 Denote by I the set of admissible quadruples 6 in W/Wp. For a union
of Schubert varieties ¥ = X(w;) U:--U X(w,) let Iy be the subset of I of
admissible quadruples 6 = (v, 6, 0, ¢) such that y < 7(w;) forsome j =1,...,r.

First Basis Theorem ([6,8,9]) Let w be a fundamental weight of type ().
There exists a basis {p(6) | 6 € I} of H°(G/B, L,,), called the standard basis,
such that p() is a T-weight vector of weight —v(6). The restriction of p() to
a union of Schubert varieties Y is not identically zero if and only if @ € Iy, and
the set {p(#)|y |0 € Iy}, is a basis for H°(Y, L,,).

3.5 We fix an enumeration of the fundamental weights wy, . .., w, (the enumer-
ation need not coincide with the one in [1]). Let 4 = - ; a;,w; be a dominant
weight of type (*). We wish to recall the definition of standard monomials of
type (a) = (a1,...,an).

Let P; be the maximal parabolic subgroup associated to w;, let W; be its
Weyl group, and denote by w;, : W — W/W, the projection.

A Young tableau of shape (a) = (ay,...,a,) is a sequence T = (6, ;),
1<i<n,1<j < aj where 0, ; is an admissible quadruple in W/W;. The
weight v(7T) associated to a tableau is defined as

v(T):= Z v(6;,5)-
1<i<n
1<j5<a;

The monomial p(7') of shape (a) associated to 7 is the product

p(T) := [[ p(6i;) € H*(G/B, L,),

2
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where p(6; ;) € H°(G/B, L.,) is the section associated to the admissible qua-
druple 6; ;. The restriction of p(7') to a union of Schubert varieties will also be
denoted by p(7).

8.8 To describe the standard monomials we need the notion of a defining chain
for a Young tableau 7 = (6;;). For 6;; = (vi;,0ij,0:; ¢ij) let ©;; =
(T4, A j, Zi j, i ;) be a quadruple of elements in W such that the projection
m; maps I'; j, A; j, X; j, ®ij to vij, 6ij, 04 j, respectively ¢; ;. Let 3o be such
that a;, > 0 and a; = 0 for i < 39. The sequence © = (0O, ;) is called a defining
chain for T if

I“io,l Z Aio,l 2 E‘io,l Z Q‘io,l Z I‘io,z Z e 2 Qn,an-

Definition 3.7 The Young tableau 7 is called standard if there exists a defining
chain © for 7. If Y = X(w1) U ---U X(w,) is a union of Schubert varieties,
then 7 is called standard on Y if there exists a defining chain © for 7 such that
I'1,1 < w; for some j = 1,...,7r. The section p(T) € H°(G/B, L,) associated
to T is called a standard monomial of type (a) if the tableau 7 is standard,;
and p(7T) is called standard onY if T is standard on Y.

Second Basis Theorem [6,8,9] Let Y be a union of Schubert varieties in
G/B and let p = Y, aw; be a dominant weight of type (). The set of
standard monomials of type (a) = (ai,...,a,) onY form a basis of H°(Y, L,,).
Moreover, the standard monomials p(T) are T-weight vectors of weight —v(T).

3.8 Using SMT we wish now to define a filtration of H%(Y, L,). To simplify
the notation we say (¢,7) < (¢,5'), 4,7 € N, if either ¢ < ¢ or ¢ = ¢ and
j<j'. Fori=1,...,n fix a total ordering “<” on W/W; such that 7 < x if
() < (k). Denote by “<” the induced lexicographic ordering on the set of
admissible quadruples in W/W;,i.e. 6 <@ ify <4', ory =" and § < &, etc.
Let “<” also denote the induced lexicographic ordering on the set of Young
tableaux of a fixed shape; i.e., if 7 = (6;,;) and 7' = (6; ;) are Young tableaux
of shape (a), then 7 < T if there exists a pair (o, jo), 1 < i0 < n, 1 < jo < a4y,
such that 6;; = 6; ; for (3, j) < (40, Jo), and 6;,j, < 6;

20,J0"

Let Y be a union of Schubert varieties and let u = Y-, a;w; be a dominant
weight of type (x). Denote by {73, ..., 7} the set of standard Young tableaux
on Y of shape (a). We suppose that the enumeration of the tableaux is such
that 7; > .-+ > T,,. Let F; be the subspace of H°(Y,L,) spanned by the
standard monomials p(7;), j < 7, and denote by F the complete flag F : Fj :=
0CF,C---CFyn=HY, L,).

Proposition 3.9 ([11]) The complete flag F' is B-stable.

3.10 We wish to recall the definition of a (@, A)-dominant tableau. For an ad-
missible quadruple 8 = (v, 6,0, ¢) in W/W; let v;, I = 1,...,4 be the following
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elements in X(T') ®z Q (cf. Definition 3.3):
1 1
vi = A+ gy(wi), v =t gélw),

1 1
V3 i=vy + ga(w,-), vy =vs+ §¢(w,) = A+ v(0).

Definition 3.11 Let A be a @-dominant weight and let w; be a fundamen-
tal weight of type (*). An admissible quadruple 8 in W/W; is called (@, A)-
dominant, if (v;,a) > 0 for ¢ = 1,...,4 and for all simple roots o of L. A
standard Young tableau 7 = (6; ;) of shape (a) is called (Q, A)-dominant if
for all pairs (4,5), 1 < i < mn, 1 < j < q;, the admissible quadruple 6; ; is
A+ E(i’,j’)<(i,j) v(0ir j+))-dominant.

Remark Denote by 1; the base point in W/W;. The tableau 7 = (6; ;) with
6;; = (1;,1;,1;,1;) forall 1 < ¢ <mn, 1< j < a;, is the minimal standard
tableau with respect to the total ordering, and 7 is (Q, A)-dominant for any
@-dominant weight A.

3.12 Let Y be a union of Schubert varieties in G/B, let p = Y., a;w; be a
dominant weight of type (*), and suppose that ) is a @—dominant weight. Asin
3.8, denote by {7, ...,T,,} the set of standard Young tableaux on Y of shape
(a), and let {T;,,...,T;,}, 41 < -+ < i,, be the subset of (@, A)-dominant
tableaux. We suppose that the enumeration is such that 73 > --- > 7. Let

F':Fo=0CF, C---CF, =HY,L,)

be the subflag of the complete flag F' in 3.8 corresponding to the (Q,\)-
dominant tableaux. Denote by F;, the vector bundle on @Q/B associated to
the B-module F;,.

Theorem 3.13 ([11]) Denote by M; the Q-module H°(Q/B, L ® F;;). The
Q-stable filtration Mo = 0 C M; C --- C M, = H°(Q x®Y, Lx,,) is a good
filtration such that

M;/Mj_1 ~ H(Q/B, L ® Fi;/Fi;_,) =~ H(Q/B, Lau(z.,))-
Moreover, H(Q/B, L\ ® Fi;/Fi;_y) =0 for 1 > 0.

3.14 Generalized Littlewood—Richardson rule. ([10,11]) Suppose now
that k is an algebraically closed field of characteristic zero. Then every G- or
L-module decomposes into the direct sum of simple modules, and the simple
modules are the modules of the form H°(G/B, L)) tespectively H°(Q/B, L»),
where ) is a dominant weight in the first case, and a @-dominant weight
in the second case. So Theorem 3.13 gives us in fact a rule to compute the
decomposition of the L-module H%(Q x2 Y, L A,x) into simple L-modules.

In particular, if @ = G and Y = G/B, then we obtain the tensor product
decomposition rule

H°(G/B, L»)® H(G/B,L,) = @ H(G/B, Lxtu(1)),
T
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where the sum is taken over all (G, \)-dominant standard Young tableaux of
shape (a).

Further, if we set A = 0 and Y = G/B, then we obtain a restriction rule
to compute the decomposition of H°(G/B, L) into the direct sum of simple
L-modules:

H°(G/B,L,) = P H(Q/B, L)),
T

where the sum is taken over all (@, 0)-dominant standard Young tableaux of
shape (a).

38.15 Example A translation of the notion of a standard Young tableau in the
sense of section 3 into the “classical” notion of a Young tableau (as in section
2) can be found in [10] for the classical groups. As an example we shall discuss
the case G = Sps. We use the same notation for the fundamental weights
w1,ws as in [1]. :

Since |{w;, B)| <2, i = 1,2, for all roots, the admissible quadruples are all
of the form (7, 7,6, 6), so we might rather talk about the admissible pairs (7, 6).
We identify first W/W, with the orbit W - w;, i = 1,2. We get

W wy = {e1, €2, —€2,—€1}, W -wy = {e1 +€2,€61 — €3, —€1 + €2, —€1 — €2}

To each weight (or coset) we associate a sequence of numbers in the following
way: €1 : (1), €2 : (2), —€2 : (3), —€1 : (4), €1+ €2 : (1,2), €1 — €2 : (1,3),
—€1 + € : (2,4), —e1 — €z : (3,4). If 6 = (7,6) is an admissible pair in
W/W;, then we identify  with the (classical) tableau of shape (2) (for i = 1),
respectively (2,2) (for ¢ = 2), having the sequence corresponding to 7 as first
and the sequence corresponding to § as second row. We have the following
admissible pairs:

1 2 3 4 12 13 13 24 34
i:]': ’ ) b 7‘:2: 1 ’ ’ ’

1 2 3 4 12 13 24 24 34

Suppose now that 7 = (6; ;) is a standard Young tableau (in the sense of
section 3) of shape u = ajw; + aawz. We associate to 7 a “classical” Young
tableau 7' of shape p(u) := (2a1 + 2a2, 2a3,0,0) in the following way: Let 7’
be the tableau having for m = 1,...,a; the tableau corresponding to 6, ,, as
(2m —1)st row and 2mth row, and for m = 1,..., a, the tableau corresponding
to 62,m as (2a; + 2m — 1)st and 2(a; + m)th row.

It is now easy to check that this correspondence gives a bijection between
the standard Young tableaux 7 of shape u in the sense of section 3 and the
standard Young tableaux 7' of shape p(u) in the sense of section 2 which
have the property that for { = 1,...,a; + a; the subtableau consisting of the
(21 — 1)st and 2{th row of 7’ is an admissible pair in the list above.

Let v(T') := (cr'(1) — c7:(4))ex + (c7/(2) — c7+(3))e2. Then v(T) =
v(T'). Further, if A is @Q-dominant, then 7 is (@, A)-dominant if and only if
(A+v(T'(1)),a) >0for I =1,...,2a; + 2a; and all simple roots a of L.
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For example, if @ = G and A = p = w; + wy, then the (Q, A)-dominant
standard Young tableaux of shape p(u) = (4,2,0,0) are

374] [1[3] [1[2] [2[4] [1[3
3[4 [13] [1]2] [2]4] [2]4
4 4 4 3 3
I I 1 B k1 E‘ 3
112] [1[3] [1[2] [1[3] [1[2
12] [1[3] [1]2] [1[3] [1[2
N N £ Y
N B N Y Y

Suppose now that k is algebraically closed and char ¥ = 0. Then, by
3.14, setting V,, := H°(G/B, L,) for a dominant weight 7, we get the following
decomposition:

Vw1+w2 ® Vw1+w: 2Vv‘iwx @ ‘/20)14-2‘02 @ 2V'2W1+w2
@ 2“/2(4)1 @ I/’3(4): @ Vng EB ng @ VO'
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0. Introduction

Constructive proofs of the Fundamental Theorem of Algebra are known
since 1924, when L. E. J. Brouwer, B. de Loor, and H. Weyl showed that
nonconstant monic polynomials over the complex numbers have a complex
root. Later that year Brouwer generalized this result by showing that each
pelynomial f(X) having an invertible coefficient for some positive power of X
has a root. These proofs are constructive equivalents of classical analytical
proofs of the Fundamental Theorem. Modern versions of their results are in
[BB, pp. 156ff] and [TvDa, pp. 434ff]. The time has come to give a constructive
algebraic proof.

