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Computational Aspects of Lie Group Representations and Related Topics 

Preface 

Powerful computer algebra tools have brought new life to the algorithmic 
study of mathematics. The impact of the algorithmic approach is especially 
noteworthy in the study of Lie groups. In order to inform the Dutch com-
puter algebraists of developments in this direction, the Spring 1990 sessions of 
the Computational Algebra Seminar at CWI, Amsterdam, have been mainly 
devoted to computational aspects of Lie group representations. 

At the seminar, on one hand, better ways were brought forward to satisfy 
the physicists' demands to collect explicit data about representations, tensor 
product decompositions etc., while, on the other hand, new impulses were given 
to effective computations of invariants of groups acting on given spaces and even 
invariants of elements pertaining to these groups. The contributions by Bram 
Broer, Arjeh Cohen & Bert Ruitenburg, Marc van Leeuwen and Peter Littel-
mann reflect these activities. Omar Foda and Jan Sanders exploited the use 
of Lie group notions and techniques in computations for statistical mechanics 
and differential equations, respectively. 

The remaining two contributions are somewhat further away from the the-
ory of Lie groups. Both cover topics of very general interest to computational 
algebra. Wim Ruitenburg fo..:used on the fundamental theorem of algebra from 
a constructive point of view: how to find (or, better, construct) roots of polyno-
mials. He stressed that a solution in constructive algebra leads to the existence 
of an ( admittedly, possibly highly impractical) algorithm providing that solu-
tion. Van den Essen elaborated on the Jacobian Conjecture. He showed that 
it is related to various branches of mathematics and how various forms of the 
conjecture have computational interpretations. 

Because many of the talks at the seminar were fine introductions into an 
active field of research, I have asked the lecturers for a written contribution. 
These proceedings are the outcome of the enterprise thus started. Several col-
leagues have given me substantial help in the refereeing. I wish to express 
my sincere gratitude for their efforts. Most manuscripts were delivered to me 
electronically. Using 'J'EX, I have forged them into a more or less uniform lay-
out. Marc van Leeuwen's occasional but highly effective assistance is gratefully 
acknowledged. 

In the seminar, the contributors were requested to present elementary 
introductions, with the aim of reaching a wide audience. We hope that these 
proceedings still reflect that principle. 

Arjeh M. Cohen 
CWI, Amsterdam 
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Hilbert series for ternary forms 

0. Introduction 

Bram Broer 

Faculteit Wiskunde en Informatica 

Universiteit van Amsterdam 

Plantage Muidergracht 24 

1018 TV Amsterdam 

The Netherlands 

We shall give generating functions for the concomitants of the ternary cu-
bic forms and some types of covariants of the ternary quartics. The method 
of calculation we used is essentially a combination of nineteenth century tech-
niques; but the calculations were done in the computer algebra package Maple t. 

The method is not restricted to SL3 , but works for any reductive group-
as will be explained elsewhere. We tried to be as down to earth as reasonably 
possible, because the method is elementary and can be of some use for the 
calculation of other generating functions in the SL3 (or, equivalently, the SU3) 
area. Some other explicit results are given in [Br90]. 

1. Models for irreducible representations 

Let k be an algebraically closed field of characteristic zero, for example the 
field of the complex numbers. One of the basic properties of G := SL3(k) is the 
complete reducibility of its (rational) representations, i.e., any representation 
is a direct sum of representations having no nontrivial subrepresentations. We 
shall describe a model for any irreducible G-representation, similar to the model 
used in the last century. 

t The author thanks the Stichting Computer Algebra Nederland for provid-
ing computation facilities with Maple on a Sun workstation. 
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The restrictions Xij to G of the coordinate functions of End(k3 ) generate 
the algebra k[ G] of polynomial functions on G; they are related by det ( Xij) = 
1. The natural G := G x G-action on G induces an action on k[G] by algebra 
automorphisms 

((g, l)J)(x) := f(g- 1 xg'), 
where (g, g') E G, f E k[G] and x E G. 

Write U for the subgroup of G consisting of upper triangular matrices 
u = ( Uij) with Uii = l for i = 1, ... , n. The subalgebra of (1 x U)-invariant 
elements in k[G) is denoted by k[Gu] (see [Kr84)); it is generated by 

X1 := X21X32 - X22X31, Xz := X31X12 - X11X3z, X3 := X11X22 - X12X21, 

These generators are related by the single relation I:7 =l XiUi = 0. 
Write B for the subgroup of G consisting of the upper triangular matrices; 

any character B-> k* is of the form E1Ef, where Ei(b) = bii, i = 1 or 2. Now 
1 x B acts on k[Gu) in a completely reducible way determined by its action on 
the generators 

b · ui = E1(b)E2(b)ui, b · Xi = €1(b)xi, 

This action induces an N 2-grading on k[Gu] by 

k[Gu) = EB V(n,m), 
(n,m)EN' 

with 
3 3 

and V(n,m) · V(n',m') C V(n+n',m+m')· The G (~ G X 1)-action on k[Gu] com-
mutes with the N 2-grading, hence induces a representation on Vµ,, These Vµ 's 
are the models of the simple modules. 

1.1 Proposition Let µ E N 2 • 

(i) The G-module Vµ is simple. 

(ii) Each simple G-module is isomorphic to some Vµ,, 
This can be proved using the following two lemmas. The first lemma gen-

eralizes the fact that 1 is the only eigenvalue of any u E U in any representation. 
We skip the proof. 

1.2 Lemma Any non-zero representation of U has a, non-zero fixed point. 

From this lemma it follows, with the complete reducibility of the represen-
tations of G, that a G-representation V is reducible if and only if the dimen-
sion of the fixed-points space vu is at least two. The space of U-invariants 
(Vµf = (xt 1 u~•), µ E N 2 , is one-dimensional, hence Vµ is irreducible. This 
proves the first assertion of Proposition 1. 1. The second will now be dealt with. 
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1.3 ·Lemma If V is a simple G-module, then it is isomorphic to some Vµ, 

Proof Let v' be a nonzero fixed-point of U in the dual representation v• to 
V. Then the action G x kv' -+ v•, defined by (g, )v') 1-+ g · ()v'), induces a 
non-zero map 

V '.:::'. V** -+ k[G] ® (kv')*, 

by restricting the coordinate functions on v• to G x kv', commuting with the 
G-actions. The image of V is isomorphic to V itself, because V is simple, 
and is contained in the (1 x B)-fixed points of k[Gu] ® (kv')*, hence is equal 
to Vµ, µ = (n,m) E N 2, if b.v' = t1(br+me2(brv'. 

The monomials n;=i :z:f•uri•, with Ei ni = µ1, Ei = µ2 and n2 = 0 or 
m2 = 0, can be taken as a basis for V", withµ= (µ1),µ2). Hence by an easy 
count it follows that the dimension of Vµ is ½(n + l)(m + l)(n + m + 2). 

It is also easy to show that, as G-modules, 

2. Concomitants 

Let M be any G-module. In the nineteenth century its concomitants were 
studied, i.e., the polynomial (not necessarily linear) maps c : M -+ V~. The 
degree of c in the coefficients of m E M was called its degree, the degree in 
the :z:'s (i.e., )i) its order and the degree in the u's (i.e., ) 2) its class. If 
class and order were both zero they were called invariants, if only the class 
was zero covariants and if the order was zero contravariants. Hilbert's famous 
basis theorem [H90] says that there are finitely many fundamental concomitants 
(invariants, covariants, respectively contravariants) such that any concomitant 
(invariant, covariant, respectively concomitant) can be expressed polynomially 
in them. 

There were various geometric reasons to consider concomitants, in particu-
lar for the ternary n-ics, i.e., for M = Y(n,O)• We give an example of a covariant 
with geometric importance. The locus of zeros C(f) off# 0 E Y(n,o) is a curve 
of degree n in the projective plane. Also, if n 2, 

a21 
H(f) := det (a:z:ia:z:;) E Y(an-6,o) 

determines a curve C(H(f)), if H(f) is not O. The intersection points of the two 
curves are exactly the inflexion points and singularities of either of them. This 
Hessian curve does not depend on a choice of basis. That is, the assignment 

H : Y(n,O) -+ Y(an-6,0) : / 1-+ H(f) 

is a covariant for the ternary n-ics of degree 3 and order 3n - 6. 
We shall give some examples of complete systems, i.e., sets of concomitants 

( covariants, etc.) in which any concomitant ( covariant, etc.) can be expressed 
polynomially. 
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2.1 The only concomitants for l'(i,o) are the powers off 

l'(1,0) ---+ l'(n,O) : f 1-+ r, 
of degree n and order n; hence f itself is the basis concomitant. 

2.2 The Hessian for the ternary quadrics is an invariant; H(f) = 0 if and 
only if C(f) degenerates into a union of two lines. Its 'derivative' 

is a contravariant of class 2 and degree 2. 
Any concomitant c(f) for the ternary quadrics can be expressed polyno-

mially in a unique way by f, H(f) and (oH)(f); e.g., any invariant can be 
I i expressed as I:i=O biH(f) , for some bi E k. 

2.3 In 1850 Aronhold proved that any invariant for the ternary cubics can 
be expressed polynomially in a unique way in two invariants, called S and 
T classically, of degree 4 and 6. We shall give a description of them. Any 
member of the pencil C(>,.J + µH(f)) of cubic curves has the same set of 
inflexion points and singularities; and any cubic curve with these inflexion 
points and singularities is a member of this pencil. In particular we have that 
H(H(f)) = A(f)J +B(f)H(f), for some invariants A and B. In fact, expressed 
in Sand T: 

H(H(f)) = 8 · 69 S(f) 2 f + 2 · 66T(f)H(f). 

Using this equation an expression for Sand T can be derived. We remark that 
S has the following curious property that f can be expressed as a sum of three 
cubes if and only S(f) = 0. 

Apart from the invariants and the Hessian, there are two more basic co-
variants. 8H(J) 

8"'18"'1 8.,,8.,, 8:JJ18"'• 8:JJ1 

8H(f) 
8.,,8.,1 8.,,8.,, 8:JJ28"'s 8"'• C: f 1-+ det 

8H(f) 
8:JJ 38:JJ1 8:JJ38:JJ2 8:JJs8:JJs 8"'s 

8H(J) 8H(J) 8H(J) 0 8:JJ1 8"'2 8:JJ3 

has degree 8 and order 6, and 

(
It 

K: f 1-+ det 
8:JJ2 

8"'• 

~) 8"'1 

80(/) 8.,, 
80(/) 

8:JJs 

has degree 12 and order 9. 
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Any covariant of the ternary cubics can be expressed polynomially by f, 
H(f), C(f), K(f), S(f) and T(f), but not in a unique way: K(f) 2 can be 
expressed in the other basic covariants. 

In 1869 Gordan [G69] found an explicit generating set of all the concomi-
tants of the cubic forms; it is considered as one of the crowning pieces of nine-
teenth century invariant theory. There are 34 generating concomitants needed 
to express any concomitant polynomially in them, the degrees vary up to 12. 
We give the triples (class, order, degree) of Gordan's set of generators; there is 
at most one generator for each given triple. 

(0, 0, 0), (3, 0, 1), (2, 2, 2), (3, 0, 3), (0, 3, 3), (3, 3, 3), (0, 0, 4), (4, 1, 4), (2, 2, 4), 

(0, 6, 4), (4, 1, 5), (0, 3, 5), (3, 3, 5), (1, 4, 5), (0, 0, 6), (2, 2, 6), (5, 2, 6), (2, 5, 6), 

(4, 1, 7),(3,3, 7),(1,4, 7),(1, 7, 7),(6,0,8),(5,2,8),(1,4,8),(2,5,8), (7,1,9), 

(3, 3, 9), (1, 7, 9), (5, 2, 10), (2, 5, 10), (7, 1, 11), (9, 0, 12), (0, 9, 12). 

2.4 For the ternary quartics the situation is much less well understood, not 
even a generating set of the invariants is known. In 1967, relatively recently, 
Shioda [Sh67] gave a rational form of the generating function of the linear 
independent invariants of given degree, and made several conjectures on the al-
gebra of invariants concerning generators and relations. In 1987 Dixmier [D87] 
proved one of these conjectures by giving a set of algebraically independent 
invariants, of degrees 3,6,9,12,15,18 and 27, and proving that the full algebra 
of invariants is finitely generated (and free) considered as a module over the 
subalgebra generated by these invariants. 

2.5 Write con(µ; v, i) for the number of linearly independent concomitants 
for Vµ of order 111, class 112 and degree i, and define the generating function for 
the concomitants of Vµ as 

Con(µ; x, y, t) := L con(µ; v, i)x,,,'y,,,•ti. 
(v,i) 

Analogously, Inv(µ; t), Gov(µ; x, t) and Contr(µ; y, t) for the invariants, co-
variants and contravariants for Vµ are defined. It follows from Hilbert's Basis 
Theorem that these generating functions can be expressed as (the Taylor ex-
pansion at t = 0 of) some rational function. 

We give generating functions corresponding to the examples above. 

1 
Con((l, O); x, y, t) = (l _ xt) 

1 
Con((2, O); x, y, t) = (1 - x2t)(l - y2t2)(l - t3) 
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1 + t9 + tl2 + t15 + ... + t66 + t15 
Inv((4, O);t) = (1 - t3)(1- t6)(I - t9)(l - t12)(1 -t15)(1 - tlB)(l - t21) 

In the rest of this paper we give a method for calculating these generating 
functions, and shall compute, with the aid of a computer, Con((3, O); x, y, t) 
and some coefficients of Gov( ( 4, O); x, t). 

3. Equivariant Hilbert series 

The sum of the simple submodules isomorphic to V,x, A E N 2 , of the G-
module M is called the isotypical component Mf with highest weight A. In 
particular, if A = 0 it is the set of invariants, or the G-fixed points, in M. The 
multiplicity of Vi, in M is equal to the dimension of the isotypical component 
of highest weight A divided by the dimension of VA. We have 

dim Mf / dim VA= dim Homa(VA, M) = dim M ©k v;. 
Any A E Z2 determines a character ofT, the subgroup of diagonal matrices 

in G, in the following way: 

For a T-module M write MA for the T-eigenspace of M of character ( associated 
with) A E Z2 • We have that the multiplicity of VA in the G-module M equals 
the dimension of (Mu)A, noting that T::::: B/U acts on the U-fixed points of 
M. 

Let M = EB:o Mi be a graded G-module with dim Mi < oo for any i, then 
we define the G-Hilbert series 1ia(M; x, y, t) to be the generating function of 
the multiplicities for all highest weights 

00 

1fo(M; x, y, t) := L L dim Homa(VA, Mi)eAti, 
i=O AEN 2 

where we use the short-hand eA := xA 1 yA 2 • Analogously the T-Hilbert series 
?-fr and the (usual) Hilbert series H are defined by 

00 

HT(M; x, y, t) := L L dim((Mi)A)eAti; 
i=O AEZ 2 

00 

H(M;t) := LdimMiti. 
i=O 

We shall consider the series as elements of the integral domain 

We proceed analogously for multigraded modules. Usually we shall write 
Ha(M) for Ha(M; x, y, t). For generalities on Hilbert series (also known as 
Poincare series) we refer to [Sp77], [Sp82]. 
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3.1 We shall use the Hilbert series to derive the character of Vi,, i.e., the 
T-Hilbert series of the (trivially graded) module obtained by restricting the 
action of G on Vi, to T. 

The double graded ring k[Gu] has G-Hilbert series 

We claim 

1 - st 
'Jfr (k [Gu]) = -( 1---xs--)--,---( 1---x----1-ys--)--,---( 1---y---1--s )--(-1 ---yt-)--,---( l---xy----1 t--)--,---( 1---x-_--1--,--t) 

Proof Consider the polynomial ring A := k[X1, X2, Xa, U1, U2, Ua], and let T 
act on Xi and Ui as it does on Xi and ui. Then there is a surjection A -t k[ Gu] 
with kernel the principal ideal generated by the irreducible element I:i Xi Ui 
of bidegree (1, 1). Then 

Now A~ ®f=i k[Xi] ® k[Ui], hence 

3 

1-lr(A) = II 'Jfr(k[Xi]) · 1fr(k[Ui]), 
i=l 

from which the formula follows. 

The Weyl group W = NaT/T is isomorphic to the symmetric group on 
{1, 2, 3} generated by s1 = (1, 2) and s2 = (2, 3). It acts on D by 

s1: x 1--> y/x,y 1--> y,t 1--> t 
s2 : x 1--> x, y 1--> x/y, t 1--> t. 

The sign of T E W is denoted by ET, and we define the endomorphism :1 of D 
by :f(f) := I:TEW ETr(f). Write p = (l, 1). 

3.2 Proposition (Weyl's Character Formula) 

(i) We have 

(ii) For any (graded) G-module M we have 

1iT(M):1(eP) = :f(eP1fo(M)). 
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Proof One can check by hand, or by using a computer algebra package like 
Maple, that 

J ( L e>.+ps>- 1 t>••) /J(eP) = J(eP1ta(k[Gu]))/J(eP) 
>-EN2 

( xy x-1y2 xy-2 
= (1- xs)(l - yt) - (1- x-1ys)(l -yt) + (1- y- 1s)(l - xy- 1t) 

x-ly-1 x-2y x2y-1 ) I 
(1- y- 1s)(l - x-1t) + (1 - x-1ys)(l - x-1t) - (1- xs)(l - y- 1xt) 

/(xy _ x-ly + xy-2 _ x-ly-1 + x-2y _ x2y-1) 
l - st 

- (1- xs)(l - x-1ys)(l - y- 1 s)(l -yt)(l - xy- 1t)(l - x- 1t) 
= 1iT(k[Gu]). 

By comparing the coefficients of sµ, 1 tµ,• we get the character formula. 
Define the endomorphisms D1 and D2 of D by 

they are called Demazure operators. They have the properties that D'f = Di 
and D1D2D1 = D2D1D2. Write I= D1D2D1. 

3.3 Proposition (Demazure's Character Formula) We have 

hence for any (graded) G-module M we have 1iT(M) = I(1ia(M)). 

Proof It is easily proved that siDi(f) = Di(f), hence rI(f) = I(f), r E W, 
and J(ePDi(f))/J(eP) = J(eP!)/J(eP). Then I(f) = J(ePI(f))/J(eP) = 
J(eP!)/J(eP). 
3.4 We shall define a kind of reverse of the Demazure operators. We define 
'D1(f), f ED, to be the part of f-s1(f)x- 2y which consists only of nonnegative 
powers of x, and analogously 'D2(f) the part off - s2(f)xy- 2 which consists 
of the nonnegative powers of y. For example 

One can check 'D[ = 'Di and 'D1 'D2 'D1 = 'D2 'D1 'D2- We write 

then B(f) consists only of nonnegative powers of x and y. 
The fundamental property is contained in the next proposition. 
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3.5 Proposition 

(i) We have I(B(f)) = I(!), 

(ii) B(I(f)) = B(f). 

(iii) For any (graded) G-module M we have B(?fr{M)) = ?fo(M). 

Proof We have 1Ji Di = 1Ji and Di 1Ji = Di, hence 

= D2D1D21J21J1(/) = D2D1D21J1(/) = D1D2D1 (!) = I(/). 

And analogously BI(!) = B(f). 

4. A relation 

9 

We introduce a handy notation first. lfV is some T-module, take any basis 
{ei}iEI for V consisting ofT-eigenvectors ei with eigencharacter (associated to) 
Ai E Z2 . For any function f on Z2 with values in an abelian group r we shall 
write 

L f(A) := L f(Ai) Er . 
.>..1-V iEI 

For example ?fr(V) = I:.>..1-v e.>.., and 

(1) 

where f f--> f* is the involution of D determined by 

X f--> Y, y f--> x, t f--> t, 

which commutes with the W-action, and hence with I and B-
Let M be some G-module, N a T-submodule, and µ E Z2 • Write 

B(eµ, IT (1- e.>..t)) =: L a~•N e\ 
.>..1-M/N .>..ES"•N 

where sµ,,N is a finite subset of N 2 • We shall write a~ for the polynomials 
a~•N in the variable t if no confusion can arise, and Sµ, for sµ,,N. 

The next proposition is fundamental to our approach of calculating G-
Hilbert series. 
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4.1 Proposition We have 

Proof Using Proposition 3.5, equation (1) and the property that I(fg) 
f I(g), if f is W-invariant, we obtain 

I ( B (rL~N;; -eAt)r) = I (nA~N;; -eAt)r 

= (n (~ -eAt)r I (eµ. IT (1- eAt)). 
A~M A~M/N 

= fl (1 _ eAt) I (B(eµ. IT (1- eAt))) • 
A~M• A~M/N 

= 1fr(k[M)) L a~I(eA)* 

= L a~1iT(k[M] ® vn. 
AES"' 

Now apply B and use Proposition 3.5 again to finish the proof. 

5. Ternary quadrics 

As a first example we calculate the well-known generating function for the 
concomitants of the ternary quadrics. 

Take N := (xi, x2, x12x~), andµ= 0. Then if 

we have 

f := IT (1- eAt) = (1- xy- 1t)(l - x- 1t)(l - y-2t), 
A~M/N 

'D1(f) = 1 - (xy-1 + y-2t + (xy-3 + y-1 )t2 - y-3t3) 
'D2 'D1(f) = 1 - (-x- 1t + x- 1yt2 - x-2yt3) 

B(f) = 'D1 'D2 'D1 (f) = 1 -' t3 • 

Next write 
1 1 

g := flA~N(l - eAt) = (1 - x2t)(l - yt)(l - x- 2y2t)' 

then 'D2 (g) = g, and one checks that 

-2 1 - x-2y 
g - si(g)x Y = (1 - x2t)(l - yt)(l - x- 2y2t) 

1 (y2t - y)x- 2 
=------+---------. (1 -- x2t)(l - y2t) (1 - yt)(l - y2t2)(l - x- 2y2t) 
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In the development of the second factor at t = 0 only negative powers of x 
occur; in the first factor only nonnegative. Hence 

1 
1J11J2(g) = (1 - y2t2)(1 - x2t) = 1J21J11J2(g). 

So it follows from Proposition 4.1 that 
1 

1fo(k[l'{2,o)]) = (1 - y2t)(l - x2t2)(l - t3)' 

and for the concomitants 
1 

Con((2, O); x, y, t) = (1- x2t)(l - y2t2)(l - t3) 

6. Ternary cubics 

Taking N := (xi, XiX2, x1x~, x~, x3xi) we have that GN := {gn; g E 
G, n E N} is the subvariety of the space of ternary cubics M := 1'(3,o) defined 
by the invariant polynomials; this was known to Hilbert [H93]. It consists of 
the elements x E M such that 0 is in the closure of the orbit Gx. 

6.1 We compute the relation associated to N and 0 E N 2 . Write 

f = IT (l - e>.t) 
>.f-M/N 

= (1 - t)(l - x- 2yt)(l - xy-2t)(l - x- 1y- 1t)(l - y-3t). 

Then 
1J1(f) = (1 - t2)(y3 - t)(y-3 + y-6t2 - txy-5) 

1J21J1(f) = (1 - t 2)((1 + t) + yx-2(t - t 2) + y3(-t2x-3) + y4(t3x-5)) 

1J11J21J1(f) = (1 - t 2)((1 + t 2) + t 2xy - t3x3). 