In [M] the authors use algebraic methods to show that the algebraic closure
C*? of the field of rationals Q in the field of complex numbers C is algebraically
closed and dense in C. In the exercises it is indicated how one can construct
roots of monic polynomials over the complexes more generally [M, p. 191].
There is, however, no indication how to accomplish this without resorting to
some choice principles, or how to generalize this to polynomials of which it is
only known that the coefficient of some positive power of X is invertible. We
show that the more general version is indeed provable, and without resorting
to choice principles.
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- We have two target audiences in mind: Constructivists and computer
algebraists. To accommodate the former we present the algebraic results in
more detail than would otherwise be necessary. For the latter, we will presently
discuss some aspects of constructive mathematics, how it relates to algorithms,
and why avoiding choice principles matters to us.

There exist several schools of constructive mathematics, the most well-
known being Brouwer’s intuitionism, Markov constructivism, and Bishop con-
structivism [BR]. Modern followers, however, do not always closely adhere to
the philosophies of the originators, so many ‘dialects’ developed, some of these
motivated by the existence of models for constructive logic. The mathematics
we use is based on the constructive logic that holds for all topos models [G],
and is also called intuitionism. This intuitionism is essentially stricter than the
constructivisms mentioned above, so our results hold in all topos models, and
are acceptable to most constructivists at the same time. The most important
restriction is the lack of choice principles. Fortunately, only a small amount of
knowledge of intuitionism is required for understanding the constructive proofs
of the Fundamental Theorem.

A clear illustration of where constructivism differs from classical math-
ematics occurs in proving statements of the form “there exists z such that
A(z).” Classically it suffices to show that it is impossible that there is no z for
which A(z) holds. A constructive proof must construct = as well as a proof of
A(z). In particular, a constructive proof of “4 or B” must consist of a proof
of A or a proof of B. If B is the statement “not A”, then a constructive proof
of “A or not A” means either proving A, or proving that assuming A leads
to an absurdity. Such proofs cannot always be found. So the Principle of the
Excluded Middle fails.

There is a difference between proving “not A” and showing that A can-
not be proven. We illustrate this through examples. It is well-known that
constructive proofs have computational content. So if there is a constructive
proof of the existence of a function f:IN — N such that A(n, f(n)) holds for
all natural numbers n € N, then, by classical techniques outside the realm of
constructivism, one can show that f is a computable function. On one hand,
if by classical means we know that there is no computable function f such
that A(n, f(n)) holds for all n, then we know that “there exists f such that
A(n, f(n)) for all n” cannot be proven. On the other hand, a constructive proof
of the negation of this statement implies that the negation also holds in clas-
sical mathematics: There is no solution f whatsoever. Let us identify Turing
machines with natural numbers by some primitive recursive bijective encoding.
By the Halting Theorem there is no computable function f such that f(n) =0
exactly when Turing machine n halts, but there are noncomputable ones. So
it cannot be shown constructively that such a function exists, and it cannot be
shown constructively that such a function does not exist. Another example,
also based on the Halting Theorem, says that there is no constructive proof to
decide for all binary sequences a: N — {0, 1} whether a(n) = 1 for some n.

The three constructive schools mentioned above accept certain choice prin-
ciples that are at least as strong as the simple axiom of Countable Choice. The
simple axiom of Countable Choice says that if A(m,n) is a statement about
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natural numbers m,n such that for all m there exists n with the property
that A(m,n) holds, then there exists a function f such that A(m, f(m)) holds
for all m. [BB] and [TvDal, in their proofs of the Fundamental Theorem of
Algebra, make essential use of choice principles extending Countable Choice.
Although not explicitly stated, the construction of the algebraic closure C* in
[M] does not make essential use of any choice principles. By avoiding choice
principles, results will hold in all topos models. This implies that if we are
able to construct a solution z of an equation f(z) = 0 over the (Dedekind)
reals using topos intuitionism, then z is locally continuous in the parameters
of the equation. So, for example, we cannot show the existence of a solution of
X3 +pX +q = 0 over the (Dedekind) reals when (p, g) is close to (0,0), because
it would imply the existence of a continuous solution X (p, ¢) in a neighborhood
of (0,0) [JR]. For the same reason we cannot find a solution to the equation
X% + ¢ = 0 over the (Dedekind) complex numbers when c is near 0. With
Countable Choice, however, one can find solutions. So if we allow the use of
Countable Choice, then continuity of solutions in the parameters is no longer
guaranteed.

The lack of choice principles does not prevent us from constructing func-
tions. Suppose that A(m,n) is a statement for which we can prove that for all
m € N there exists a least n for which A(m, n) holds. Define f by f(m) = the
least n for which A(m,n) holds. Then A(m, f(m)) holds for all m. The key
distinction is that we are able to give a finite description that uniquely defines
f

Constructive mathematics without choice principles is stricter than ‘com-
putable’ mathematics. Its constructive nature more than allows us to con-
struct algorithms from the constructive proofs: It also proves the correctness
of the algorithms. These implicit algorithms, however, are usually grossly ineffi-
cient since in practice constructivists concentrate on abstractness and generality
rather than on the computational complexity of their results.

In §1 we prove the existence of algebraic closures of countable discrete fields
(Poor Man’s Algebraic Closure). In §2 these are used to construct algebraic
closures of countable factorial discrete fields (Rich Man’s Algebraic Closure).
Within such algebraic closures we can factor nonzero polynomials into irre-
ducible factors over many subfields. We apply these results to Q and, in §3,
establish isomorphisms with the algebraic closure C® of Q in C. Then we use
the algebraic closedness of C* to show that many more polynomials over C
have roots in C, strengthening the results of [BB] and [TvDa)].

1. The Poor Man’s Algebraic Closure

It is not necessary to recapitulate all of algebra just because we use con-
structive methods. It is easily seen that many basic results from classical
algebra are constructive. Therefore we concentrate on the less obvious results,
or results that require an original proof, together with some glue to create one
coherent presentation.

First and foremost, sets need not be discrete. A set is discrete if for all of
its elements a, b we can determine whether a = b or not. The natural numbers
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N, integers Z, and rationals Q are discrete sets. Obviously, polynomial rings
R[X] over a discrete commutative ring R are also discrete. But the reals R are
not: For a real to exist it suffices, for each natural number m > 0, to be able to
give a rational interval of length at most 1/m ‘in which the real number lies,’
see §3. For each Turing machine we can construct a sequence {a,}, by setting
a, = 1/n if the machine does not stop in n steps, and a, = 1/m if the machine
stops in m < n steps. As a Cauchy sequence, {a, }» determines a real number.
By the Halting Theorem, we cannot show for each Turing machine whether the
limit of its corresponding sequence {a, }» equals 0 or not.

A discrete set is finite if there exists a bijection with an initial segment
{0,...,n—1} of N. The empty set (if » = 0) is finite. Finite combinatorial the-
orems are essentially constructive. This is true for all finite group theory that
we will need, including Sylow’s Theorem. Some caution is required, though.
Exceptions are statements like ‘each subgroup of a finite group is finite.” For
example, let G = {0, 1} be the group of two elements, and let H be the sub-
group of G generated by the image of a binary sequence {ay},. Then H = G if
and only if a,, = 1 for some n, and H = {0} if a, = 0 for all n. By the Halting
Theorem, such a choice cannot always be made constructively.

In classical mathematics, groups, rings, and modules are defined by simple
universal equational axioms like, for rings, z(y + z) = zy + zz. In constructive
algebra we use the same schemas to axiomatize them. A ring is nontrivial when
1 is not equal to 0.

We do not require equality on groups, rings, and modules to be discrete.
This creates problems when we want to define integral domain and field. In the
case of integral domains, an axiom saying that from zy = 0 one can conclude
z = 0 or y = 0 is too restricting because of the difficulty of establishing “or”:
Even the real numbers cannot be shown to satisfy this axiom. Instead, one has
a binary relation z # y on the ring, classically usually equivalent to “z = y is
false.” On R and C we define z # y if and only if z — y is a unit. Being nonzero
and being a unit cannot be shown to be the same. An integral domain then
satisfies: If z # 0 and y # 0, then zy # 0. Similarly, R and C—obviously—
satisfy the field property: If z # 0, then z is a unit. The technical problems
with inequalities grow fast, and we refer the reader to [M, pp. 41ff] and [Ru]
for further details and developments. When we restrict ourselves to discrete
structures, we avoid these problems because we can use the classical definitions:
A discrete nontrivial commutative ring is a discrete domain if for all @,y such
that zy = 0 we have ¢ = 0 or y = 0. A discrete domain is a discrete field if all
nonzero elements are units. One easily verifies that the standard construction
of a quotient field of a discrete domain produces a discrete field.

One easily verifies that elementary finite-dimensional linear algebra over
discrete fields (rank of a matrix, finite-dimensional null spaces and ranges,
Gaussian elimination, determinant) is constructive. If A is a square matrix
over a discrete field k, then the commutative matrix ring k[A] is discrete. The
characteristic polynomial of A is the polynomial f(X) = det (X — A) over
k C k[A]. For all invertible S, det (X —A) = det (X—S~'AS). The eigenvalues
of A are the roots of f(X) in k or in a discrete field extension of k. The
construction of roots of polynomials over discrete extension fields is a nontrivial
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matter. Even the existence of such roots is not guaranteed [M, p. 153], unless
the base field k is countable (Theorem 1.6).

A module over a commutative ring R is finite-rank free if it is isomorphic
to R™, for some n € N. '

1.0 Proposition (Cayley-Hamilton) Let R be a commutative ring, and f(X)
be the characteristic polynomial of an endomorphism « of a finite-rank free R-
module. Then f(a) = 0.

Proof For an algebraic proof, see [M, p. 72]. O

Proposition 1.0 allows for a non-algebraic proof. Let A be an n x n matrix
with variables X; ; as entries. Then the characteristic polynomial f(A) over
Z in n? variables reduces to 0, as is shown by classical means. A general the-
orem of logic says that the same reduction must work constructively. There
are several results below that can be reduced to trivialities using general the-
orems from logic. We refrain from using these methods so as to increase the
accessibility of our results.

A polynomial over a commutative ring is monic if it has leading coefficient
1. A polynomial f = a® X™+- - -+ag has degree at most n, and degree less than
m for all m > n. We may not know the degree of a polynomial, because we
may not know whether a ‘leading’ coefficient equals 0 or not. Naturally, monic
polynomials and polynomials over discrete commutative rings have a degree.

An R-module M is faithful if rM = 0 implies » = 0, for all » € R.

1.1 Proposition Let R C S be commutative rings, and a € S. Then the
following are equivalent:

(1) « satisfies a monic polynomial of degree n over R.
(ii) R[a] is generated by n elements as an R-module.

m as a faithful R-submodule M, generated by n elements, such that
iii) S h faithful R-submodule M, g d b 1 h th
aM C M.

Proof Obviously, (i) implies (ii), and (ii) implies (iii). Suppose (iii) holds, and
let my,...,m, generate M. There are B; ; € R such that am; = >, §; jm;.
Let f be the characteristic polynomial of the matrix {3; ;}. Then f(a)M =0,
so f(a) = 0. So (i) holds. O

A commutative ring S O R is called integral over the commutative ring
R if all s € S are roots of monic polynomials over R. From Proposition 1.1
it now follows that if « is root of a monic polynomial over R, then so are all
elements of R[a]. We say that « is integral over R if R[] is integral over R.
If R is a discrete field, then—following tradition—we commonly use the term
algebraic instead of integral.
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1.2 Proposition Let R C S be commutative rings, and let «,3 € S be such
that « is integral over R, and (3 is integral over R[a]. Then R[«, (] is integral
over R. The elements of S that are integral over R form a subring.

Proof 1t suffices to prove the first claim: R[a, (] is a finitely generated module
over R[], and R[a] is a finitely generated module over R. Multiplication
of the generators of the two extensions yields a finite set of generators of
R[a, ] as module over R. O

1.3 Proposition Let R, S be commutative rings such that S is a finitely gen-
erated integral ring extension of R. Then S is a finitely generated R-module.