Hence B(f) = (l-t4)+t2(l-t2)xy-t3(l-t2)x3. Put Fl-' := B ( •" ) * TI,_ .. N(l-e"t) 
and A:= k[l1(3,o)], then it follows from Proposition 4.1 that 

F(o,o) = (1 - t 4 )1ia(A) + t 2(1- t 2 )1ia(A ® 1'(1,1)) - t 3(1- t2)1ia(A ® l'{o,3))-

The relations associated to (N and) ,(1, 1), (3, 0) and (0, 3) are 

F(l,l) = (1 - t)(l - t3)1ia(A ® 1'(1,1)), 

F(3,o) = -t2(1 - t)(l - t 2)1ia(A ® 1'(1,1)) + (1- t 2)1ia(A ® l'{o,3))-

- t 2 (1 - t 2 )1ia(A ® l'(J,o)), 

F(o,3) = -t(l - t4)1ia(A) - t(l - t 2)1ia(A ® 1'(1,1))+ 

+ (1 - t 2)1ia(A ® l'(J,o)), 

where we used ic;,o) '.::'. l'{o,3)· 
These four relations enable us, by elimination of 1la(A ® 1'(1,1)), 1ia(A ® 

l'(J,o)) and 1ia(A ® l'{o,3)), to express 1ia(A) in terms of Fl-'. 
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6.2 Proposition We have 

6.3 We give an outline of the calculation of p(o,o). Write g = 1/(ILf-N(l -
eAt)). Then 

Observe that the degree with respect to x of this rational function is negative, 
and the two parts of the denominator separated by x are coprime in k(y, t)[x]. 
Hence there is a partial fraction decomposition 

A B =----------+----------, (1- x3t)(l - xyt)(y - x2t) (x - y2t)(x3 - y3t)(x2 - yt) 

where both summands have negative degree with respect to x. Using Maple 
we calculated that A and B could be written with denominator 

and numerator a for A: 

+ ( (-t8 - t5) y6 + (t5 + t2) y3) x2+ 

+ ( (t4 + t5) y5 - t8y8 + (t3 + t2 - t) y2) X + y7t7 + y. 

Now one sees that in the development in t = 0 of the first summand only 
non-negative powers of x occur. But in the development of the second 

only negative powers of x occur, because the degree of B with respect to x is 
smaller than 6. Hence 

a 
'Di(!)= (y - x2t) x (1 - x3t)(l - xyt)(l - y3t3)(I - y3 t 5)(1- y6 t 4 ) 
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Again there is a partial fraction decomposition of D1(f), this time with 
respect to y, of the form 

with 

and only the second summand gives non-negative powers of y in the develop-
ment at t:::: 0. 

And s2('.V1(f)):cy- 2 has a decomposition of the form 

F G 
(1 - :cyt) + (1 _ ;c3t)(y _ ;c2t)(y3 _ ;c3t3)(y3 _ ;c3t5)(y6 _ ;c6t4)' 

with 

and only the first summand gives non-negative powers of yin the development 
at t:::: 0. Combining we get 

Using Maple we found that the result only involves non-negative powers of both 
;candy when expanded at t:::: 0, hence '.1)11)21)1(!):::: '.V2'.V1(f). 

We also found that p(o,o) :::: B(f)* :::: '.1)1 '.1)2 '.1)1 (!)* could be written with 
denominator 

and numerator 

_ (-:clly2t13 _ :c10y4t14 _ :c9y6t15 + ( (t10 + ts) y2 _ yst16) ;cs+ 

( (t15 _ t14 _ t13) y7 + (tlO _ t12 + tg) y4 + ytS) ;c 7 + 

+ ((-t14 -tll) y6 + (tll +tlO +ts +t7) y3 -t7) ;i:6+ 
+ ;c5y2t9 + ((-t12 -tll) y7 + (tlO + tg + 2ts + t7) y4 + (-t5 -t4) y) ;i:4+ 
+ ;c3y6tll + ( (tg +ts+ t6 + t5) y5 _ ySt9 + (-t6 _ t5 _ t4 _ t2) y2) ;i:2+ 

+ (y1tS + (t6 - t5 - t4) y4 + (-t3 - t2 + t) y) ;c - 1). 
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6.4 Remark The expansion of this rational function has an independent 
interpretation. The ideal of the cone G N is generated by the fundamen-
tal, algebraically independent invariants S and T; from this it follows that 
'Jfo(k[GN]) = 'Jfo(A)(l - t4 )(1 - t 6 ). This cone is not normal, because its 
singularities form a subvariety of codimension one. Write GN for the normal-
ization of GN, then the interpretation is p(o,o) = 1fo(k[GN]). 

In an analogous way the other Fµ s can be computed. Together with 
Proposition 6.2 it gives the following completion of computations by Forsyth 
[F98]. 

6.5 Theorem The SL3-Hilbert series 1fo(k[l7(3,o)]) can be written as a ratio-
nal function with numerator 

l - xyt + x2y2t2 + (-y3 + xy4 + x2y2)t4 + (2xy4 - x2y5 + x4y)t5+ 
+ (x2y2 _ x2y5)t6 + (xy4 + x4y- x6y3 + x7y)t7 + (y6 _ xy7 _ xzy5+ 
+ x4y _ x4y4 _ x8y2)tB + (-xy7 + xzys + x3y3 _ x4y4 _ x5y2 + x7 y-

- x 7 y4)t9 + (-2x4y4 + xsyz _ x 7 y4 _ xsy2)t10 + (-x3y6 _ x4y4 + x6y6 _ 

_ 2x1 y4)tu + (-x4y4 + x4y7 _ x6y6 _ x7 y4 + xBy5 + x9 _ x1oy)t12+ 
+ (-x3y6 _ x7y4 + x7y7 _ x9y3 _ x10y + xlly2)t13 + (x4y7 _ x5y5+ 
+ x 7 y7 + x10y4)t14 + (-x9y3 + x9y6)t15 + ( x 7 y7 _ x9y3 + 2x10y4)t16 + 
+ (x9y6 + x10y4 _ xlly5)t17 + x9y6t19 _ x10y1t20 + xlly8t21; 

and with denominator 

(1 - y3t)(l - y3t3)(l - y3t4 )(l - xyt)(l - x3t3)(l - x3t 5)(1 - x6t4)x 
X (1 - t4)(1 - t6 ). 

6.6 Remark The generating function Con((3, O); x, y, t) of the concomitants 
of the ternary cubic forms is obtained from the formula above by interchanging 
x and y. In particular 

7. Ternary quartics 

In this section we give an outline of the computation of the generating 
functions associated to some types of covariants of the ternary quartics. 

We consider the representation M = 17(4,o)• Introduce the two functions 
hti : Z2 -+ Z, for i = 1 or 2, by ht1((n, m)) := n + m and ht 2 (n, m) = n + 2m. 
Write Ni for the sum of the T-eigenspaces of M corresponding to µ E Z 2 with 
hti(µ)?: 0. The union of GN1 and GN2 is the cone defined by the invariants. 

We used the following procedure to obtain a set of relations. Define S := 
s(o,o),N,. If 3µ1 ?: µ2 put sµ = sµ,N,' else put sµ = sµ,N,. If uµES sµ is 
larger than S, replace S by this union and repeat the procedure. 
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This algorithm stops at the set of weightsµ E N 2 with ht1(µ) ::; 7 together 
with {(8, 0), (7, 1), (6, 2), (5, 3), (3, 5), (2, 4), (6, 3)}. It consists of 43 elements. 

Write A:= k[M) and, for i = 1 or 2, 

then we have 43 relations 

withµ ES, and i = 1 if 3µ1 2: µ2 , else i = 2. We observe that a~(t := 0) = 0, 
unless .:\ = µ; in that case it is 1. It follows that the matrix (a~)>.,µES is 
invertible; hence ?fo(A ® V;i.), .:\ES, can be expressed in the B(eµ Ji)* and the 
coefficients a~. 

We were not able to calculate B(eµ Ji)* completely, but at least we can 
give the coefficient of x 0 y0 • 

7.1 Lemma 

(i) Ifµ#- 0 E N 2 then the coefficient o[x0 y0 in B(eµ Ji)* is zero, for i = 0 or 
1. 

(ii) The coefficient ofx0 y0 in B(f1)* equals (1 - t3 )- 2 . 

Proof Any .:\ such that e>- occurs with a non-zero coefficient in the expansion 
of eµ Ji at t = 0 has hti(.:\) 2: 0, because any T-eigenvector of N,; has a eigen-
character v with hti(v) 2: 0, by definition of Ni. Ifµ #- 0, then hti(µ) > 0, 
hence hti(.:\) > 0. 

Suppose that 'l/-• E Z 2 such that 1)1(e"') #- 0. lf1)1(e"') #- e'P, then 'ljJ1 < -1 
and V1(e"') = e(-,J,,-Z,,J,,+'¢.+l)_ We have 

ht1((-1P1 - 2, 1P1 + 1P2 + 1)) = -1 + 1P2 > 1P1 + 1P2 = ht1(1P) 
ht2((-1P1 - 2, 1P1 + 1P2 + 1)) = 1P1 + 2'1jJ2 = htz('ljJ). 

Now suppose that V2(e"1) #- 0. If V2(e"1) #- e'P, then 1P2 < -1 and 
1'1(e"1) = e("1,+'¢.+l,-'¢,- 2). We have 

ht1((1P1 + 1P2 + 1, -'lp2 - 2)) = 1Pl - 1 > 1P1 + 1P2 = ht1(1P) 
ht2((1P1 + 1P2 + 1, -1P2 - 2)) = 'l/J1 -1P2 - 3 > ht2(1P)-

It follows that if µ #- 0 and e>- occurs with non-zero coefficient in B( eµ Ji), 
then hti(.:\) and ht2(.:\) both are greater than zero, hence .:\ #- (0, 0). This 
proves (i). 

It also follows that the coefficient of x 0 y0 in B(fi)* equals the coefficient 
of x 0 y0 in 

1 1 
g·----------- -------------

.- JL1-N,,ht,(>.)=o(l - e>-t) - (1 - x 2 y- 2t)(l - x- 1yt)(l - x- 4y4t) 
1 

- (1 - z- 2t)(l - zt)(l - z4t)' 
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if we write z = :z:- 1y. Now there is a partial fraction decomposition with 
respect to z of the form 

A B 
g = (1 - zt)(l - z 4t) + (z2 - t)' 

Only the first gives non-negative powers of z in the development at t = 0. With 
Maple we computed that 

1 
A(z := 0) = (1 - ta)2' 

which is the coefficient of a: 0y0 we searched for. D 
By comparing the coefficient of a:0 y0 on both sides of the equations we 

get equations involving 1i((A ® V.:\)G; s, t). By solving the equations we found 
1i((A ® Vµ)G;t), µES. This Hilbert series is the generating function of the 
concomitants of the form Y(a,o) -+ Vµ, They are of geometrical interest in the 
case µ = (n, 0), for some n E N. We give some of the results in the next 
proposition. 

7.2 Theorem The Hilbert series 1i((k[Y(4,o)] ® Vµ)G;t), forµ ES as above, 
can be written as a rational function with denominator 

Forµ= (m, 0) (m = 0, ... , 8) the numerator is 

form= 0: 
t75 + t66 + t63 + t60 + 2t57 + 3t54 + 2t51 + 3t48 + 4t45 + 3t42 + 4t39+ 
+ 4 t36 + 3 t33 + 4 t30 + 3 t27 + 2 t24 + 3 t21 + 2 t18 + t15 + t12 + t9 + 1, 

form= 1: 
t61 + 2t58 + 5t55 + 8t52 + 9t49 + 13t46 + 16t43 + 14t40 + 17t37+ 

+ 18t34 + 13t31 + 12t28 + 11 t 25 + 5t22 + 3t19 + 3t16, 

form= 2: 
t71 + 2t68 + 3t65 + 5t62 + 8t59 + 10t56 + 14t53 + 19t50 + 20t47+ 

24t44 + 27t41 + 25t38 + 27t35 + 26t32 + 21 t29 + 19t26 + 16t23+ 
11 t 20 + 8t17 + 7t14 + 3t11 + 2t8 + 2t5, 

form= 3: 

t 66 + 2t63 + 6t60 + 12t57 + 17t54 + 28t51 + 38t48 + 42t45 + 51 t42+ 
+ 55 t 39 + 50 t 36 + 50 t 33 + 46 t 30 + 34 t 27 + 28 t 24 + 21 t 21 + 10 t18+ 
+6t15+3t12, 
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form= 4: 
t73 + t70 + 4 t67 + 8 t64 + 11 t61 + 20 t58 + 30 t55 + 36 t52 + 49 t49 + 60 t46+ 

+ 62 t43 + 69 t40 + 73 t 37 + 65 t34 + 62 t31 + 57 t 28 + 43 t 25 + 35 t 22+ 
+ 27t19 + 16t16 + 10t13 + 7t10 + 2t7 + t4 + t, 

form= 5: 
3 t65 + 8 t62 + 15 t 59 + 30 t 56 + 48 t 53 + 62 t 50 + 82 t47 + 99 t44 + 103 t 41 + 
+ 110 t 38 + 112 t35 + 97 t 32 + 87 t 29 + 7 4 t 26 + 50 t 23 + 35 t 20 + 22 t17 + 
+ 9t14 + 3t11 +t8 , 

form= 6: 
t72 + 3t69 + 6t66 + 15t63 + 26t60 + 38t57 + 59t54 + 80t51 + 94t48+ 
+ 116t45 + 131 t 42 + 130t39 + 135t36 + 131 t 33 + 111 t 30 + 97t27+ 
+ 8lt24 + 55t21 + 39t18 + 27t15 + 13t12 + 7t9 + 4t6 + t 3 , 

form= 7: 
t67 + 5t64 + 17t61 + 36t58 + 57t55 + 90t52 + 124t49 + 145t46 + 173t43+ 
+ 192 t40 + 185 t 37 + 183 t34 + 171 t31 + 136 t 28 + 110 t 25 + 83 t 22+ 
+ 48t19 + 27t16 + 14t13 + 3t10, 

form= 8: 
t71 + 4 t68 + 12 t65 + 23 t62 + 45 t 59 + 73 t 56 + 100 t 53 + 138 t 50 + 173 t47 + 
+ 192t44 + 216t41 + 228t38 + 214t35 + 203t32 + 183t29 + 143t26+ 
+ 112t23 + 84t20 + 50t17 + 30t14 + 17t11 + 6t8 + 2t5 +t2. 

7.3 Remark We did not calculate 1i((k["Y(4,o)] ® Y(s,o))G), i.e., the generating 
function of all covariants "Vi4,o)--+ Y(s,o), but 1i((k["Vi4,o)] ® lfc~.o))G). But they 
are related to each other by a general result of Stanley, see [St79]. 

8. Systems of ternary forms 

In an analogous way we computed the generating functions of some systems 
of ternary forms. We give the results. 

For a system of a quadric and a cubic form the generating function of the 
invariants 1i(k["Vi2,o) EB Y(a,o)]G; t) can be written as a rational function with 
numerator 

1 + t + t 7 + t 8 + t 9 + 2t 11 + 3t12 + 3t13 + 4t14 + 6t15 + 7t16 + 7t17 + 
+ 9t18 + 9t19 + 8t20 + 9t21 + 9t22 + 7t23 + 7t24 + 6t25 + 4t26+ 
+ 3t27 + 3t28 + 2t29 + t31 + t32 + t33 + t39 + t40' 

and denominator 
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For a system of two ternary cubic forms the generating function of the 
invariants 1i(k(l'(3,o) EB 1'(3,o)] G; t) can be written as a rational function with 
numerator 

1 - 2t + t 2 - 2t3 + 5t4 - 4t 5 + 9t6 - 16t7 + l8t8 - 22t9 + 29t10 - 24t 11+ 
+ 40t12 - 42t13 + 38t14 - 42t15 + 40t16 - 24t17 + 29t18 - 22t19 + 
+ 18t20 - 16t21 + 9t22 - 4t23 + 5t24 - 2t25 + t26 - 2t27 + t28, 

and denominator 
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In their listings [McK], [Bre] of decompositions of characters of semisimple 
Lie subgroups obtained by restriction from overgroups or by tensor products of 
irreducible representations, McKay et al: often use generating functions that 
turn out to be rational. In this paper, we prove that they are always rational 
and provide an example of how to derive an explicit expression for this rational 
function in the case G2 l Az. 

Let G be a semisimple complex connected Lie group of Lie rank n with 
maximal torus T. The group of all rational characters of T, called weights, 
is denoted by A(T). As groups, we have A(T) == zn. The set of all roots 
(that is, all nonzero weights occurring in the restriction to T of the adjoint 
representation of G), is denoted by <.Pa. A set of fundamental roots o: 1 , ... , O:n 

is chosen with respect to a fixed Borel subgroup B of G containing T. We 
write Wa = Na(T)/T and(·,·) for the canonical Wa-invariant inner product 
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on A(T). We also fix the fundamental weights w1 , ... , Wn as the basis dual to the 
fundamental roots in the following sense: 2(wi,aj)/(aj,o'.j) = Di,j, 1:::; i,j:::; n. 
The set A+ ( G, T) of dominant weights is the N-span of these fundamental 
weights. As semigroups we have A+ ( G, T) ==' Nn. The set of positive roots is 
4>b = {a E 4>al(a,wi) 2: 0 for i = 1, ... ,n} and pa= I:;=1wi is the half sum 
of all roots in 4>b· A partial ordering :::; on A(T) is given by>. :::; µ if and only if 
µ - >. is a non-negative integral linear combination of positive roots. A+ ( G, T) 
is used to indicate irreducible representations of G and Vi. is the irreducible 
G-module with highest weight >.. This module can be obtained as {J E C[G] I 
f(gb) = >.(b)f(g)}; here >. is viewed as a character of B by >.(b) = >.(t) for 
b = tu, with t ET and u E U, where U is the maximal unipotent subgroup of 
B. There is a straightforward extension from semisimple to reductive groups. 
If G is a reductive group we also use elements of A+( G, T) to indicate the set of 
all weights that are dominant with respect to the semisimple part of the torus. 
Thus for example A+ (T, T) = A(T). 

1. Rational generating functions 

Assume that G is a semisimple Lie group. Let µ 1 , ... , µp E A+ = A+ ( G, T) 
and set M = NP with standard basis e1, ... , ep. For the G-module V ==' Vµ, EB 
···EB VµP, the algebra C[V*] of polynomial functions on the dual V* of V can 
be M-graded in such a way that C[V*]e; = Vµ, for each i E {1, ... ,p}. Given 
m = (m1, ... , mp) E M, the homogeneous part C[V*]m is a homomorphic 
image of v;:- 1 © · · · © Vµ';P in which Vm,µ, +··•+mpµp occurs with multiplicity 1 
and has a unique G-stable complement Jm. Clearly C[V*]m · Jm, C lm+m', 
so J = EBmEMJm is an M-graded G-stable ideal in C[V*]. Since the algebra 
C[V*] is Noetherian, J must be finitely generated. In fact 

1.1 Theorem ([Bri, 4.1]) The ideal J is generated by the J,,+ei for all l :::; 
i:::; j:::; n. 

The quotient algebra A= C[V*]/J can be provided with the induced M-
grading and is preserved by the induced G-action. By construction, Am ==' 
Vm,µ, +···+mpµp. In particular, putting p = n, µi = Wi for all i E {1, ... , n} and 
M = A+, the direct sum A = EB>.EA + V;i, over all irreducible representations of 
G is a A+ -graded G-algebra, with A;i, ==' V;i,. The Poincare series of A is the 
expression 

Pdim(x) = L (dim Vi.)x\ 
>-EA+ 

where x stands for (x1, ... , Xn) and x>- stands for x~' · · · x;n if>.= I:;=l AiWi-
Thus, Xi = xw,. As A is finitely generated, Pdim ( x) is a rational function 
in x1, ... ,xn (this will later be abbreviated to: rational in x). The rational 
function can be explicitly given: 
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1.2 Theorem (Weyl's Dimension Formula, cf. (Hum]) The dimensions of the 
highest weight modules of G are given by the formula 

P . ( ) _ " II ( >. + PG, a) .>. dim X - -'------'-X 
.>.EA+aE<P+ (pa,a) 

= II 
I:~=l (wi, a)-k · Xi 

(pa, a) (rr 1 x-) · i=l ' 
The first identity gives an explicit formula for the dimension of V>. and 

is more convenient for actual computation. The second identity expresses 
Ddim ( x) as a rational function in a:; it can easily be derived from the first 

by use of a!i · xi(xm) = (m; + l)xm and (>.+PG, a)= I:~=l (>.i + l)(wi, a). 

1.3 Example Let G be a Lie group of type A1. Then PG = w1 and ,p+ = 
{ a1} = {2 "-'1}, so 

-(1-:z:)2" 

We shall extend these observations to Weyl's Character Formula. Let H 
be a reductive closed Lie subgroup of the semisimple Lie group G. The fact that 
H is reductive ensures that any finite-dimensional rational representation of H 
decomposes into a direct sum of irreducibles. Branching is the decomposition 
of a representation of H that is obtained by restriction from a highest weight 
module of G. Let S be a maximal torus of H and m the Lie rank of H. 
Then, there is a maximal torus of G containing S, which we may take (up 
to conjugacy) to be T. Thus for dominant weights >. = (>.1 , ... , An) of G 
and µ = (µ1, ... , µm) of H, we are after the multiplicity (Vµ, V>. lH) of the 
highest weight representation Vµ of H in the highest weight representation V,>. 
of G restricted to H. In terms of formal power series in the indeterminates 
a::1, ... , Xn, Y1, ... , Ym, we want to find an explicit description of the branching 
series 

Pa1H(x; y) = L(Vµ, V>. lH )xµy>. 
>.,µ 

of Hin G. 
The coefficients of the branching series have a second interpretation. Given 

a highest weight module Vµ of the subgroup H there is a unique (possibly in-
finite dimensional) induced G-module Vµ jG. The multiplicity of the highest 
weight module V>. in the module Vµ jG is denoted by (Vµ jG, V.>.)- Frobenius 
Reciprocity gives that (Vµ jG, V.>.) = (Vµ, V>. lH ), which is a second interpre-
tation of the power series. However, considered as a power series in a:, the 
coefficients of the series are power series in y that need not be polynomials. 
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1.4 Lemma Pa1H(x; y) is a rational function in x and y. 

Proof Denote by B = EBµEA+(H,S) v; the A +(H, S)-graded H-algebra of all 
dual irreducible H-representations, and by A= EB.\EA+(G,T) Vi the A+(G, T)-
graded G-algebra of all irreducible G-representations. Then the tensor product 
A@B is a A +(G, T)EBA +(H, S)-graded algebra with a G x H-action preserving 
the grading. Considering Has a diagonally embedded subgroup of G x H, we 
get for.\ E A+(G,T) andµ E A+(H,S) 

(A@ B){;.,µ) == (Vi !H @v;)H == HomH(Vi 1H, Vµ), 

Since the dimension of the latter complex vector space is the multiplicity 
(Vµ, V-' 1H), the Poincare series of (A® B)H is precisely Pa1H(x;y). On 
the other hand, it is a rational function too, as (A® B)H is finitely generated, 
for H is reductive and acts grade preserving on the finitely generated graded 
ring A® B. (cf. [Spri, Proposition 2.4.14]). 

Weyl's Dimension Formula handles the special case H = I. In the case of 
the reductive subgroup H = T, an explicit rational form is known. For any 
,\ E A+(G,T) set 0.\(x) = I::wEWG <let w xw-'. 

1.5 Theorem (Weyl's Character Formula, cf. [Hurn]) The branching series 
of the maximal torus T in the semisimple Lie group G is 

This is indeed a rational function since I::.\EA+(T) xw-'y-' is rational for 
each w E Wa. IfG is of type Es, the expression consists of IWal = 696729600 
summands, which is unrealistically high for computations. 

,1.6 Example Let G be a simply connected Lie group of type A 1 • Then 

(1 - xy)(l - x-ly) 

= L)xm + Xm-2 + ... + x2-m + x-m)ym, 
m 

which is a well-known fact. 