Proof There exist rings Ry C Ry C --- C R, such that R; = R[ay,...,q;], and
R, = S. Then R;,; is a finitely generated R;-module, for all . Multiplication
of the generators from the different extensions produces a finite set of generators
for R, = S as module over Ry = R. O

1.4 Proposition Let R C S C T be commutative rings such that T O S and
S D R are integral extensions. Then T' D R is integral.

Proof For each a € T there is a monic polynomial f(X) = X™ + a; X" ! +
-+++ a, over S such that f(a) = 0. Let S’ = R[a1,...,a,]. Then S'[a] is a
finitely generated module over S’, and S’ is a finitely generated module over R.
So S'[a] is finitely generated as module over R. Thus « is integral over R. O

A set S is countable if there exists a function s: N — S from the natural
numbers onto S, that is, S = {so, 51, 52,.. .}

A subset Y C X is called detachable from X if for all z € X we can decide
whether z € Y or z ¢ Y, that is, z is not an element of Y. So a commutative
ring R is discrete exactly when {0} is detachable from R. More generally, an
ideal I C R is detachable from R if and only if the quotient ring R/I is discrete.

Countable discrete sets may be finite or (countably) infinite, but we cannot
always know which one. For example, let po, p;, ... be the ascending sequence
of prime numbers, and let {a,}, be a binary sequence with at most one 1.
Let P C Z be the ideal generated by the sequence of elements {anpn}n. One
easily verifies that P is a prime ideal that is detachable from Z. The quotient
ring R = Z/P is countable, but, by the Halting Theorem, we may not know
whether it is finite or not. We may not know its characteristic either. The
quotient field of R is a countable discrete field whose characteristic we cannot
determine.

1.5 Proposition Let R be a countable commutative ring whose finitely gener-
ated ideals are detachable, and let I be a proper finitely generated ideal. Then
I is contained in a maximal ideal that is detachable from R.

Proof R = {ro,r1,...} for some enumeration r. Construct a sequence of
finitely generated ideals Io C I C --- as follows: Set Iy = I} if I; + ;R = R,
then set I,y = I;, otherwise set I;;; = I; + r;R. Let M = U]- I;. Then
r; € M if and only if r; € I;;. So M is a detachable maximal ideal. OJ
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1.6 Theorem Let f be a nonconstant polynomial over a countable discrete
field k. Then there is a countable discrete field E D k and a € E such that

fla) =0.

Proof By the Euclidean Algorithm all finitely generated ideals of the countable
ring k[X] are principal and detachable. So f is contained in a detachable
maximal ideal M. Set E = k[X]/M. O

Let {an}n be a binary sequence, and let k be the countable discrete field
extension of Q generated by the sequence {a,/2},. Then we may not know
the factorization of X2 — 2 over k. So in general one cannot give a minimal
polynomial for @ in Theorem 1.6.

A discrete field K is a splitting field for a monic polynomial f over a
discrete field k if there exist aj,...,a, € K such that f = (X —a1)--- (X —ay)
and K = k[ay,...,as]. Repeated application of Theorem 1.6 now gives:

1.7 Theorem Let f be a monic polynomial over a countable discrete field
k. Then there exists a countable discrete splitting field for f over k. O

In general one cannot show that countable discrete splitting fields are
uniquely determined up to isomorphism [M, pp. 153ff].

The construction in the proof of Proposition 1.5 depends on the enumer-
ation of the ring R. Different enumerations may give different maximal ideals.
To avoid choice principles when we use Theorem 1.7 in the proof of the theo-
rem below, we need to choose some canonical method to construct one unique
splitting field K with enumeration from a given discrete field £ with enumera-
tion. Let {aog,as,...} be an enumeration of a countable discrete field k. Then
the canonical enumeration of k[X] (based on {an}) is the one that lists, for
i1 =1,2,... successively, all polynomials of degree at most ¢ in the coefficients
ao,ai,-..,a; in lexicographical order with the leading term considered most
significant. If we use the canonical enumeration, then, for all f € k[X], the
field extension k[a] of Theorem 1.6 is uniquely determined, and k[a] receives
its (canonical) enumeration from k[X]. Repeating this process, using canon-
ical enumerations at each step, the splitting field of Theorem 1.7 is uniquely
determined by the enumeration of k£, and by f.

1.8 Theorem (Poor Man’s Algebraic Closure) Each countable discrete field
k is contained in a countable discrete field that is algebraically closed and
algebraic over k.

Proof Let fo, f1,... be an enumeration of the monic polynomials over k.
Construct a chain of countable discrete fields ko C k; C - - - by setting ko = £,
and by letting k;, be the canonical splitting field of f; over k;. Let Q = |J, k.
Clearly, Q is countable, discrete, and an algebraic field extension of k. Let
f be a monic polynomial over 2. By Proposition 1.6 there is a countable
discrete field extension E D  such that f(a) = 0 for some a« € E. By
Proposition 1.4 « is algebraic over k. So f;(«) = 0 for some i. But f;
splits in k;4; C Q. Thus a € Q. a
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Note that the special construction of k;1; from k; enables us to avoid
choice principles in the construction of €2, since all k; are uniquely determined
by any enumeration of kg = k. By the uniqueness of the k;, the union Q is
uniquely determined.

Splitting fields cannot be uniquely determined up to isomorphism, so one
cannot show that countable discrete algebraic closures of a discrete field k are
uniquely determined up to isomorphism.

1.9 Corollary The field Q of rational numbers has a countable discrete
algebraic closure. ]

In §2 we will show that for Q countable discrete algebraic closures are
unique up to isomorphism.

2. The Rich Man’s Algebraic Closure

A discrete domain R is a GCD-domain if for all a,b € R there exists a
greatest common divisor ¢ = ged(a, b). Obviously, ¢ is unique up to a unit, and
GCD-domains satisfy the familiar equations [M, pp. 108ff]

ged(ged(a, b), ¢) = ged(a, ged(b, ¢));

c - ged(a, b) = ged(ca, cb);

if z = ged(a, b), then ged(a, bc) = ged(a, zc); and
if a | bc and ged(a,b) = 1,then a | c.

All equations are up to a unit. Equality-up-to-a-unit need not be a discrete
equality relation on the equivalence classes. (Consider, for example, the subring
of Q generated by the sequence {a,/2},, for some binary sequence {as}n.)
Note that, by the Euclidean Algorithm, k[X] is a GCD-domain for all discrete
fields k.

Let f be a polynomial over a GCD-domain. Then cont(f), the content
of f, is the greatest common divisor of the coefficients of f; f is primitive if
cont(f) = 1.

2.0 Lemma (Gauss’s Lemma) Let f and g be nonzero polynomials over a
GCD-domain R. Then cont(fg) = cont(f)cont(g).

Proof We may assume that f and g are primitive. Let m and n be the
degrees of f and g, respectively, let ¢ = cont(fg), and let d = ged(c,an),
where a,, is the leading coeflicient of f. We complete the proof by induction
on m+n. If f = a, X™, then we are done. Otherwise, d | (f — am X™)g, so,
by induction, d | cont(f — am f)cont(g). Since g is primitive, d | (f — am X ™),
thus also d | f, proving d = ged(c, am) = 1. Similarly, ged(c, b,) = 1, where
b, is the leading coefficient of g. So ged(c, amb,) = 1. Thus fg is primitive. O
Let f and g be polynomials over a commutative ring R such that g is
monic. By the Remainder Theorem there are unique polynomials ¢ and r over
R, with r of a degree less than the degree of g, such that f = gq¢g + r. The
coeflicients of ¢ and r are polynomials in the coefficients of f and g.
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2.1 Theorem (Unique Interpolation) Let ao,...,a, and vo,...,v, be ele-
ments of a commutative ring R such that a; — a; is a unit, for all < # j. Then
there is a unique polynomial of degree at most n over R such that f(a;) = v;
for all 3.

Proof By induction on n. If n = 0, choose f = vg. If n > 0, then there is a
polynomial g of degree at most n — 1 such that g(a;) = (vi — vn)/(ai — an) for
all i < n. Take f = (X — an)g + vn.

For uniqueness it suffices to show that if f(a;) = 0 for all ¢, and f is of
degree at most n, then f = 0. The case for n = 0 is trivial. Suppose n > 0.
By the Remainder Theorem, f = g(X — a,) for some g of degree at most
n — 1 with g(a;) = 0 for all ¢ < n. By induction on n, g = 0. So f = 0. O

A nonzero element p of a discrete domain R is irreducible if it is not a
unit, and if p = ¢r implies that g or r is a unit, for all ¢q,r € R.

A discrete domain is a unique factorization domain or UFD if each nonzero
element is a unit or equals a product of irreducibles, and such that if p; - - - pp, =
q1 - - - gn are two products of irreducibles, then m = n and there is a permutation
w such that p; and ¢,; differ by a unit, for all <. Discrete fields and Z are unique
factorization domains. A discrete domain R is factorial if R[X] is a discrete
UFD. This definition seems unnatural at first, but is a natural generalization
of the notion of factorial field: A discrete field is factorial when we can factor
polynomials over it into irreducibles. See also Theorem 2.3. Algebraically
closed discrete fields are factorial, since all nonconstant polynomials factor into
linear terms.

A set is infinite if it contains arbitrarily large finite subsets. Without choice
principles we cannot show that an infinite set contains a countably infinite
subset.

2.2 Theorem (Kronecker 1) If R is an infinite UFD with finitely many units,
then so is R[X]. Thus R is factorial.

Proof Obviously R[X] has finitely many units since it has the same units as
R. Let f € R[X] be of degree n > 0. We complete the proof by induction on n.
It suffices to provide a finite collection of polynomials that includes all possible
factors of f. Let ao,...,a, be distinct elements of R. If f(a;) = 0 for some 1,
then we divide a factor X —a; out of f and apply induction. So we may assume
f(a;) # 0 for all i. Each nonzero element of R has finitely many divisors, so
there are finitely many sequences by, ..., b, such that b; divides f(a;), for all
t. By the Unique Interpolation Theorem 2.1, there is for each such sequence
a unique polynomial g over the quotient field of R, of degree at most n, such
that g(a;) = b;. Since R is detachable from its quotient field, we can find a
finite subcollection of g with coefficients in R that includes all factors of f. O

An essentially identical proof of Theorem 2.2 was given, about nine decades
before Kronecker, by the astronomer Friedrich Theodor von Schubert (1758-
1825) in 1793 [vS]. See also [C, pp. 136ff].
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2.3 Theorem (Kronecker 2) If R is a factorial domain, then so is R[X].

Proof For m > 0, let R[X,Y], be the submodule of R[X,Y] of polynomials
of X-degree less than m. The submodule R[X,Y],, is closed under taking
factors. Let ¢t R[X,Y]» — R[X] be the R-module map that is the restriction
of the ring morphism that is the identity on R[X] and maps Y to X™, and let
Ym: R[X] — R[X,Y]m be the R-module map that takes X™ to Y?X", where
n=gm+r with 0 < r < m. Then ¢,, and ¥,, are each other’s inverses.
Each factorization of a polynomial f € R[X,Y] of X-degree less than m must
be of the form f = ¥ (g)¥m(h). So it suffices to factor ¢, (f) in R[X]. O

Note that, in the proof of Theorem 2.3, ¢,,(f) may have factorizations
that do not translate into factorizations of f.

By Kronecker 1 the domain Z is factorial, so, by Gauss’s Lemma, Q is
factorial too. Thus, by Kronecker 2, Q(Xi,X3,...) is factorial, and so is
k(X1,X2,...), for all algebraically closed discrete fields k. Next we will show
that finite algebraic extensions of Q are also factorial. Since Q has charac-
teristic 0, several results are proven for discrete fields of characteristic 0 only.
Generalizations involving separability conditions are discussed in [M].