2. Tensor decomposition and plethysms 

Computing the decomposition of the tensor product Vi (8) Vµ of two irre-
ducible G-rnodules can be viewed as branching the irreducible G x G-rnodule 
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VA ® V,.. to the diagonal subgroup isomorphic to G. Denote by (Vi., V,.. ® V.,) the 
multiplicity of Vi. in V,_. ® V., and identify A+ ( G x G, T x T) with A+ ( G, T) x 
A+ ( G, T). Then, as we have seen in the previous section, the power series in 
:Z:1, • • •, :Z:n, Y1, • • •, Yn, z1, •••,Zn 

A,µ,11EA+(G,T) 

is rational in a:, y, z. Again, let A= EBAEA+(G,T) VA and A* = EBAeA+(G,T) v;. 
By the proof of the lemma in the previous section, the power series can be 
considered as the Poincare series of(A®A®A*)G, where G must be considered 
as the diagonal subgroup of G x G x G. If we use an automorphism of G 
to identify A• with A, the entries of the multidegrees in A+ ( G, T) must be 
permuted in an appropriate way. Therefore the series can be considered as 
the Poincare series of (A® A® A)G and is invariant under permutation of the 
names a:, y, z. 
2.1 Example Take G a Lie group of type A1. Then A = EBn>o Vn is a 
polynomial algebra in two variables. (A® A)(i,i) £::: Vi EB Vo, and ff we take 
p E (A® A)(l,l) a generator for Vo, then it follows by Theorem 2.1 that A® 
A/(p) £::: EBn,m;?:O Vn+m• On the other hand (A®A)G £:::, C[p], because (Vn®Vm)G 
has dimension 1 if n = m and dimension O otherwise. Therefore, A ® A is a 
free (A® A)G-module, or equivalently A® A£::: (A® A/(p)) ®(A® A)G. This 
yields the generating function for the tensor product of G: 

1 
(1 - :z:y)(l - :z:z)(l -yz) · 

This formula can also be used to compute the power series of the l-fold tensor 
products. If P1(:z:1; ... ; :z:1; y) = I: c1:,m,, ... ,m, yk:z:f1 • • • :z:f' , where the sum is 
taken over all k, m1, ... , m1 2: 0 and c1:,m,, ... ,m, denotes the multiplicity of V1: 
in Vm, ® · · · ® Vm1 , then Po = 1 and, for l > 0, 

R :t1+1P1(:z:1; ... ; :z:1; :z:1+1) - yP1(:z:1; ... ; :z:1; y) 
l+l = (1- y:z:1+1)(:t1+1 - y) . 

The factor :z:1+1 - yin the denominator always divides the numerator. 

As we will see, also symmetric and skew-symmetric powers, and more general 
plethysms, lead to rational functions. Let d E N. Identify A+ (Gd, Td) with 
(A+(G,T))d, and set µi = wf = (wi,.:.,wi), d times Wi, for i = 1, ... ,n. 
Then B = EBmeM Vm 1 µ1+ .. ·+m,,,µ,,,, where M = Nn, is a M-graded algebra, 
which is preserved by the Gd action. Restricted to the subgroup G, embedded 
diagonally in Gd, we get B = EBmeM V!,dw,+•·•+m,,,w,,,• The action of Symd 
on B, given by permuting the factors of the d-fold tensor product in each 
degree, preserves the degree and commutes with the G action. Suppose T is 
any irreducible character of Symd. Denote by v; the r-homogeneous part of 
the Symd-module V,..®d, and by (VA, v;) the multiplicity of VA in v;. The 
Plethysm of V,.. with respect to T is the decomposition of v; as a G-module. 
The symmetric and skew-symmetric d-tensors are special cases corresponding 
to the trivial character T = d+ and the sign character r = d-, respectively. 
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2.2 • Theorem Let r be a character of Symd. The power series 

L (V:>., v;):z/•yl' 
>.,µEA+(G,T) 

is a rational function in :z: and y. 

Proof Note that for given r the power series is the Poincare series of 
( BT ® A• )G. The algebra C = ( BSym,1. ® A• )G is finitely generated and has 
rational Poincare series. This proves the case where r is the trivial character. 
( B ®A• )G is finitely generated and integral over C, thus is a finitely generated 
C-module. We have the C-module decomposition (B@A•)G = EBT(BT@A•)G, 
where the sum is taken over all irreducible representations r of Symd. Thus 
(BT ® A*)G is a finitely generated C-module for each r, and therefore its 
Poincare series is rational. 

2.3 Example Take G = A1 , d = 2 and set S = Sym2 {±1}. We have 
B = EBk>o Vi ® Vi, and A* = EBk>o v;. Let C = C[(Vi ® Vt] an N-graded 
polynomial algebra provided with -the natural S x G action. There is the 
natural surjective homomorphism C --+ B, which preserves the degree and 
commutes with the S x G action. The kernel, J say, is graded and S x G 
stable. Let p be a generator of the skew-symmetric part Vo of C1 V2 6:) Vo. 
We have C = cs 6:) esp. By Brion's theorem J is generated by elements of 
degree 2 and from that it follows J n (Csp) = (J n cs)p = Jsp. But then 
B C / J cs/ JS 6:) cs/ JS p Bs 6:) Bs p. Thus if P2+ is the Poincare series 
of (BS ® A•)G corresponding to the series for the symmetric 2-tensors, then 
P2- = yP2+ is the series corresponding to the skew-symmetric 2-tensors. The 
Poincare series P2@ = P2+ + P2- of (B ® A*)G can easily be derived from the 
tensor product series of G above: 

1 
P2@ = (1 - :z:2y)(l - y). 

The series of the symmetric 2-tensors becomes 

1 
P2+ = -(1 ___ :z:_2_y)_(_l ___ y2-) 

and for the skew-symmetric 2-tensors 

Write Pa@ = I:k,l>O Ck,1:z:kyl, where Ck,l is the multiplicity of vk in v;3®, then 
straightforward computations using the above formulas give 
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3. Branching 

We now return to the general situation. G is a reductive group with 
maximal torus T and H a reductive subgroup with maximal torus S, such that 
S C T. The most straightforward way to compute a coefficient (V,,, V.\ !H) of 
the branching series Po1H(x; y) is by determining the set of all weights of the 
G-module V.\, next computing their restrictions to S and then decomposing 
this set with the inverse of Freudenthal's formula as an H-module. In this 
section we give an explicit formula for the coefficients of the branching series. 
Let r : A{ G) -+ A{ H) denote the linear map restricting the weights of T to 
weights on S. Also, by choosing appropriate Borel subgroups, we may assume 
that for a E 'Pb we have r(a) (/. 'PH. Let 'P = {a E 'Po I r(a) = 0}, 
cp+ = cp n 'Pb and W41 the subgroup of Wo generated by 'P. Each coset in 
W0 relative to W 41 has a unique representative in Wo of minimal length, the 
set of these representatives is denoted by W. Put A= r{'Pb)\{0} and provide 
each element a E A with a finite multiplicity ma = 1{6 E 'Pb I r{,B) = a}I if 
a r/:. 'Pif and ma = l{,B E 'Pb I r{,B) = a}l -1 if a E 'Pif. Let L be the lattice of 
non-negative integral linear combinations of elements in A. Kostant's partition 
function PA on L is defined by 

and is extended to the real span of L by putting PA(,B) = 0 if ,8 (/. L. Finally 
put 

3.1 Theorem ([Heel) 

(V,,, V.\ !H) = L det(w)D(w(,\ + po))PA(r(w(,\ +po))-(µ+ r(po))). 
wEW 

The theorem can be proved using Weyl's dimension and character formulas 
above. Conversely Weyl's formulas are special cases of the theorem. The 
theorem suggests how the branching series can be written as a sum over W of 
power series, which represent rational functions. Below we indicate by means 
of a rank 2 example how the actual rational functions can be obtained. Again, 
a higher rank case such as E8 seems intractible. Here is a simpler one. 

3.2 Example Let G be a Lie group of type G2, with root system 'Po and 
fundamental roots ,81, ,82, where ,81 is long and ,82 is short. There is a subgroup 
H of type A2, whose root system <pH is the root subsystem of long roots of 
'Po, and with fundamental roots ,81 and ,81 + 3,82. We want to give the power 
series PoJH = I:.\,µ;(V,,, V.\ !H)x.\ 1 y.\ 2 zl'1 ul'2 , where the sum is taken over 
all ,\ E A+ { G, T) and µ E A+ (H, T). The restriction map with respect to the 
bases of fundamental weights is given by r{{l, 0)) = {1, 1) and r{(0, 1)) = (0, 1). 
Thus <pis empty, so D = 1, W 41 = {1} and W = W0 • The multiplicities of the 
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elements in A = r(<P~) are one for the images of the short roots and zero for 
the long roots. The short positive roots are 1'1 = /31 + /32, 1'2 = /32 and 71 + 1'2. 
Kostant's partition function PA at the lattice points m1'1 + n','2, m, n 2: 0, is 
given by 

and is zero outside these points. We need the following more general formal 
power series expansion defining the function qA on the same lattice, whose 
values are polynomials in z and u. 

1 " ( ) mbn ( ) ---------------- = qA m1'1 + n1'2 a * (1 - a)(l - b)(l - ab)(l - az)(l - abu) m,n2'.0 

The values of qA are taken to be zero outside the lattice. Thus, 

qA(v) = LPA(v - (µn1 + µ2(1'1 + 1'2)))zµ'uµ2 • 

µ 

Since the fundamental weights of the A2 subsystem of long roots are 1'1 and 
1'l + 1'2, we have µ = µn1 + µ2(1'1 + 1'2). Consequently, substitution of the 
formula of Theorem 3.1 in the formal power expansion PaJ,H, yields 

PaJ,H = L LqA(r(w(.\ + pa)) - r(pa))x.x'y.x 2 • 

wEW .X 

Now Paj,H is computed by finding rational functions for the power series cor-
responding to each w E W separately. Let s1 and s2 denote the reflections in 
Wa corresponding to the fundamental roots /31 and /32 of G, respectively. In 
light of the support of qA, a non-zero series occurs only when w is one of the 
four elements 1, s1, s2, s1s2. 

We indicate how to compute the rational function corresponding to w = l. 
As r(.\) = .\1(21'1 +72) + .\2(1'1 +72), we have to compute the rational function 
expression of 

L qA(.\1(271 + 72) + >-2(71 + 1'2))x.x,Y.x 2 • 

.X 

But, writing x = a2 b and y = ab, we obt~in the subseries of(*) in which pre-
cisely those monomials ambn occur that can be written in the form (a2 b)i(ab)1 
for certain i, j 2: 0. The following general identity is useful in finding the 
required rational function 

n.1 ,n.2,···,'.'t.Jt~D 
-m.1 ,'T11.2, .. . ,-m.z 2:0 

n.1 +n2+·. ·+n,. 2::-m.1 +-m.2+ · ·+mz 

k I ak-lbl-1 1 

np;ti(ai - ~p)ITq;tj (bj - bq) (l - aibj )(1 - ai)' 
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We first compute a rational expression for the subseries of(*) in which only 
monomials ambn occur that are at the same time monomials in the variables 
ab and a. To this end we need only consider the fraction 

1 
(1 -a)(l - b)(l - az) 

of(*). Letting k = 2 and l = 1 and substituting a1 = a, a2 = az and b1 = b in 
(***) we obtain the rational expression for the relevant subseries of the above 
fraction of (*). Thus, the rational expression for the subseries of (*) itself 
becomes 

C1 - ab;(l - a) (1 - ab:)~1 - az)) a~ az (1 - ab);l - abu) 

(1 - a2bz) 
- (1 - a)(l - az)(l - ab)(l - abz)(l - ab)(l - abu) · 

A look at the denominator of this function shows that a similar step, with k = 4 
and l = 2, and substitution a 1 = a2 = ab, aa = abz, a4 = abu, bi = a, and 
b2 = az in (***) yields the required expression for (**) upon substitution of :c 
for a2b and y for ab. The resulting rational function for the w = 1 summand 
of Pa!H is 