Elements a,b of a commutative ring R are strongly relatively prime if
aR + bR = R. The derivative f’' of a polynomial f is defined as usual. A
polynomial f over a commutative ring is separable if f and f' are strongly
relatively prime. This is different from tradition: One usually defines separable
polynomials over discrete fields as the ones that are products of our separable
polynomials [Ri]. Clearly, factors of separable polynomials are again separable,
for if fg is separable, then there exist polynomials s, such that sfg +t(f'g +
fg') =1;s0 (sg+tg')f +tgf = 1. Let Rla] O R be commutative rings. Then
« is separable over R if it is root of a separable polynomial over R.

Each n xn matrix over a discrete field k is also a vector of an n2-dimensional
vector space. We can find a smallest m such that the vectors I, 4, A%,..., A™
are linearly dependent. Then A is root of a monic polynomial p over k of degree
m, the so-called minimal polynomial of A. Since A is root of its characteristic
polynomial of degree n, we have that m < n. The matrix ring k[A] forms
a discrete commutative ring such that k[A4] = k[X]/(p). If S is an invertible
n X n matrix, then k[A] = k[S™1AS] by the isomorphism that is the identity
on k and that sends A to S~'AS. The matrix A is separable if its minimal
polynomial p is separable.

2.4 Theorem Let A be an n X n matrix over a discrete field k. Then the
minimal polynomial of A is separable and splits into linear factors if and only
if A is diagonalizable. If A is diagonalizable, then the projections of k™ onto
the eigenspaces of A can be written as polynomials in A of degree at most n—1.

Proof 1If A is diagonalizable, with set of eigenvalues A, then it is root of the
separable polynomial [],.,(X — A). Conversely, if the minimal polynomial
of A is separable and splits into linear factors, then the eigenspaces V) of A,
being the null spaces of matrices A — A that are associated with the strongly
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relatively prime linear factors X — A of the minimal polynomial of A, are direct
summands such that >, Vi = k™.

Suppose A is diagonalizable, and write f = (X — A)gx(X) for each root
A of the minimal polynomial f. As f(4) = 0, the matrix g(A4) maps into
Va. If p # X are eigenvalues, then X — u divides g(X), so gx(4)V, = 0.
The polynomial 1 — 37, 1 gx(X)/gxr(}) has a degree less than the cardinality
of A, but has all the eigenvalues as roots; so it is identical to 0. Thus

Yaca 9r(A)/ga(A) is the identity, and gx(A)/ga(}) is the projection onto Vx. O

2.5 Theorem Let A and B be commuting diagonalizable n x n matrices over
a discrete field k. Then k™ admits a basis relative to which A and B diagonalize
simultaneously.

Proof Let V)\A and V2 be the )-eigenspaces of A and B, respectively. Since
B commutes with A — A, for all A, the eigenspaces of A are invariant under
B, hence also under the projections onto the eigenspaces VMB , which are
polynomials in B. Therefore, Vi# = Z# VAN V#B. So k™ = Z,\’# VAN Vf. O

The class of discrete fields admits linear elimination: Let k be a discrete
field, and vy, ..., v,, w be vectors in k™. Then w is a linear combination of the
vectors v; with coefficients in some discrete field extension of k if and only if the
rank of the matrix (v, ..., vn, w) is equal to the rank of the matrix (vy, ..., v,).
So if w is a linear combination of the v; over some discrete extension field, then
it is already a linear combination with coefficients in k.

2.6 Theorem If A and B are commuting separable n x n matrices over a
discrete field k of cardinality greater than n(n — 1)/2, then there exists ¢ such
that k[A, B] = k[A + cB].

Proof Let K be a countable discrete subfield that includes the coefficients of
the matrices A and B, and contains at least 1+ n(n — 1)/2 elements from k.
By Theorem 1.7 we can construct a countable discrete field L O K over which
the minimal polynomials of A and B split into linear factors. So A and B
are—simultaneously—diagonalizable over L with diagonal elements ay,...,a,
and by,...,b,. Choose ¢ € K distinct from (a; — a;)/(b; — b;), for all pairs
i,j with b; # b;. Then a; + cb; # a; + cb; whenever (a;,a;) # (bi,b;). By
Theorem 2.4, A and B can be written as polynomials of degree at most n — 1
in A+ cB. So A and B, as vectors in n? variables, are linear combinations
of the vectors I, 4 + ¢B,...,(A + ¢cB)"~! with coefficients in L. By linear
elimination, 4 and B are polynomials in A + ¢B over K, hence over k. O

The proofs of Theorems 2.4, 2.5, and 2.6 are based on [Ri]. For further
improvements and strengthenings, see [M, pp. 158ff] and [Ri].

2.7 Lemma Let R be a commutative ring containing a discrete field k, and
let a, 3 € R and polynomials f,g over k be such that f(a) = g(8) = 0. Then
there are commuting square matrices A, B of the same size over k such that
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f(A) = g(B) = 0, and a ring map from k[A, B] onto k[a, 5] that is the identity
on k, sends A to a, and sends B to (3.

Proof The ring k[z,y] = k[X,Y]/(f(X),g(Y)) is a finite-dimensional vector
space over k. Multiplication by z and y are linear transformations on
this vector space. With respect to some basis, these transformations are
represented by commuting matrices A and B satisfying f(4) = ¢(B) = 0,
and k[4, B] = k[z,y]. So we can construct the ring map from k[4, B] onto
k[a, 8] that is the identity on k, sending A and B to « and (3, respectively. [

2.8 Corollary (Primitive Element) Let R be a commutative ring containing
an infinite discrete field k, and let « and (3 be elements of R that are separable
over k. Then there exists 0 such that k[, 5] = k[6].

Proof There are separable polynomials f, g € k[X] such that f(a) = ¢g(8) = 0,
so there is a commutative matrix ring with surjective ring map o: k[4, B] —
k[, 8], and such that f(A) = g(B) = 0. By Theorem 2.6 there is C € k[A, B]
such that k[C] = k[4, B]. Choose 8 = o(C). O

Let K D k be discrete fields such that K is finite-dimensional as a vector
space over k. We shall write [K : k] for the dimension. If L is a discrete field
extension of K that is finite-dimensional, then so is L over k, and we have
[L:k] =[L:K][K : k]. If two of the three dimensions are finite, then so is the
third and the equation holds.

2.9 Theorem Let k C k[a] be discrete fields of characteristic 0 such that k is
factorial. Then k[a] is factorial too.

Proof Let f be a polynomial over k[a] of degree n > 0. It suffices to give an
irreducible factor. We complete the proof by induction on n. We may assume
that f is separable; otherwise, the greatest common divisor of f and f' is a
proper factor, and we are done by induction. Let k[a, 3] = k[a][X]/(f(X));
k[a, 8] is a finite-dimensional vector space over k. Then k[a, 3] = k[f], with
g(8) = 0 for some polynomial g over k of degree [k[6] : k]. If g is irreducible,
then so is f. Otherwise, let p be a proper factor of g. Then k[f] maps onto
k[X]/(p) with nonzero kernel p(6) - k[#]. Hence h(B) = p(#) is mapped to
0, for some h(X) € k[a][X]. Then the greatest common divisor of f and h
is a proper factor of f. O

Recall that there exist countable discrete fields whose characteristic we
cannot determine. Theorem 2.9 can be generalized to some of such discrete
fields, and to some discrete fields of finite characteristic, by replacing the char-
acteristic 0 condition by Seidenberg’s ‘Condition P’ [M, p. 188].

2.10 Theorem (Rich Man’s Algebraic Closure) Each countable factorial field
k of characteristic 0 has a countable discrete algebraic closure §} such that
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for each finitely generated subfield K D k, each element of Q is root of an
irreducible polynomial over K.

Proof The construction of Q is identical to that in the proof of Theorem
1.8. By Corollary 2.8, each finitely generated intermediate field is of the form
K = kl[a]. Let 8 € . Then K[B] = k[6] for some 6§ € Q. Both 6 and « are
roots of irreducible polynomials over k, so k[f] and k[a] are finite-dimensional
vector spaces over k. Then K|[{] is a finite-dimensional vector space over K of
degree

[K[B] : K] =k[6] : k]/[k[e] : K.
So 0 is root of an irreducible polynomial over K of degree [K[G] : K|. O

2.11 Corollary The field of rational numbers Q has a countable discrete
algebraic closure C such that for each finitely generated subfield k O Q, each
element of C is root of an irreducible polynomial over k. ]

Without additional choice principles we cannot show that all algebraic
closures of a countable factorial field of characteristic 0 are countable. But the
countable algebraic closures are all isomorphic.

Let k, K be discrete fields, and o:k — K a morphism. Let k[a] be a
discrete field extension of k, and «a a root of an irreducible polynomial f over
k. If B € K is a root of o(f), then o extends to a morphism from k[a] into K
that takes a to (.

2.12 Theorem All countable discrete algebraic closures of a countable facto-
rial field of characteristic 0 are isomorphic.

Proof Let K = {ag,a1,...} and L = {bo,b1,...} be countable discrete
algebraic closures of the countable factorial field £. By induction we construct
embeddings o,:k, = klao,...,an—1] — L. Naturally, ko = k embeds into
L. Suppose o, exists. Then a, is root of an irreducible polynomial f over
kn, and there is a smallest, hence unique, i such that b; is root of oy, (f).
Extend o, to 0,41 by setting o,41(a,) = b;. The union of the o; is an
isomorphism from K to L. O

3. The Fundamental Theorem of Algebra

There are several ways to define the set of real numbers, hence at least
as many ways to define the set of complex numbers. Some of these cannot
be shown to be equivalent in constructive mathematics. Each choice yields
another field of complex numbers for which one may try to prove some form of
the Fundamental Theorem of Algebra. Below we restrict ourselves to the ones
that seem most relevant to constructivists.

A (rational) Cauchy sequence is a sequence of rational numbers {r, }, such
that for all integers m > 0 there exists M such that |r,—ry| < 1/mforall p,q >
M. A Cauchy sequence is modulated if M = M(m) is a function from N to N
[TvD, pp. 253ff]. [BB, pp. 18ff] uses a ‘fixed’ modulus function M(m). This
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further restriction will be inessential in what follows below. Define a binary
relation ~ on the collection of Cauchy sequences by {rp}n ~ {sn}n» if and only
if for all m > 0 there exists M such that |r, — s4| < 1/m for all p,¢ > M. One
easily verifies ~ to be an equivalence relation. A similar modulated equivalence
relation exists where M = M(m) is a function N — N. A Cauchy real is an
equivalence class. A modulated Cauchy real is a ‘modulated’ equivalence class
of modulated Cauchy sequences. Both kinds of Cauchy reals with the canonical
operations form commutative rings. A (modulated) Cauchy real is invertible
exactly when it has a (modulated) Cauchy sequence {ry}, for which there exist
m > 0 and M according to the definition above, and |rps| > 2/m.

A subset Q C Q of the rationals is a left Dedekind cut if it satisfies

p < ¢ € Q implies p € Q.

For all p € @ there exists g such that p < g € Q.

For all integers m > 0 there exist p < g such that [p—¢| < 1/m, p € Q,

and g ¢ @, that is, ¢ is not an element of Q.

Left Dedekind cuts form the set of Dedekind reals R. We easily verify that R,
with the canonical operations, is a commutative ring. We write @ > 0, Q is
positive, when p € @ for some p > 0, and @ < 0, @ is negative, when ¢ ¢ @
for some ¢ < 0. A Dedekind real @ is invertible, written @ # 0, exactly when
@ > 0 or @Q < 0. Note that this makes # on R different from denial of equality.
If @ # 0 is false, then @ = 0. Analogous to (modulated) Cauchy reals and
Dedekind reals we have (modulated) Cauchy complex numbers and Dedekind
complex numbers, the last ones forming the set C = R + iR, with a4+ b # 0
exactly when a + ib is invertible. Then a + b # 0 exactly when a # 0 or b # 0,
for all a,b € R. The relation # is an apartness [Ru].

We may consider Q a subring of the modulated Cauchy reals by identi-
fying each rational with the equivalence class that contains the corresponding
constant Cauchy sequence. The modulated Cauchy reals may be considered a
subring of the Cauchy reals. The Cauchy reals may be considered a subring
of R by identifying each Cauchy sequence {r,}, with the Dedekind cut Q de-
fined by p € @ if and only if for some m > 0 and M satisfying the definition of
Cauchy sequence, p+ 2/m < rps.

If ¢ is a (modulated) Cauchy complex number, then the absolute value |c|
exists and is a (modulated) Cauchy real. Similarly, if ¢ € C, then |c|] € R. A
Cauchy sequence is a sequence {c,}, of elements of C such that for all m > 0
there exists M such that |c, — ¢4| < 1/m for all p,qg > M. The sequence is
modulated if M = M(m) is a function. A (modulated) Cauchy sequence of
modulated Cauchy sequences is a (modulated) Cauchy sequence, and a Cauchy
sequence of Dedekind reals is a Dedekind real. But a Cauchy sequence of
modulated Cauchy sequences is only a Cauchy sequence, and a modulated
Cauchy sequence of Cauchy sequences is only a Dedekind real. With Countable
Choice one can show that each Dedekind real is a modulated Cauchy real, and
thus the Cauchy reals are closed under taking Cauchy sequences. Therefore,
in the presence of Countable Choice, modulated Cauchy sequences are the
common way by which to define reals; without choice it is the (left) Dedekind
cuts [G, pp. 415ff].
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A set U C R is open if for all u € U there exist rational numbers p, g
such that p < u < ¢, and v € U whenever p < v < q. Open sets on R" are
defined by the product topology. If ¢,d € R™ are such that ¢; # d; (¢; — d;
is a unit) for some ¢, then there exist open sets U,V C R™ such that ¢ € U,
d € V,and UNV = (. Functions f are continuous if f~1(U) is open for all
open U. Constant functions, the identity, and the basic ring theoretic functions
are continuous. Compositions of continuous functions are continuous. So all
polynomial functions are continuous.

A commutative ring is impotent if it satisfies the axioms

a?=0 impliés a=0, and

a’ = a implies a =0ora=1.

One easily verifies that R and C are impotent rings.

If R is impotent and a,b € R are such that a + b = 1 and ab = 0, then
a = 1 or a = 0 and, therefore, b = 0 or b = 1. For if we multiply the first
equation by a, and apply the second equation, we get a? = a? + ab = a.

3.1 Lemma Let R C S be impotent commutative rings, and o € S. If
f,9 € R[X] are strongly relatively prime, and f(a)g(e) = 0, then f(a) is a
unit or g(a) is a unit. So g(a) =0 or f(a) = 0.

Proof sf +tg = 1 for some s,t € R[X]. So s(a)f(a) =1 or t(a)g(a) =1. O

3.2 Theorem Let R be an impotent commutative ring with discrete subfield
k. Ifa € R is algebraic over k, then k[a] is a discrete field. The set of elements
in R algebraic over k is a discrete subfield.

Proof 1t suffices to prove the first claim. By Proposition 1.2 each 8 € k[a]
is algebraic over k, hence root of a monic polynomial ¢ € k[X]. We can
write ¢ = X™h with h(0) # 0. Then X™ and h are strongly relatively
prime, so /™ is a unit or h(B3) is a unit. So B is a unit or B = 0. O

Let C* be the set of algebraic numbers, that is, the set of complex numbers
that are algebraic over Q, and R* = C*NR be the set of algebraic reals. Then
C?® and R? are discrete.

3.3 Lemma Let f € R*[X], and a,b € R such that f(a) < 0 < f(b). Then
there exists a modulated Cauchy real c € R® with f(c) = 0. If a < b, then
a < ¢ < b; otherwise, a > ¢ > b.

Proof We may assume that a < b. By continuity there are a',b’ € Q such
that a < a’ < b’ < band f(a') <0< f(b'). For each 7 € R* we have f(r) <0,
f(r) =0, or f(r) > 0, so we can construct sequences {as }n, {bn }n, and {c, }n,
where ¢, = (an + bs)/2, by:

ap = a' and by = V'.

Ont1 = bpy1 = cp if f(en) = 0.

Gpt1 = ¢p and bpiq1 = by if f(cn) < 0.

Gpt1 = Gy and bpy1 = ¢y if f(cn) > 0.
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Then ap, < ant41 < bpp1 < by and |a, — by| < (¥ — a')(1/2)", for all
n. So {cp}n is a modulated Cauchy sequence with limit ¢ € R. By the
Remainder Theorem, applied to Q[Y][X], there is ¢ € Q[X,Y] such that
f(X) = (X —Y)g(X,Y) + f(Y). There is an M such that |g(z,y)] < M
whenever a < z,y < b. So |f(z)— f(y)| < M|z —y| whenever a < z,y < b; thus
{f(cn) — f(an)}n and {f(cn) — f(bn)}n converge to 0, with f(an) < 0 < f(bn).
By continuity, f(c¢) = 0; and ¢ € R* by Proposition 1.4. O

8.4 Corollary All nonzero polynomials f € R*[X] have a finite set of roots
in R®. If f is of odd degree, then it has at least one root.

Proof Suppose f is of odd degree. We may assume f to be monic. Let b be
1 plus the sum of the absolute values of the coefficients of f, and let a = —b.
Then f(a) < 0 < f(b).

Let f be nonzero and of degree n > 1. We complete the proof by induction
on n. We may assume f to be separable. By induction, f’ has a finite set of
roots 1y < -+- < 7. If f' has no roots, then f has one. Otherwise, f has
one root in the interval (r;,7;41) exactly when f(r;)f(rj4+1) < 0, one root
less than r; exactly when f(ry — 1)f'(r1 — 1) > 0, and one root bigger than
rm exactly when f(rn, + 1)f'(rm + 1) < 0. O

Obviously, the element i = 4/—1 is algebraic. Let a,b € R be such that
a+ b is an algebraic number. Then a + tb is root of a polynomial with rational
coeflicients, so, by conjugation, a — b is root of the same polynomial. So a and
b are algebraic numberts too. Thus C* = R*+iR*°. If ¢ € C%, then the absolute
value |c| € R®. The order relation < with restriction to R is decidable: If
a € R? is nonzero, then a is invertible, so a > 0 or @ < 0. Obviously we can
enumerate the monic polynomials over Q, and for each such polynomial we can
enumerate its roots in R® in a unique manner ‘from left to right.’ So R* is
countable, hence C¢ is countable. Combining this with Theorem 3.2 we get:

8.5 Corollary The set of algebraic numbers C® is a countable discrete field. [J
3.6 Corollary All algebraic numbers are modulated Cauchy.

Proof Let ¢ € R®. Then c is the unique root of the polynomial f(X) = X —¢
satisfying f(c — 1) < 0 < f(c + 1). O

Let {an + b, }» be a (modulated) Cauchy sequence of algebraic numbers.
Construct the (modulated) rational sequence {c,/n + id,/n}, by setting c,
equal to the largest integer less than or equal to na,, and d, equal to the
largest integer less than or equal to nb,. Then the rational sequence has the
same limit as the sequence over C®. So each (modulated) Cauchy sequence of
algebraic numbers has as limit a (modulated) Cauchy number.

3.7 Lemma Let a,b € R®. Then there exist c,d € R® such that (c + id)? =
a + ib.

Proof First suppose that b = 0. As C¢ is discrete, either a > 0 or a = 0,
ora < 0. Ifa >0, then \/a € R® is a root of X? — @, by Lemma 3.3. If
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a < 0, then we get iv/—a. In the general case we choose ¢ and d from the
roots of X? — (a + va? +b?)/2 and X? — (—a + Va2 + b%)/2, respectively. O

The theory of finite groups is essentially completely constructive. One
easily sees that most proofs of the class equation for finite groups are easily
constructivized. So Sylow’s theorem is constructive: If G is a finite group and
p is a prime number such that p” divides the order of G, then G has a finite
subgroup of order p™. A subgroup of order p"™ with n maximal is called a
p-Sylow subgroup.

Let R be a commutative ring. A polynomial f € R[Xj,...,X,] is sym-
metric in the variables X1,..., X, if f(X1,...,Xn) = f(Xr1,..., Xzna), for all
permutations w. Clearly, the coefficients o; of the polynomial

Y +X)Y +X) (Y +Xn) =Y "+ 1Y 4o o

are symmetric. They are the elementary symmetric polynomials. Each sym-
metric polynomial is element of the 1ing R[oy,...,0,] [M, pp. 73ff].

Let K D k be discrete fields. An element o € K splits over k if it is root
of a polynomial over k that factors into linear factors over K. The field K is
normal over k if each a € K splits over k.

Let K D k be discrete fields such that K = k[f]. Then 8 splits over k if
and only if K is normal over k. For if 6 splits, then there is a monic polynomial
f over k that splits with roots 8 = 64,...,0,,. The elementary symmetric
polynomials in the 6; are coefficients of f, hence elements of k. Let a € K.
We can write a = p(8), for some p € k[X]. Then « is root of the polynomial
g9 = [1;(X — p(6;)), whose coefficients are symmetric in the 8;. So g € k[X].

Let K = k[f] and 8 = 64,...,6, be as above, and suppose, additionally,
that f is irreducible and the characteristic of k equals 0. Then all §; are
distinct, and for each j we have a unique automorphism of K that is the
identity on k and maps 8 to 6;. These automorphisms form the Galois group
G of the extension K D k. If H is a finite subgroup of G, then 8 is root of
the polynomial A = [], (X — o(6)) over the field L D k generated by the
coefficients of h. The field L is called the fixed field of H, since its elements
are exactly the ones that are fixed by the automorphisms of H. Obviously, h
is irreducible over L. So [K : L] = |H]|, the cardinality of H.

3.8 Lemma Fach polynomial over Q has a root in C®.

Proof Let f be a monic polynomial over Q, and let K be a splitting field
of f over Q which, by Corollary 2.8, has a finite Galois group G. It suffices
to embed K in C®. Let H be the 2-Sylow subgroup of G with fixed field &.
Then [k : Q] = |G|/|H| is odd. By Corollary 2.8 there exists « such that
k = Q[a], and « is root of an irreducible polynomial of odd degree over Q. So
by Corollary 3.4 there exists an embedding of £ into C*. The group H contains
a chain of subgroups Ho C --- C H, = H of order |H;| = 27, with fixed fields
K =KyD: -2 Ky, =k Sol[Kj: Kjii| =2 for all j. By the quadratic
formula, if M D L are discrete fields of characteristic greater than 2 such that
[M : L] = 2, then M = L[B], with 3% € L. So by Lemma 3.7 we can extend an
embedding from k;.,; into C* to one from k;, for all . So K embeds into C*. O
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3.9 Theorem (Discrete Fundamental Theorem) C? is algebraically closed.

Proof Let f be a nonconstant polynomial over C*. By Theorem 1.7 there
exists a countable discrete splitting field of f. Let g € Q[X] have all roots of f
as roots, including multiplicities; so f | g. By Corollary 2.8 there is a splitting
field Q[a] of g. Let h € Q[X] be the minimal polynomial of a. Then h(8) = 0
for some B € C*. So g, and thus f, splits into linear factors over Q[3] C C*. O

The Discrete Fundamental Theorem enables us to study the roots of poly-
nomials over C more generally through approximation by polynomials over
C?. To make this work we must show that if two polynomials are close to each
other, then their roots are close too.