-(-l + z2u:z:2 _ :cz + :z:2z2 + y:c + :z:2z _ z2u:z:3 + z3y2:c3 _ z3u:z:3 _ z3:z:2y _ 
:c2yu +y2:c2z2 - u:c3z - y2:cu - y2:cz - z2y2:c + 3y:cz + 2:c2zu + 2z2y:c + 
2:cyu+ 3y:czu+z3u2:c3y+ u2y:c3z + z2:c3yu2 + 2y:c3zu- 3:c2z2y+z4u2:c5y2 + 
4z2:c2y2u + 2z2:z:2y2u2 - 2z3u:z:2y + z3:z:3y2u2 - 2:c2zy - 6:c2zyu + z2:cyu -
2:z:2 zyu2 -2u2:z:4z3y2 -u2:z:2z2y+ z4:z:4y3u2 -:c4z3y2u-ya:c2z2u2 +z3:z:4y3u2 _ 
z4:z:4y2u _ 2z4u2:z:4y2 + z3y2:z:3u + 2:c2y2uz + :z:2y2u2z _ 6u:c2z2y + z2y3u:c + 
z4 :c3yu + 3:c3z3yu + 3:c3z2yu - u2y2:c4z2 - 2y2:cuz2 + y3:czu - 3y2:czu + 
y2:c2 z3u _ z3y3:z:3u _ y3:z:2z2u _ z3y3:z:3u2) 

(1- :z:)2(1 - zu:c)(l - :cz)(l - y)2(1- z2:c)(l - yz)(l - :cu)(l -yu) 

For w E {s1, s2, s1s2} one can follow the same procedure. In these cases, 
an additional summand r( w(pa) - PG) occurs in the argument of qA. However 
this requires only a shift in the grading or removing some terms of the series. 
The corresponding rational functions are, respectively, 

y2:c3zu + y3:c2zu - 2:c2y2uz - y2:c2u - y2:c2z + :cyu + y:cz + 2y:c - :c - y 
(1- :cu)(l - :cz)(l - :z:)2(1- yu)(l - yz)(l - y)2 

(1- y)(l - :z:)2(1- :cz)(l - :cu) 

-:c(z4:z:3yu - z3u:z:2y - zau:ca - za:c2y + :ca zayu + 2z2:c - z2y:c + yz2 - z2u:c2 
- z2 + z2:cu - z2:cyu + :cz + yz - z + zu:c - 1) 

(1- zu:c)(l - :cz)(l - z2:c)(l - yz)(l - :cu)(l - :i:)2(1 - y) 
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· Adding these series gives the rational form of the branching series of G2 
to the subgroup A2: 

l - xyzu 
PG,!A,(x,y;z,u)= ( )( )( )( )( )( ) 1 - yu l - xu l - yz l - y l - xz l - zux 

An immediate consequence of the obtained rational function expression 
is the following recursive expression for the coefficient q(.X1, A2) of x>-.'y>-.• m 
PG,!A,· 

wl=D wm=O Z U 

{ 

....->-., ....->-.,-l l m 

q(.X1, A2) = I:;!o I:;:~i z>-.,-mul+m 

q(.X1, O)q(O, -X2) - zuq(.X1 - 1, O)q(O, -X2 - 1) 

We recall that q(.X1, .X 2 ) is a polynomial in z and u expressing the decomposition 
into irreducibles of the restriction to A 2 of the G2 representation with highest 
weight (.X1, -X2). The computation of q(.X1, -X2) via this method is much faster 
than the general method as implemented in, e.g., the software package LiE (cf. 
(Col). 
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In this paper we describe some of the surprising results which appeared in 
the study of invertible polynomial maps during the last few years. Our main 
motivation is the well-known Jacobian Conjecture, formulated by 0. Keller in 
1939, which asserts that a polynomial map F : en -> en is invertible, if the 
determinant of the Jacobian matrix of Fis a non-zero constant. 

Since the literature concerning the Jacobian Conjecture is extensive, we 
only describe some of the highlights in the first section. At the end of section 
one we also give references to other papers concerning the Jacobian Conjecture. 
In section two we give new criteria for the invertibility of a polynomial map 
and apply these results to the study of the Jacobian Conjecture. Finally in the 
last section we make some remarks on the automorphism group of a polynomial 
ring in several variables over a field. 
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1. The Jacobian Conjecture 

Let F : en -+ en be a polynomial map, that is a map 

where each Fi belongs to C[X] := C[X1 , ... , Xn], The central question in this 
paper 1s 

1.1 Question How can we decide if a given polynomial map is invertible, i.e., 
has a polynomial map as inverse? 

Let us assume that Fis invertible with inverse G. Then G(F(X)) = X, 
where X = (X1, ... , Xn), So if we put 

then by the chain rule we get (JG)(F(X)). J F = In, so det (JG)(F(X)) · 
det J F = I, whence det J F E c•. Summarizing: if F is invertible, then det 
JFE C*. 

Jacobian Conjecture: If det J F E C*, then F is invertible. 

This more than 50 year old conjecture is still open for all n 2'. 2. Before we 
give some of the history of the Jacobian Conjecture, let us first give a useful 
criterion for invertibility of F. To this end, observe that if F is invertible with 
inverse G = (G1, .. ,,Gn) then X = G(F(X)), i.e., Xi= Gi(F1, .. ,,Fn), So 
Xi E C[F] := C[F1, ... , Fn] for all i, implying C[X] = C[F]. Conversely, if 
C[X] = C[F] then Xi E C[F] for all i, i.e., Xi = Gi(F1, ... , Fn) for some 
Gi, Hence X = G(F(X)), where G = (G1, ... , Gn), It is a well-known fact 
that this relation also implies that F(G(X)) = X (see [11], §4). Hence F is 
invertible. So we obtain 

1.2 Lemma Fis invertible if and only ifC[F] = C[X]. 

1.3 Some history of the Jacobian Conjecture 

For two nice survey papers concerning the Jacobian Conjecture, we refer the 
reader to [7] and [46]. 

The Jacobian Conjecture was first formulated by 0. Keller ([25], 1939) 
with Z instead of C. In fact he was considering the problem of describing all 
transformations between several Z-transcendency bases of a given ring ( with 
finite Z-transcendency bases). The main result of his paper states that if 
F : en -+ en is a polynomial map with det J F E C* and which has a rational 
inverse, i.e., Xi = ai(F1, ... , Fn)/bi(F1, ... , Fn) for some ai, bi E C[F], bi -::J- 0, 
then actually this inverse is a polynomial inverse. So writing the quotient field 
of C[X] as C(X) we have 
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1.4 Theorem (Keller) Let F = (F1, ... , Fn) with det JFE c•. IfC(F) := 
C(F1, ... , Fn) = C(X), then C[F] = C[X]. 

In a completely different setting the Jacobian problem was studied by 
Arne Magnus ([29], 1955). He considered volume preserving transformations 
of complex planes given by analytic functions in two variables, i.e., 

with det J(f, g) = l. 
Let now f,g E C[z1,z2] with n = degf, m = degg. Then Magnus showed that 
(f, g) is invertible if norm is a prime number. This result was generalized by 
Nakai and Baba ([41], 1977): ifn or mis prime or norm is 4 or m > n, m = 2p 
and p > 2 is prime, then (f, g) is invertible. This result was in turn generalized 
by Appelgate and Onishi ([6], 1985): if n or m has at most 2 prime factors, 
then (f, g) is invertible. This result was recently reproved by Nagata ([40], 
1988). In this context we also refer to the paper [42] of Nowicki. 

Also several wrong "proofs" of the Jacobian Conjecture were published. 
The first one appeared in 1955, [19]. Engel "proved" the Jacobian Conjecture 
for n = 2. It took 18 years until Vitushkin [55] discovered two errors in Engel's 
proof. In the meantime Segre had produced three incomplete "proofs" in 1956, 
'57, '60 [48], [49], [50], all using topological methods. In the third paper he 
asked for a purely algebraic proof. This was given in 1961 by Grobner [22]. 
However Zariski showed that formula 14 was wrong. A more dramatic "proof" 
was given by S. Oda in 1980, [43]: he cited a lemma from a book of Murre [38] 
incorrectly. 

After all these negative results one more positive result in case n = 2. In 
1983 Moh [36] showed, using a computer search, that the Jacobian Conjecture is 
true if both deg F1 and deg F2 :S 100. He reduces the problem to four problem 
cases namely (degF1,degF2) E {(64,48),(75,50),(84,56),(99,66)} and then 
eliminates these cases by a reduction of degree trick. The reduction to the 
above four cases is also obtained in a recent paper [23] by Heitmann. 

Now we return to the study of the Jacobian Conjecture. The first question 
which comes up is: what is the connection between the Jacobian Conjecture 
(over C) and Keller's problem (over Z)? Can we replace C by an arbitrary 
field, or even better by a "nice" ring such as Z? The example F(X) = X +XP E 
Fp[X] (n = 1) shows that, for characteristic p > 0, the Jacobian Conjecture 
does not hold; for ;; = 1, but for every GE Fp[X] we have deg G(X + XP) = 
pdeg G > l so that G(X + XP) :p X. 

Therefore, let R be a subring of a Q-algebra and F1, ... , Fn E R[X] := 
R[X1, ... , Xn]- Arguing as above we obtain: if R[X] = R[F] then det J F is a 
unit in R[X]. Denoting the units of R[X] by R[X]* we get 

1.5 Generalized Jacobian Conjecture (JCn(R)): let. R be a subring of a 
Q-algebra. If det JFE R[X]*, then R[F] = R[X]. 

So in the case R = C we get the usual Jacobian Conjecture and if R = Z we 
get Keller's problem. Now the question arises: how much more general is the 
generalized Jacobian Conjecture then the usual Jacobian Conjecture? It was 
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shown in [7] that for each n E N the conjecture JCn(e) implies JCn(R) for 
every R as above. However at the cost of enlarging the number of variables we 
obtain 

1.6 Theorem Let R be a subring of a Q-algebra. Then JCn(R) is true for 
all n 2: 1 if and only if JCn(e) is true for all n 2: 1. 

Proof By the observation above we only need to show that if JCn(R) is true 
for all n 2: 1, the same holds for all JCn(e). Observe that R has no Z-torsion 
since it is a subring of a Q-algebia. Hence R contains Z. Suppose now that 
there is a number n for which JCn(e) is not true. Then there exists an n 
variable counter example. So by [16], Theorem 1.5 there exists an m (> n) 
variable counter example with integer coefficients and hence with coefficients 
in R, a contradiction. So JCn(e) is true for all n 2: 1, as described. 

So by this theorem we can safely return to the study of the usual Jacobian 
conjecture (over e). The advantage of working withe (instead of Ras above) 
is that you can use methods of complex analysis (see for example the paper of 
Campbell, [13] and the papers [53] and [54] of Stein and Comment 1.14 below). 

A question which arises in this context is: can we generalize the Jacobian 
Conjecture to analytic functions on en, i.e., if F1, ... , Fn are analytic on en 
with det J F E e• does there exist an inverse G = ( G1, ... , Gn) where each 
Gi is analytic on en? Already for n = 2 we get a counterexample namely 
F1 =ex, F2 = Ye-x, which satisfy det J F = 1, however F(21rik, 0) = (1, 0) 
for all k E N. So F is not injective. In this example the map F is not injective. 
It can even be worse. There exists an F = (F1, F2 ) : e 2 -> e 2 where each Fi 
is analytic on e 2 , det J F = 1 and Fis injective. However e 2\F(e2 ) contains 
a non-empty open set ([10], Chapter III, §1). In the light of this example the 
next result is a surprising contrast (see also remark 1.13 below). 

1. 7 Proposition Let F : en -> en be a polynomial map with det J F E e•. 
If F is injective, then F is invertible. 