Let f=3; an—j X’ be a polynomial over C. Define |f| = > lasl-

Let f = X™ +a; X" !+ ...+ a, be a monic polynomial over C, and let
¢ € C. Then [£(c)] > [el"—[aze™ 4+ ~+an] > |e"—max(1, |c[*~1)(|f|-1). So
if le| > [f], then |£(c)] > [el*~(lel — £+ 1) > [£"~% and if |f(c)| < £,
then |c| < |f|. If g is a monic factor of f, then for all ¢ > 0 there exists a
polynomial g* = [[;(X —c¢;) over C* with |c;| < |f| for all ¢;, and |g—g*| < e.
So |g| <e+lg*| <e+ (1+|f)™ Solg| < (14 |f)™

ff=(X—-c1) (X —cn), € >0, and c are such that |f(c)| < €™, then
H]. |c — ¢j| < €. Thus |c — ¢;| < € for some j. Let, additionally, R > |f|, and
g = (X —dy)---(X —dy). Suppose that |f —g| < (¢/R)™ for some ¢ > 0. Then
lg(cj)| < €™ for all j. So for all j there exists k such that |c; — di| < €.

By the Remainder Theorem, there exists for all polynomials f(X) a poly-
nomial G¢(X,Y’) such that f(X)— f(Y) = (X —Y)G4(X,Y). The coefficients
of G5 are polynomials in the coefficients of f. So given R > 0 and an integer
n > 0, there exists M such that for all monic f of degree n and z,w € C, if
|fl < R, |z| < R, and |w| < R, then |Gy(z,w)| < M.

3.10 Lemma Let n > 0 be an integer, and R, € R be such that ¢ > 0.
Then there exists 6 > 0 such that for all f = (X —¢1)---(X —¢p) and g =
(X —di)---(X —dpn) over C, if |f| < R, |g| < R, and |f — g| < §, then there
is a permutation 7 such that |c; — d;| < € for all j.

Proof We may assume that ¢ < 1. Let S = (1 + R)". Choose M > 1 such
that for all monic f of degree at most n and all z,w, if |[f| < S, |z] < S, and
|lw| < S, then |f(z) — f(w)| < |z — w|M. Choose 0 < €2, < -+ < &; = € such
that e2; < &};_; and €253 < €3;_2/(100M25™+1), for all j. Set § = £3,/S™ 1.
Let f = [[;(X —c¢j)and g = [1;(X —d;) be monic polynomials of degree n such
that [f| <R, |g| < R, and |f — g| < 6. Then [f(z) —g(2)| < |f —g|S"" " < €2n
for all z satisfying |z| < S. We complete the proof by induction on n. Suppose
n > 1. Then there exists di such that |c, — di| < €2n—1. We may assume
that £ = n. Let f*(z) = f(2)/(z — ¢cn) and g*(2) = g(2)/(z — dn). For all z
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satisfying |z| < S, |z — ¢n| > €20-2/5M, and |z — dpn| > €2n—_2/5M, we have

e ooty = (TN = ) + £ (en = dn) = 9(2)(z = cn)
') =g = | e |

< |£(2) — 9(2)|5M /302 + |f(2)|e2n-1(5M /e2n—2)"
< €3nBM/egn_2+ RS™ean_126M% /2 _,
< 50M25n+182n_1/€§n_2 < 52n—2/2-

Let |w| < S. Then there exists z as above such that |w — z| < €3n—2/4M.
So [£*(w) — ¢ (w)] < [f*(w) — £*(2)] + £ (2) — 6 ()] + lo*(2) - 9" ()] <
€an—2/4+€2n—2/2+€2n_2/4 = €2n—2. By induction there exists a permutation
7 such that for all j < n there is mj < n such that |¢; —dr;| < e. Set 7n =n. O

We cannot show that all nonzero polynomials over C have an invertible
leading coefficient, so we need to consider polynomials that are ‘almost-monic.’

38.11 Lemma Let f and g be polynomials over C® such that f is monic and
of degree n, and g is of degree at most m. Let 0 < ¢ < 1/2 be such that
lgl < (e/(2|f]))™*™+1. Ifc is a root of g(X)X™*! + f(X), then exactly one of
the following holds:

le| > |fl/e, and |1/c — 1/d| < €/|f| for some root d of g(X)X + 1.

le| < |fl, and |c — d| < € for some root d of f(X).

Proof Let c be a root of g(X)X"*! + f(X). Then |c| > 2|f] or |¢| < 2|f]|.
Suppose |el > 2I]. Then lg(e)e + 1] < (If] - 1)/lel < 1/2. So le[™*1]g| >
lg(c)e] > 1/2. Thus |e[™*! > (|f|/)™*?, hence |c| > |f]/e. Also, |(g(c)e +
1)/c™t| < (e/|f])™F2. So |1/c—e| < ¢/|f| for some 100t e = 1/d of the monic
polynomial (g(1/X)/X + 1)X™+1.

Suppose |c¢| < 2|f|. Then

I£()] < lg(e)e™ ] < lgllel™ ™+ < lgl(2]F )™ F < e

So there is a root d of f(X) such that |¢c — d| < e. O

3.12 Lemma Let F' = a, X™ +---+4ao be a polynomial over C such that a; is
a unit. Then there exists k > j such that aj is a unit, and a monic polynomial
F* over C of degree k, such that F* divides F. If the coefficients of F are
(modulated) Cauchy numbers, then so are the coeflicients of F'*.

Proof By induction on n — j. Write F = a;j(bpX™ + -+ + bo), let r =
| X7 4+b;_1 X7~ 4. +bo|,and s = [bp X™++ - -+b; 41 XIF1|. Then s > 1/(2(67)")
or s < 1/(6r)". If s > 1/(2(67)™), then aj is a unit for some k > j: Apply
induction. Suppose s < 1/(67)". By continuity there exists y > 0 such that
s+ (n—J)y < 1/(6(r — jy))*. Let § = |a;|y/4. If h is a polynomial over
C?® of degree at most n such that |h — F| < 8, then it has exactly j roots
¢1,...,¢j, counting multiplicities, satisfying |¢;| < |h|. Define A* = [[,(X —¢;).
Then A* is a monic polynomial of degree j that divides h. By Lemmas 3.10
and 3.11, for all € > 0 and for all G over C of degree at most n such that
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|G = F| < & there exists §; > 0 such that if hy, hy are polynomials over C*
of degree at most n satisfying |h; — G| < 61, then |} — h3| < €. So the
maps h — h* and h +— h/h* can be continuously extended to all G over C
of degree at most n that satisfy |G — F| < é. In particular, F* divides F. O

The continuity of the map h — h* cannot be strengthened to a continuous
map to some linear factor of h*, since in general the permutation 7 in Lemma
3.10 need not be uniquely determined.

3.13 Theorem (Fundamental Theorem for (modulated) Cauchy complex
numbers) Each polynomial f(X) over the (modulated) Cauchy complex num-
bers having an invertible coefficient for some positive power of X has a (mod-
ulated) Cauchy root.

Proof We may assume f to be a monic polynomial X™ 4+ a; X" +--- +a,,
where each a; is the limit of a (modulated) rational Cauchy sequence {a; m }m-
We construct a sequence {cm }m of roots ¢, € C® of f,, = X™ + czl,mX"—:l +
-+ + anm as follows: Choose for ¢y one of the roots of fo. From c,_; we
select for ¢,, from among the roots of f, the one that is closest to cpm—1,
that is, |em-1 — ¢m| < |em-1 — d| for all roots d of f,. If there is no
unique choice, then select the one with largest real part. If there are still
two choices left, select the one with largest imaginary part. Then {cm}m is
a (modulated) Cauchy sequence whose limit is a root of f. a

The uniqueness of the choice of ¢,, in the proof of Theorem 3.13 implies
that the sequence {cp}m is uniquely determined by a finite description, and
no choice principles are needed.

Theorem 3.13 does not extend to all of C: We cannot find a continuous
solution X(c) to the equation X2 4 ¢ = 0 when ¢ € C is near 0.

3.14 Theorem Letn > 1, andlet F = X“—IfalX”_l—}—-_ - ++an be a polynomial
over C such that there exists j satisfying n’a; # (’;)a{, that is, nla; — (';)a’1
is a unit. Then F has a proper monic factor F* such that F* and F/F* are

strongly relatively prime.

Proof Given F, there exists ¥ > 0 such that |(X + ¢)® — F(X)| > ¥, for
all ¢. So there exist ¢,y such that for all monic polynomials g over C* of
degree n, if |g — F| < u, then |g| < 2|F| = R and g has roots ¢,d with
lc — d| > 2ne. For n, ¢, R, there exists § < u satisfying Lemma 3.10. Choose a
monic polynomial g = [];(X —¢;) of degree n over C* such that [g — F| < §/3.
The equivalence relation on the roots of g generated by the binary relation
le; — ex] < 2¢ contains at least two distinct equivalence classes, and can be
extended to a decidable equivalence relation ~ that divides the collection of
roots into exactly two equivalence classes C and D. For all monic polynomials
h = Hj(X — dj) of degree n over C* such that |h — g| < §/2, there is a
permutation 7 such that |¢; — dr;| < €. The equivalence relation on the roots
of g induces an equivalence relation on the roots of A, dividing them into two
equivalence classes as well, say C' and D'. These classes are independent of .
Define h* = [[4cp/(X — d). The map h — h* can be continuously extended
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to all monic G over C of degree n that satisfy |G — g| < §/2. Let h° = h/h*.
There are unique polynomials h, and h, with h, of degree less than degh®
and h, of degree less than degh*, such that h*h, + h°h, = 1. The maps
h +— h°, h — h,, and h — h, are continuous wherever h* is. So F* is a proper
monic factor of F, and F* and F° = F/F* are strongly relatively prime. O]

A polynomial f over C has a simple root a if f(a) = 0 and f'(«) is invert-
ible. The existence of a simple root for a monic polynomial can be expressed in
terms of its coefficients. The following approach is from [W]. Let R be a commu-
tative ring, and let f = (Y +X1)(Y +X2) - (Y +X,) = Y™ +a; Y"1+ - ta,
be the polynomial over R[Xj, ..., X,] with as coefficients the elementary sym-
metric polynomials a; = 0;(X1,...,X,). To express that —X; is a simple root
of f, we need that E; = [[,,;(X; — Xi) # 0, where z # y stands for z — y
is a unit. So for f to have a simple root we need at least one E; # 0. So
(Y + E1)(Y + E3)---(Y + E,) # Y™, that is, 0;(Ey,..., En) # 0 for some
J. These polynomials are symmetric, so there exist polynomials d;(Y1,...,Y,)
such that dj(ai,...,an) = 0;(E,...,E,). Define f to be unramifiable, if
d;j(aq,...,a,) # 0 for some j.

3.15 Theorem FEach unramifiable monic polynomial over C has a simple root.

Proof By Theorem 3.14, an unramifiable monic polynomial f of degree n > 1
has a proper factorization f = gh, for monic g, h. Then g or h is unramifiable
again. By induction on n, g or h has a simple root, which is a simple root of f. [J

8.16 Theorem Let r € R, and let a1(Y),...,an(Y) be rational functions over
C? such that a;(r) exists, forall j. Then f(X,r) = X" +a1(r)X" 1+ +an(r)
splits in C.

Proof We may assume that n > 1. We proceed by induction on n. There
are rational numbers p and ¢ such that p < r < ¢, and a,;(s) exists for all
p < s < q and all 5. If the inequality gcd(f(X,Y),a%%(X,Y)) # 1 over
C%(Y) has infinitely many solutions ¥ = s € R® with p < s < g, then,
by Theorem 2.1, f(X,Y) and %(X,Y) share a nonconstant factor g(X,Y)
over C*(Y) that is monic in X. So g(X,r) is a proper factor of f(X,r):
Apply induction. Otherwise, let p < dy < .-+ < d,, < ¢ be the finite set
of solutions of the inequality. Set p = dp and ¢ = dy4+1. By Lemma 3.10
we can find roots ci(t),...,ca(t) of f(X,t) that are continuous in ¢ € R
on each interval (d;,dj;1). Continuous roots of neighboring intervals can
be pairwise connected to make a continuous solution on the whole interval
(p,q), because the roots of f(X,d;) are discrete sets. O

The constructions of the continuous solutions ck(¢) in the proof above
essentially use that the intervals (d;,d;;1) are simply connected. Theorem
3.16 does not apply to the polynomial X2 4 ¢ with ¢ € C, since a complex
number depends on two real values rather than one: its real and its imaginary
part. :



128

"Wim Ruitenburg

4. References

[BB]

[BR]

[vS]

[TvD]

[TvDa]

W]

E. Bishop & D. Bridges, Constructive Analysis, Grundlehren der
mathematischen Wissenschaften, Vol. 279, Springer Verlag, 1985.

D. Bridges & F. Richman, Varieties of Constructive Mathematics,
London Mathematical Society Lecture Note Series, Vol. 97, Cam-
bridge University Press, 1987.

M. Cantor, Vorlesungen iiber Geschichte der Mathematik, Vol. 4,
Teubner Verlag, Leipzig, 1908.

R. Goldblatt, Topoi, the categorial analysis of logic, Studies in logic
and the foundations of mathematics, Vol. 98, North-Holland, 1979.
A. Joyal & G. E. Reyes, Separably real closed local rings, J. Pure Appl.
Algebra, 43(1986), 271-279.

R. Mines, F. Richman, W. Ruitenburg, A Course in Constructive Al-
gebra, Universitext, Springer Verlag, 1988.

F. Richman, Separable extensions and diagonalizability, Amer. Math.
Monthly, 97(1990), 395-398.

W. Ruitenburg, Inequality in constructive mathematics, Dept. of
Math., Stat. & Comp. Sci., Marquette University, Technical Report
No. 285, (1988).

F. T. von Schubert, De inventione divisorum, ad annum 1793, Nova
acta scient. imp. Petropolitanae. Petropoli, 11(1798), 172-182.

A. S. Troelstra & D. van Dalen, Constructivism in Mathematics, An
Introduction, Vol. I, Studies in logic and the foundations of mathe-
matics, Vol. 121, North-Holland, 1988.

A. S. Troelstra & D. van Dalen, Constructivism in Mathematics, An
Introduction, Vol. II, Studies in logic and the foundations of mathe-
matics, Vol. 123, North-Holland, 1988.

G. C. Wraith, Generic Galois theory of local rings, pp. 739-767 in:
Applications of Sheaves (eds.: M. P. Fourman, C. J. Mulvey, D. S.
Scott), Lecture Notes in Mathematics, Vol. 753, Spinger Verlag, 1979.



Computational Aspects of Lie Group Representations and Related Topics 129
Proceedings of the 1990 Computational Algebra Seminar
pp. 129-142 in CWI Tract 84 (1991)

On the computation of normal forms
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De Boelelaan 1081
1081 HV Amsterdam
The Netherlands

0. Introduction

A classic problem in differential equations is to compute the normal form
of a given equation
z =v(z) (z e R™),

at an equilibrium point, which we assume is 0. In other words, we suppose that
v(0) = 0. We give a brief description of how to theoretically compute a normal
form of v. The normalizing process is entirely algebraic; thus, we shall assume
that v is a formal power series

v(z) = Az +va(z) + -+ vg(z) + -

where A is a nonzero n X n real matrix and v, € Fy = F4(W) is an n-vector
of homogeneous polynomials of degree £ on W = R™. To simplify v we use a
succession of near identity coordinate changes. Let us try to bring the quadratic
terms vz of v into normal form using the coordinate change

z=p(y) =y + ¢2(y)
where o € 3. In the new coordinates v becomes
Do(y)y =2 =v(p(y)) (y€R™).
In other words, with the usual notation D for derivative,
¥ =ps(y)
=(I + Dp2(y)) " o(y + ¢2(v))-
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Up to quadratic terms, the formal power series for w = @, v is

w(y) = (I — Dpa(y) + - - )(A(Yy + p2(v)) + v2(y + 92(y)) + )
= Ay + Ap2(y) — Dp2(y) Ay +v2(y) + - -~
= Ay + (v2(y) — [ 2] (¥)) +---
= Ay +wa(y) +---

where [A, ;] is the Lie bracket of the vectorfields A and ;. Recall that for
vectorfields f,g on R™

[f.4)(z) = Dg(=)f(z) — Df(z)a(z). (1)

Clearly [, ] is defined for formal power series vectorfields as well. Since 4 is a
linear vectorfield we have the adjoint map

adA = [A, ] : fg — .7:1.
To remove all the quadratic terms in v we need to solve the linear equation
ads 2 = v2

for 2 € F3, which is not always possible. To see this, consider the vectorfield
on R? given by

(511) _ (0 0) (331) N (%alw%+ﬂ1$1$2+ %wc%)
T2 10 ©2 rasz? + Brzizy + 1yazl )

Let the near identity coordinate change ¢ be defined by

(h) _ (y1 + 241y} + Biyiya + %Cﬂlg)
z2 y2 + %Azyf + Ba2y1y + %Czy§ ’

Then carrying out the calculation gives

waly) = < (o1 +2B1)yi + (B + Cr)viyz + 3713 )
(a2 — A1 +2B2)y2 + (B2 — B1 + C2)v1yz + 3 (72 — C2)v3

To make w; zero we must solve the linear equations

0 -2 0 0 0 O A a

0 0 -1 0 0 O By 61

00 0 0 0 0 al _In @)
1 0 0 0 -2 0 Az - Q2 )

0 1 0 0 0 -1 B, B2

0 0 1 0 0 O C, Y2

This is not always possible, because the matrix on the left hand side of (2) is
not invertible. In fact, it is nilpotent.
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To remove as many terms as possible from v, using the coordinate change
@, we decompose JF; as the direct sum of the image of ad 4 and a complementary
subspace C3. Then we can write

vg = vh + vy
where v} € imad4 and v§ € C2. Now choose ¢, so that ad4 2 = vj. Then
wy = vz — (ad4 p2) = vy + vy — (ada p2) = vy.
Thus we have brought v into the normal form w
w(y) = Ay + vz () +--- (3)

up through quadratic terms. We can bring the cubic terms in v into normal
form in the same way using the near identity coordinate change ¢ = id + @3
where @3 € F3(R"). Because ¢ is the identity up through quadratic terms, it
leaves unchanged the normal form (3). Repeating this process gives a normal
form

v(z) = Az +va(z) + -+ ve() + - -

where vy belongs to a complement C; of imady in F,. Obviously, what is
meant by a normal form depends on the choice of complement C,.

There is a “natural” choice of complement for im ad 4|F; using represen-
tation theory of sfy, which we now explain. Suppose that

A=S+N

is the unique semisimple-nilpotent decomposition of A into a commuting sum of
a semisimple linear map S and a nilpotent linear map N. Then by the theorem
of Jacobson-Morozov [Hel] (Chapter IX, Theorem 7.4), there are linear maps
M and H of R"™ into itself such that

[H,M]=2M

[H,N]=-2N

[M,N]=H  and )
[S,M] =[S, N] =[S, H] = 0.

In other words {M, N, H} span a Lie subalgebra of g£,(R) which is isomorphic
to sf3(R). Moreover, S lies in the center of this subalgebra. Therefore adyy,
ady, ady define a representation of sf;(R) on F;. Note that ads commutes
with adps,adn,adg. It follows from the representation theory of sf2(R) that

Fi =imady|F, & kerad | F;.
Since S is semisimple, adg is semisimple. Therefore

Fi = ker ad5|.7-} @ imadg |.7:¢.
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But ads commutes with both adys and ady. Hence

F¢ = (imads @ (imady Nkeradg))|F; & (kerads Nkeradas)|F;
=imady4|F, @ (kerads Nkerady)|Fy,

that is, (kerads Nkeradyas)|F; is a natural complement to im ad4|F; in F,.
The main contribution of this paper is finding an algorithm suitable for a
computer, to solve the equation

adg @ =1v—° (5)
for w € F, and v° € kerads|F, given v € F;, and also the equation
adg w = v° — v°° (6)

for w € kerads|F, and v%° € kerads|F, Nkeradys|F, given v° € kerads|F,
without first bringing A into real Jordan canonical form. This is not such
a big advantage in the general linear case, but it has its advantages in the
Hamiltonian case, where the computation of the Jordan normal form is highly
nontrivial. The appropriate setting is that of graded Lie algebras. Under
appropriate technical conditions on the linear problem, our approach can be
easily translated to this context.

1. The Jacobson-Morozov theorem

In this section we describe a method which implements the Jacobson-
Morozov theorem. In other words, given the linear mapping A, we show how
to find the linear mappings M, N, H and S.

We begin with finding the linear maps S and N which give the semisimple-
nilpotent decomposition of 4. We use the algorithm of [BC] to compute poly-
nomials r; of degree less than the degree of the minimal polynomial p of A so
that

m-1

S=A+)_ r(A)p4).
i=1
Here m is the maximum of the degrees of the irreducible factors of the charac-
teristic polynomial x of A. This algorithm does not need a factorization of x
and is straightforward to program in Maple.
To implement the Jacobson-Morozov theorem for g¢,(R) we first solve the
linear equations

[S,2] =0
([Z,N],N]= —2N

for Z € g¢,(R). Put H = [Z, N]. To find M we solve the linear equations
[S,K]=0

[N,K]=0
[H,K] - 2K = [H,Z] - 22
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for K € g¢,(R). Then put M = Z — K. It is easy to check that M, N, H and
S so obtained satisfy the bracket relations (4).
2. The semisimple case

In this section, until further notice, we suppose that 4 = S is a nonzero
semisimple linear mapping. We will show how to solve

ads b = v —v° (7

for @ € Fy, v° € kerads|F, given v € Fy.
To motivate our approach, we first treat the special case where S is a com-
plex diagonal matrix with respect to the standard basis of C", with eigenvalues

A1y..oy An. Let (21,...,25) be coordinates on C™. Then the linear vectorfield
S, written as a differential operator, is

> 0
S = Z A]'Zj B—Z]—
Jj=1

A basis for F;(C") is given by the vectorfields

.0
aj 321_ (J = 1’, ,n)
where 2% = zf‘l ceezim, o = (ajl,- --;ajn) c Z’;O and |0th = Z:’L:I aj; = L.

Then from the definition of Lie bracket (1) it follows that

aj 4 — . . a.‘ii
a.ds(z 62_7) - ((aJ’ )‘> - >‘J)z sz (8)

where (a;,A) = Y7, aji)i. Given the vectorfield

n

and
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solve (7).
This method of solving (7) is too dependent on the choice of basis which

diagonalizes S to be of much practical use. We use a different approach. Look
at the one parameter group -

t — t5 = diag(th,...,t*") where t € C*. (9)

This C*-action induces a C*-action on F;(C™) given by

a a a QXjrA) = A (g% 8
t > 1395 (25 ?971-) =t Jazj)' i

Thus C* acts on homogeneous polynomial vectorfields by rescaling each mono-
mial vectorfield according to (10). This does not look like too much help. But
it is because we can operate on the scaling factors rather than on the mono-
mial vectorfields. For instance, for ¢ € C*, consider the linear operator T; on
F¢(C™) defined by

aj 4 ‘ ads( a; 9 \dt
T 50 = [ oo T (11)
Th
. t(ai”\)_’\j a; 8 .
nes Ly = ) Tap = Ve eV EL g,
0z log (2% 52-) if (aj, ) = Aj.
If we put

w=Tyv and
v° = coefficient of ¢! in t2ds ¢,
then @ and v° solve (7).
The only trouble with the above approach is that S was assumed to be

diagonal so that we could compute ¢°. This difficulty can be circumvented as
follows (see also [LR]). Let

ZORS | CERY)

be the minimal polynomial of S. Thus A; # Ay if j # k. For j = 1,...,r set
p;i(A) = p(A)/(A = X))

2.1 Lemma For j = 1,...,r, the mapping m; = p;(S)/p'(};) is a projection
of C™ onto ker(S — A;).

Proof Because
P(S) on
P'(}5)

(§ = Aj)m(C") = =0,
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we have 7;(C™) C ker(S — );). Since the polynomials {p;())/p'(A;)};=1
are pairwise relatively prime, C" = @;zlﬂ'j(C"). It follows that 7;(C") =
ker (S — Aj).