Proof Since det J F E e• certainly det J F f. 0 in e[X]. Hence F1, ... , Fn 
are algebraically independent over e ([45], Satz 61). So both trdg0 e(F) = 
trdg0 e(X) = n, which implies that e(F) C e(X) is an algebraic, hence finite 
extension. Let e = le(X) : e(F)I. Then by [26], AI 3.5 for almost all a: E en 
(i.e., for all a: in a Zariski open set of en) the fiber p-1(:z:) contains e points. 
Since F is injective it follows that e = 1. So e(X) = e(F) which implies 
e[X] = e[F] by Keller's theorem. Hence F is invertible by Lemma 1.2. 

So the Jacobian Conjecture is equivalent to: if det J F E e• then F is 
injective. In other words it is equivalent to: if F is not injective then F 1 := 
det J F <I. e• so F 1 has a zero in en. So we obtain 
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1.8 Corollary ("Rolle" formulation of the Jacobian Conjecture) The Jaco-
bian Conjecture is equivalent to: (R) If F(a) = F(b) with a -:/= b in C'\ then 
there exists { E en such that F'({) = 0. 

Let us give one more application of Proposition 1. 7. 

1.9 Theorem (S.S. Wang [56], 1980) Let det J F E c• and deg Fi 2 for 
all i. Then F is invertible. 

Proof By proposition 1. 7 it suffices to prove that F is injective. So suppose 
F(a) = F(b) for some a, b E en, a f:: b. We first show that we can assume 
that b = 0. To see this, we define G(X) := F(X + a) - F(a). Then deg G 
2, G(0) = 0 and putting c := b - a we have c f:: 0 and G(c) = 0. Observe 
that (JG)(X) = (JF)(X + a), so det JG E c•. Now write G = G(i) + G(2), 
its decomposition.in homogeneous components. Consider G(tc) = tG(i)(c) + 
t 2G(2)(c). Differentiation gives 

d 
G(1)(c) + 2tG(2)(c) = dt G(tc) = (JG)(tc) -:/= 0, all t E C 

since c -:/= 0 and det JG E c•. Substituting t = ½ gives G(c) -:/= 0, a 
contradiction with G(c) = 0. So F is injective as required. 

One could object that this result is only a very special case of the Jacobian 
Conjecture. However the next theorem, proved independently by Yagzhev in 
[57] and Bass-Connell-Wright in [7] (1980) shows that theorem 1.9 is "almost" 
the general case: 

1.10 Theorem (Yagzhev, Bass-Connell-Wright, 1980) If the Jacobian Con-
jecture holds for all n 2'. 2 and all polynomial maps F with deg Fi 3 all i, 
then the Jacobian Conjecture holds. 

1.11 Remark One may wonder where the three in theorem 1.10 comes from: 
the idea in the proof given in [7] is to get rid of all monomials of degree d 
to obtain a reduction of the degree by multiplying F by so-called elementary 
polynomial maps (see §3). By the method used a monomial M of degreed can 
be eliminated if it can be written as a product PQ of two monomials which are 
both of degree d - 2. Therefore take P a divisor of M of degree d - 2. Then 
degree Q = 2 and 2 d - 2 as soon as d 2'. 4. So all monomials of degree 2: 4 
can be eliminated and one remains with polynomials of degree 3. 

The following improvement of theorem 1.10 was obtained by L. Druzkowski 
([18], 1983). 

1.12 Theorem (Druzkowski) If the Jacobian Conjecture holds for all n 2'. 2 
and all F of the form 
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then the Jacobian Conjecture holds. 

1.13 Remark The result in Proposition 1.7 even holds without the assumption 
det J F E C*: every injective polynomial map F : en -> en is invertible ([9]). 
See also [46), Theorem 6.2 and [47) where en is replaced by an (irreducible) 
affine algebraic variety over an algebraically closed ground field. 

1.14 Comment In two recent papers Y. Stein takes the example F1 = ex, 
F2 = Ye-X as a starting point for a new analytic approach to the Jacobian 
Conjecture: Let Ebe the Frechet space of entire functions on C2 . Let f, g E E. 

Analytic Jacobian Conjecture: if det J(f, g) = 1, then ¾(E) is dense in 
E ( h d • th Ii t .£9_ 8 8g 8 ) w ere df 1s e near opera or aY ex - ex 8y . 

It is proved in [53) that this conjecture for polynomials implies the Jacobian 
Conjecture. Furthermore the conjecture is proved for f = ex, g = Y e-x. In 
[54) it is shown that ¾(E) is closed in E (with the standard Frechet space 
topology). 

1.15 Comment A topic which we will not discuss in this paper is the global 
asymptotic stability Jacobian Conjecture (see [34) for a nice survey). This 
conjecture, which is due to Markus and Yamabe ([30), 1960) asserts that if 
f: Rn -> Rn is a C 1-function with f(0) = 0 and such that for each p E Rn the 
origin is a locally asymptotic rest point of the linearized system y = (J F)(p)y, 
then the origin is a globally asum ptotic rest point of x = f ( x). For n = 2 this 
conjecture was recently solved in the affirmative by Meisters and Olech ([35), 
1988). In this context we also mention the paper [21) of the author. 

2. New Criteria for the lnvertibility of a Polynomial Map and the 
Relationship with the Jacobian Conjecture 

Now we return to Question 1.1. In 1986 I gave an answer to this question 
based on methods from computer algebra, namely from the theory of Grobner 
bases for ideals in polynomial rings (for a nice survey of this subject we refer 
the reader to the paper [12) of Buchberger). 

Before recalling the main definitions in order to understand the following theo-
rem let us first mention the main point of the Grobner basis theory. In a poly-
nomial ring in one variable over a field every ideal is generated by one element. 
If we choose this element to be monic it is unique. Furthermore this unique 
element can be constructed by using Euclidean division several times ( every 
reduction gives a polynomial of lower degree). In a completely analogous way 
one can proceed in the case of a polynomial ring k[X] := k[X1, ... , Xn] (n 2'. 1) 
over a field k. Let us give some more details: to have the notion of "degree" 
one has to order the set T of terms Xf' ... X~,,_, i1, ... , in 2'. 0. More precisely, 
a total order < on T is called admissible if 1 < t for all t E T, t =f. l; and if 
s < t then su < tu for all s, t, u E T . (An example of an admissible order on 
Tis the lexicographical order with X 1 < X2 < · · · < Xn)-
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Now choose a fixed admissible order on T. For each f E k[X] we write 
f E "£ ftt, ft E k, t E T. If f -f- 0 define Lp(f) = max{t E T I ft -f- 0} and 
Lc(f) := the coefficient of Lp(f) inf. If f = 0 define Lp(f) = 0 and Lc(0) = 0. 
Let Ebe a finite subset of k[X] and g E k[X], then we say that g is reducible 
mod E if t = sLp(f) for some t E T with Yt -f- 0, s E T and f E E. The 
set of all terms t E T which are reducible mod E is denoted by Lp(E). Let I 
be an ideal in k[X]. A finite subset E C I is called a Grabner basis of I in 
I= (E) (= the ideal generated by E) and Lp(I) = Lp(E). A Grobner basis G 
of I is called a reduced Grabner basis of I if for each f E G we have: f is not 
reducible mod G\ {f} and Lc(f) = 1. It can be shown that for each ideal I 
there exists a unique reduced Grabner basis ( only depending on the admissible 
order < chosen on T). Furthermore, given an arbitrary finite basis E of I there 
exist algorithms with input E and output the reduced Grobner basis of I. 

Now we are able to describe the first invertibility criterion for a polyno-
mial map F : kn -----> kn when k is an arbitrary field. So let Fi, ... , Fn E 
k[Xi, ... , Xn]- Introduce n more variables Yi, ... , Yn and consider the ideal I in 
k[X, Y] := k[Xi, ... , Xn, Yi, ... , Yn] generated by Yi -Fi(X), ... , Yn -Fn(X). 
On k[X, Y] we choose a fixed admissible order such that any power product in 
Yi, ... , Yn any power product in Xi, ... , Xn (for example the lexicographical 
order with Yi < Y2 < · · · < Yn < Xi < · · · < Xn)-

2.1 Theorem (van den Essen, [20], 1986) Let G be the reduced Grabner 
basis of I. Then F = (Fi, ... , Fn) is invertible if and only if G = {Xi -
Gi(Y), ... , Xn - Gn(Y)} for some Gi E k[Y]. Furthermore, if F is invertible 
the inverse is given by G = ( Gi, ... , Gn)• 

Let us compare the possible Jacobian criterion "Fis invertible if and only 
if det JFE k*" with Theorem 2.1. 

+ our theorem works for all characteristics. The Jacobian criterion only when 
char k = 0. 

+ our theorem also computes the inverse. The Jacobian criterion doesn't. 
our algorithm is slow if the number of variables or the degree is large. The 
Jacobian criterion is comparable faster. 

2.2 Remark Some theoretical applications of Theorem 2.1 are mentioned be-
low. 

As already observed before, for practical computations the above algorithm 
is too slow. So the question arises: How can we make the algorithm faster? 
The idea is to make bigger steps in the reduction process: looking at the 
Grobner basis G above we see that the ideal I contains an element of the form 
Xi - Gi(Y). So in the case n = 2 this means that I contains an element from 
which X2 is eliminated. This observation guides us to elimination theory. Its 
main tool is the resultant, a device which was often used in the early days of 
algebraic geometry, but which was gradualy eliminated from the theory and 
replaced by methods from modern algebra. However, together with the birth 
of computer algebra there was a renewed interest in the study of resultants. 
Several new papers appeared see for example [14] and [15]. Now let us recall 
the Resultant (see [45], §43 for more details). 
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. Let A be a commutative ring without zero divisors, K its quotient field 
and A[T] the polynomial ring in the variable T with coefficients in A. Let 
f = fnTn + fn-1rn- 1 + · · · + fo E A[T] with fn #- 0 and y = Ym'I'"' + 
Ym-1'I'"'- 1 +···+Yo E A[T] with Ym #- 0. 

i) If n, m 2: 1 the resultant off and y, denoted RT(!, y) is defined as 

fn Jo 

RT(!, y) := det fn Jo 
}m 

Ym Yo 
}n 

Ym Yo 

ii) Ifm = 0 we put RT(f,y) = Yo, ifn = 0 we put RT(f,y) = lo• 
The main property of the resultant is 

(2.3) f and y have a common zero (in some finite field extension of K) if and 
only if RT(!, y) = 0. 
Furthermore 

(2.4) RT(!, y) E A[T]f + A[T]y. 

Now we are able to formulate the main theorem of [3]. 

2.5 Theorem (Adjamagbo, van den Essen, 1988) Let k be an arbitrary field 
and F = (F1 , F2 ) : k2 -+ k2 a polynomial map. There is equivalence between 

i) F is invertible. 
ii) There exist >.1, >.2 E k• and G1, G2 E k[Y] such that Rx,(F1 - Yi, F2 -

Y2) = >.1(X1 -G1) and Rx 1 (F1 -Yi, F2-Y2) = >.2(X2-G2)- Furthermore, 
if Fis invertible then G = (G1 , G2) is the inverse of F. 

This algorithm is extremely fast, works in all characteristics and computes 
the inverse (in case F is invertible). A generalization of this result to rational 
maps in two variables, can be found in [2]. 

In the remainder of this section we derive two consequences from Theorem 
2.5. Each of these conclusions will be generalized to the case of several variables. 
At the end of this section we relate these results to the Jacobian Conjecture. 

2.6 Border polynomials To derive the first corollary from Theorem 2.5 we 
substitute X1 = 0 resp. X2 = 0 in the two resultant expressions of Theorem 
2.5. We obtain 

{ 
Rx2 (Fi(0,X2)-Y1,F2(0,X2)-Y2) = >.1(-G1(Y)) 

(2.7) 
Rx1 (F1(X1, 0) - Y1, F2(X1, 0) - Y2) = >.2(-G2(Y)). 