It remains to be shown that 7; is a projection. Suppose that

1= XT:W”()‘) | (13)
k=1

holds. Then multiplying both sides of (13) by p; (A)/p'(};) gives, with pg;(A) =
P(A)/((A = 2)(A = X)),

() = 2:”““ T ()

!
iz P Ow)P'(
Pri(A)(A — /\j)Pj(/\) 2
=y L5 4 (m5(N) (14)
_ Prj\nr) }‘) 2
=p(N) ) sy (T ()
iz P OR)P
Substituting S into (14) and using p(S) = 0 gives (7;)? = 7; as desired.
To prove (13) consider the partial fraction decomposition of p(}) ™!
1 ~ A
= . 1
p(A) Zz: A=A (15)

Multiplying both sides of (15) by A — A; and taking the limit as A — A; gives
Aj = (p'(2j))~ . Note that p'(};) # 0, since ); is a simple zero of p. Therefore

T A T
1 :p(’\)kzz:l = ,\k O%) Z pk(()\k) ZW" Y

which proves (13) and the lemma. O

Using the functional calculus for holomorphic functions of a matrix and
the above lemma, we find that

T
S = Z tAj i (16)
ij=1 i
for an arbitrary complex semisimple linear map S with distinct eigenvalues
{A] };:1'

2.2 Example By way of example, we now apply the above theory to compute
a normal form of the vectorfield

(2)=s(2)+ () (17

_ ( 0 1) (:cl) 4 ( %oq:c? + Bizizs + 1212l + %6@%)
-1 0/ \z Yoz} + Bozizs + yaz12d + L6223
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up through cubic terms. The linear vectorfield S is semisimple with minimal

polynomial p(A) = A% 4+ 1 = (A —i)(A + 7). Applying the lemma with A\; = ¢
and A2 = —i, we get for the projection onto ker (S — 1)

S) 1., . 1(1 —
n=BE=we=3(: 7)

and for the projection of onto ker (S + 1)

101
Ty = -—-2 i 1 .
Now (16) yields

1,(1 <\, 1 (1 i
S _ 24 St
©=gt (z 1>+2t (—i 1)

1 T+t —i(r—771) 4
_§<i(7'—7"1) A where 7 =
=

Consequently, by (11),
()1 ~(2)4
V32 V32 t t=1
= [ [T ()4
V32 ir 1':1‘

Observe that Tyv € F3(R?), although the intermediate steps were over C.
Evaluating the right hand side of (18) is straightforward, but is better left to
a computer. We obtain

5-n (1)

_ ((—az + B = 72+ 61) (21 + 23)22 + (a1 + B2 + 711 + 62)(2f + w%)wl)
(c2 — B+ 72 — 61)(22 + 22)z1 + F(c1 + B2 + 71 + 62) (23 + 22)z2

(18)

This agrees with the general theory [CS], which says that the normal form of

(17) is
1 Hlil!l - H2m2
S (M) + <H1-’IB2 +H2:c1> ’
where H;, H, € R[[z? + z2]].

We end this section by treating (5) for general (not necessarily semisimple)
A =S+ N. Using the above method for solving

adg g = v — ° (19)
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for Ws € F¢(R™) and v° € ker ads|F, given v € F;, we show how to solve
adg @ =v—1° (20)

for w € F¢(R™) and v° € ker ads|F, given v € F,. Put
m
@ =Y (1) ad}y Tf w5 (21)
k=0

where adj ™' = 0 (such m exists since ady is nilpotent). It follows from (12)
that T7 equals a.dg1 on imadg|F; and 0 on keradgs|F;. Therefore
ads TF = TF . (22)

The following calculation, which uses (22), shows that & given by (21) solves
(20)

adg @ = Z(—l)k(ads + ady)adk, TF s
k=0

m m
adsws + Y _(—1)*adf Tf @5 + »_(-1)*ady™ Tf s
k=1 k=0

= adgswg = v — v°.

3. The general case

In this section we will show how to solve the basic normal form equation

ady w=adg w = v° — % (23)

for w € kerads|F; and v°° € kerads|F; Nkeradys|F, given v° € kerads|F,.
Using the results of §2, we may assume that v has been computed starting
from a given v € F;.

The treatment of this problem will be purely representation theoretic. To

be explicit, we start with the triple {M, N, H} providing a representation p of
sf2(R) on a real vector space U. Then [Hum]

U=kerM @imN. (24)
Our problem is: given w € U, find w’ € ket M and w” € im N so that
w=w +uw".
In other words, split w along the decomposition (24). Below we give a method

for obtaining this splitting which is fast and suitable for a computer. For more
on the splitting algorithm, see [CS2].
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Let u € U. We can write

where for fixed A € N the v span an irreducible suBspace with highest weight
A(h) and obey the relations
Ho} = (A(h) - 20)f,
NoP = (i+ 1)}, 4, (25)
Mu} = (A(h) — i+ 1ol

(with the convention that v;‘(h) = vh, = 0).
There is a natural imbedding ¢ : U — U ® R[X, Y] given by
A(k)
Lty = Z Z il @ X'y R

h =0

with a corresponding projection p: U ® R[X,Y] — U. We remark that when
u € ker M, we can give an explicit formula for cu:

w= Zagvg QY h) = Zag(YH).vg =(Y¥),u. (26)
h h

Suppose now that we have y € U and we want to compute ty. Assume we have
computed the effect of c on My, i.e.,

A(R)-1
My = Z Z ahl @ Xy )-i
h 1=0

We define an R-linear map o : U ® R[X,Y] — U ® R[X,Y] by

Y X
o(u® f(X,Y)) = Nu® % / % / f(&,n)d€dn. (27)

Then
A(h)—1
m,My_Z Z ai Nt @ = / / e P -idedn

A(h) 1

1

=3 Y ahG+)l, 0 —— Xy A

et +“(”)
A(R)-1

i 1 7 —i—
= Z Z ahvz"l+1 ® NOE X +1ly A(R)—i-1
h 1=0
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Projecting down onto U and applying M we obtain

A(R)-1 1
— i h
MpO'LMy = Z Z a;‘M‘UH_lx‘(“}J_—i
h 1=0
A(R)-1
ST
h 2=0
= My.
In other words, y — pot My € ker M . Thus we have
w=oMy+YH(y — poMy). (28)

This describes how we can take one step. The splitting algorithm now works as
follows: Take y € U. Compute y° = y and v/ *! = My’. Stop when y™t! = 0.
Let y; = vy’ for each j € {0,...,m+ 1}. Applying (28) repeatedly, we obtain

¥ = 0yi1 + YH(¥ — poyjy1) for j =m,...,0. Then y = (y — poy1) + poys,
where the first component is the projection on ker M and the second -on im N
by construction of o, see (27).

3.1 The splitting algorithm
Input v° € F,(R") Nkerads.

1. Fori=0,... compute v*t! = adpv*. Stop when v™*! = 0.
Set vp+1(X,Y) =0, and j = m.

2;. Compute

1 (Y1 %
wi(X,¥) = o / - / vj41(¢,m) d€ dn,
%;(X,Y) = ady w;(X,Y),
v(X,Y) = u(X,Y) + Y4 (o) —u;(1,1))

3. Decrease j by 1 and repeat step 2;. Stop when j = —1.
Output v = vp(0,1) and w = wo(1,1). -

As a result of the reasoning above we have

3.2 Theorem For v° € F;(R") Nkeradgs, the v*° € kerads|F, Nimady|F;
and w € ker adg|F; as determined by the above condensed splitting algorithm
solve

ady w = v° — 0%, (29)

3.3 Remarks In the above algorithm, w;(X,Y), u;(X,Y), v;(X,Y) are vec-
torfields with scaling parameters X and Y. The exponent of the parameter
Y gives the ady-eigenvalue of the monomial vectorfield, whereas the exponent
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of the parameter X gives the position of the monomial vectorfield inside an

irreducible. The restriction to kerads is not essential.

3.4 Example We illustrate the above a.lgorithm with the vectorfield
1 1
(—0111'1 + Przizz + 271%) + ( azwl + Baz1z2 + 272%)

on R? and take as a representation of sf;(R) the ad of:

0 d (i) 0
M = 1:2-6—2— N——Cl!]_aa:2 H= —lc]_a—wl'*-(l}za—wz.

First we compute

v! = adp o°

1 1 0
= — (-iazzf + (B2 — a1)z122 + (572 - ﬂ1)$§)a—w1

0
+ (az2z122 +,321‘§)E

v? = adys v?

0 7]
— (20[2:1:1(172 + (2(ﬂ2 - a]_):v%)a—wl + agwg—é—g

0
v® = adpy v? = —3azz) —
31}1

vt =0.

Then from step 23 of the algorithm we find that

1U3(X,Y) = 0

U3(X, Y) =0

v3(X,Y) = Y*4H(4%) = —3a2(Ya:2)2 9
Oy 1

0
= — Y3(3a21:§6—$1—)

-1
since YH = ( YO 3,) Now, for j = 2 in step 2; we obtain,

we(X,Y) = ——/ / 3a2:c26 )d¢ dn
= —X'Yz(azg:z:z‘9 1)

7] 0
‘ u2(X,Y) = ady wo(X,Y) = —XY2a2(2z1a:2$—1— — wga—wz)

12(X,Y) = up(X,Y) + Y2 (v — uy(1,1))

= -—-XY2a2(2m1:czi - 9

7]
3 _ 2_ Y
aml wZa -Y (2182 al)mZaml
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We repeat this process twice more. First to compute wi,u1,v; and subse-
quently to compute wo, ug, vo. We give the latter:

_ _Lys, 120 9
'wo(X, Y) = - 3X az(zwlazl — 1T 0182
1 , 8
+ 1—X2Y2(a1 — 2,32)(2(2211!26:01 — 1:2 )
7] 7] 1 1 7]
+ X(a1 +,32)(9311732a +:c26 ) — *S-Xyz(i‘)’z—ﬁl)-’ﬂ%;ﬂ:
1 0 0
uo(X,Y) = X3(—a2a:1 ) + XZY(al - 2,82)(:1}la 2a:1a:26+w2)
1 0 0
+ .Xg(al +ﬂ2)($16—$1 + (Dlaﬁz-é—w—z)
1 2,1 0 , 0
— g.XY (5"}’1 - ,31)(2:131152'6":;; - icza—:cz)
1 7] 1 7] 0
v(X,Y) = §X3(a2:cfa—) + —XZY(al - 2,32)(:15%6—:01 - 21:11:25—6)
a 0
+ X(a1 +,32)($1a + z1T2 8:1:2)
e YL O 20
3XY (271 '61)(2:613:2 6:81 wz amg)
+ EY('BI + 72)(:31:”20_%1 + x5 3:02) + §Y Y125 B
Hence
2B M) Eerg 23 + el
(1+’)’2) 7312826 iﬂza +2’)’1 28
and
1 1,90 0 1 5] Zi
w= = goa(gig - o, %25, ) + 5 (@1 = 2ﬂ2)(2w1$26—ml) - ﬂ’zawz)
1 o  ,0 . 1,1 ,
+ 5(011 +,52)(a?11?26—w1 + 11126—:62) - 5(5‘)’2 —,31)1‘26—
solve

ady w = v° — v%.

The resulting normal form v°° agrees with the general theory [CS1] which states

that the normal form of a general formal power series vectorfield on R? with

linear term :1:26i is

0

0
. )+ Hozo—

0
+ Hi(wgw— B2,

oz, +zo7—

8
where Hy, H, € R][z2]].
To summarize what we have done: given v € F; we can find & € F; and
v® € kerads|F, so that

adg@ = v — v°,
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see (20). Moreover, given v° € kerads|F, we can find w € kerads|F; and
v% € (keradps Nkerads)|F; so that

adqw = adyw = v° — v,

see (29). Adding the above two equations gives the decomposition of v
v = ad4 (@ + w) + v%.

along the subspaces im ad 4|F; and (ker adas N ker ads)| ker F, as desired.
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