From (2.7) we see that up to some constants >.1, >.2 G is completely determined 
by the so-called border polynomials F1(0, X2), F2(0, X2), F1(X1, 0), F2(X1, 0). 
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In fact also .\1, .\2 are determined by these border polynomials which can be 
seen as follows: the linear part of G and hence of G1 is determined by the 
linear part of F and so by its border polynomials. Obviously the left hand side 
of the first equation in ( 2. 7) is determined by the border polynomials of F. So 
equating the linear parts in this equation we see that .\1 is determined by the 
border polynomials of F. The constant .\2 is treated similarly. In [31] explicit 
formulas for .\1 and .\2 are given: .\1 = (-l)ncJ, .\2 = (-1)=+1dJ, where 
J = det JF, n = degF1(0,X2), m = degF1(X1,0), c = Rx,(F1(0,X2)/X2, 
F2(0, X2)/ X2), and d = Rx, (F1(X1, 0)/ X1, F2(X1, 0)/ X1) (here it is assumed 
that F(0) = 0). These formulas show once more that .\1 and .\2 are determined 
by the border polynomials of F. 
Summarizing: the inverse G of an invertible polynomial map F : k2 -+ k2 is 
completely determined by the border polynomials of F. Since Fis the inverse of 
G, Fis determined by the border polynomials of G. However G is determined 
by the border polynomials of F. So we obtain our first conclusion. 

2.8 Corollary If F : k2 -+ k 2 is invertible, then Fis determined by its border 
polynomials. 

This result was first obtained in (31], Corollary 13. See also [3], Corollary 2.2. 
2.9 Remark For formal power series a similar result as Corollary 2.8 does not 
hold as can be seen from the following example: 

F1(X1, X2) = X1(l - aX1X2), F2(X1, X2) = X2(l - aX1X2)- 1, a Ek. 
Then det J F = l and for each a E k the border polynomials of F are the same 
as the border polynomial of the identity map (a= 0). 

The following generalization of Corollary 2.8 to several variables was given by 
McKay and Wang in [32], 1988. 

2.10 Theorem (McKay, Wang) Let <p = (F1, ... , Fn) define a k-automor-
phism of k [ X]. Then <p is determined by its face polynomials 

Fi(X1, ... , X 3-1, 0, Xj+1, ... , Xn)-

Proof Let J (Fi, ... , Fn) be another k-automorphism of k[X] with the 
same face polynomials. This can be expressed by saying that 7ri o ¢ = 7ri o J 
for all 1 :S i · :S n, where 7ri : k [X] -+ k [X] is the k-endomorphism defined 
by 1ri(Xi) = 0 and 1ri(X3) = X 3 if j # i. We show that ¢-1 = J-1. So let 
R; = <p- 1(Xi) and R; = J-1(Xi)- We show that R1 = R1. Observe that 

ker1r1 o ¢ = {g E k[X] I q;(g) E (X1)} = (Ri). 
Similarly ker 1r1 o J = (Ri). Since 1r1 o ¢ = 1r1 o J we get (R1) = (Ri) and hence 
R1 = .\R1 for some .\ E k[X]* = k*. Applying ¢ gives ¢(R1) = .\X1. Also 
<f;(Ri) = X1. Now apply 7rz. Then 

X1 = 1r2 o ¢(R1) = 1r2 o J(R1) = .\X1. 

So .\ = 1 implying R = R1. 
implies ¢ = J, as desired. 

Similarly we get Ri = R; for all z, which 
D 
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2.11 Remark The above proof is given in [17] and also works in the case that 
k is a reduced ring (since then k[X]* = k*). 

2.12 Remark The generalization to the case that k is a reduced ring was first 
obtained by Li in [28]; his proof is based on a result from [20]. 

2.13 Remark If k is not a reduced ring, the result of Theorem 2.10 does not 
hold: to see this take the example of Remark 2.9 where a: is an element of k 
satisfying a: -f. 0 and a: 2 -f. 0. 

2.14 Remark For more results concerning the connection between invertible 
polynomial maps in two variables and border polynomials, we refer the reader 
to [37] where the authors establish a one-to-one correspondence between the 
invertible polynomial maps F : k2 f----t k2 and the matrices (fi(t), h(t)) E 
M2(k[t]) having the property that the curves t f----t fi(t) and t f----t h(t) only 
intersect at O and have independent tangents at O ( k is an algebraically closed 
field). 

2.15 The degree of the inverse of an invertible polynomial map From 
the definition ofresultant one immediately obtains that degy Rx, (Fi -Yi, F2 -

Y2) :S max(deg Fi, deg F2), all i. So by Theorem 2.5 we see that deg G :S deg F 
(and hence we have equality by interchanging F and G). This is a special case 
of 

2.16 Theorem (Gabber) Ifk is a field and F: kn----> kn is an invertible poly-
nomial map with inverse G, then degG :S (degFt-i (degF := maxdegFi)• 

For an elementary proof of this result we refer the reader to [46], theorem 5.1. 

Theorem 2.16 forms the basis for another invertibility criterion and a new 
inversion formula. Let K be a field of characteristic zero and F : kn ----> kn 
a polynomial map with det J F E k*. Define a sequence of polynomial maps 
p[i], p[2l, ... : k2n----> kn inductively 

2.17 Theorem (Adjamagbo, van den Essen, [4], 1988) Let F be a polynomial 
map of degree d, D = dn-i _ Then F is invertible if and only if det J F E k* 
and p[D+l] = 0. Furthermore, if Fis invertible the inverse G is given by 

D 

G(V) = L t,p[kl(o, v - F(0)). 
k=i 
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2.18 Remark An inspection of the proof of Theorem 2.17 shows that we can 
replace the field k by any Q-algebra R for which we can show the inequality of 
Theorem 2.16. 

So one could wonder for which kind of Q-algebras R the inequality of 
Theorem 2.16 holds? As in the case of border polynomials the result of theorem 
2.16 can be extended to the case that k is a reduced ring. This can be seen 
as follows. First observe that in case k is a ring without zero-divisors the 
conclusion of Theorem 2.16 still holds (by embedding k in its quotient field). 
Now assume k is a reduced ring. Let p be a minimal prime ideal of k and 
consider the ring homomorphism ¢ : k --+ k := k/p. If F is invertible with 
inverse G then the induced map Fis invertible with inverse G. Since k/p has 
no zero-divisors it follows from the previous case that deg G ::; ( deg Ft-1 ::; 

( deg Ft-1 . So if a is a coefficient of a monomial of G of degree > a,n- 1 then 
¢(a) = 0 i.e. a E p. So a belongs to the intersection of all minimal prime ideals 
of k i.e. to the nilradical of k, which is the zero-ideal since k is reduced. So 
a = 0, which implies deg G ::; a,n- 1 . 

However, if k is not a reduced ring the conclusion of Theorem 2.16 is not 
true; in fact there is no bound for the degree of the inverse which depends on 
n and deg F only. This can be seen as follows. Let d E N. Take n = 1 and 
F = X - aX2 , where ad # 0 and ad+l = 0 (in some ring k ). Observe that 
det J F = 1- 2aX E k[X]• (the inverse is 1 + 2aX + (2aX) 2 + • • • + (2aX)d). 
Let G(F(X)) = X. Then G'(X - aX2 ) • (1 - 2aX) = 1 (by the chain rule) so 
G'(X-aX2 ) = 1+2aX +- · ·+(2aX)d. Sod= degG'(X-aX2 )::; 2(degG-1), 
whence deg G 2: f + 1. So deg G can be arbitrarely large in spite of the fact 
that n = 1 and deg F = 2. The cause of the trouble is the strict inclusion 
k* C k[X]*, for if we had assumed that Fis invertible and det J F E k* then 
the conclusion of Theorem 2.16 is true in case n = 1. So for n = 2 we can hope 
that the answer to the following question is, yes: 

2.19 Question If k is a Q-algebra, F : k2 --+ k2 is invertible and det J F Ek*, 
does it follow that deg F-1 ::; deg F? 

The answer to this question is still open, in fact a positive answer to this 
question would imply the Jacobian Conjecture for n = 2. This is a special case 
of the following theorem of Bass, [8]. 

2.20 Theorem (Bass, 1982) The Jacobi.an Conjecture is equivalent to: given 
n and d, there exists a constant C(n,d) such that for any Q-algebra R we 
have, if F : Rn --+ Rn is invertible with deg F ::; d and det J F E R*, then 
deg F-1 ::; C(n, d) (i.e. the degree of the inverse is bounded by a number 
independent of the Q-algebra). 

This result was used by Abhyankar and Li in [1], 1989 to open a new 
approach to the Jacobian Conjecture. Therefore they first generalized Theo-
rem 2.1 to the case of polynomial rings over arbitrary commutative rings ([1], 
Corollary 4.3). Then the next step is to investigate the following: given a set of 
generators fi ofan ideal I (in a polynomial ring R[X1 , ... , Xn], where Risa Q-
algebra) and an admissible order on R[X]. Let d = max deg Ji. Does there exist 
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a uniform bound C(n, d) (i.e. independent of the Q-algebra R) for the degrees 
of the elements gi of the reduced Grobner basis you find? If such a bound exists, 
then the Jacobian conjecture would follow from Theorem 2.20 and the general-
ized version of Theorem 2.1 (take as input ideal (Fi(X)-Yi, ... , Fn(X)-Yn) ). 
However it is shown in [1] that such a bound does not exist even if the ring R 
is a polynomial ring in one variable over a field. 

2.21 Comment Several generalizations of Theorem 2.1 have been obtained. 

i) In an unpublished note Andre Heck (CAN, Amsterdam) has given the fol-
lowing improvement: let K = k(Y) the quotient field of the polynomial ring 
k[Y]. Put K[X] := K[Xi, ... , Xn]• Let T be the set of monomials Xf' · · · X~n 
with ii, ... , in 2:: 0. Choose on Tan arbitrary (!) admissible order <. Let I be 
the ideal in K[X] generated by the elements Yi - Fi(X). Let G be the reduced 
Grobner basis of I. Then F is invertible if and only if there exist polynomi-
als Gi E k[Y] such that G = {Xi - Gi, ... , Xn - Gn}, Furthermore, if F is 
invertible the inverse of F is given by ( Gi, ... , Gn). 
ii) In [51] and [52] Shannon and Sweedler and in [44] Ollivier use Grobner 
bases to study the problem how to decide if a polynomial (resp. rational) map 
F : kn -> km (k a field) admits a polynomial (resp. rational) inverse. The 
technique is similar to the one used in (20]. 

2.22 Comment In 2.6 we showed that an invertible polynomial map F : 
k 2 -> k 2 can be reconstructed from its border polynomials by means of (2. 7) 
and the formulas for Ai and .\2 • One could try to generalize this proce-
dure by studying more variable resultants i.e. consider Fi(Xi,,,.,Xn) -
Yi, ... , Fn(Xi, ... , Xn) - Yn as polynomials in the variables X2, ... , Xn and 
then compute the resultant with respect to these variables: 

Rx2 , ••• ,xn(Fi(Xi, ... , Xn) - Yi, ... , Fn(Xi, ... , Xn) - Yn), 

which is an element in the remaining variables, so belongs to k[Y, Xi], One 
could hope that this resultant has the form .\(Xi - Gi(Y)) for some .\ E k* 
and Gi E k[Y]. However one can prove that in general this resultant is zero 
and hence contains no information at all about the inverse of F. So we are lead 
to 

2.23 Question How can one reconstruct an invertible polynomial map from 
its face polynomials if n 2:: 3? 

3. The Automorphism Group of a Polynomial Ring and some Con-
jectures 

In this last section we make some remarks about the automorphism group 
of a polynomial ring in several variables over a field k. If n = l the only 
automorphisms of k[X] are of the form X 1-+ .XX + µ for some .\ E k* and 
µEk. 
From now on let n 2:: 2. A polynomial map E = (Ei, .. . , En) : kn -> kn is 
called elementary if there exist j such that Ei = Xi for all i -::j:. j and E1 - X 1 
does not depend on X 1. 
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3.1 Theorem (Jung [24], 1942, van der Kulk [27], 1953) Every invertible 
polynomial map F : k2 --+ k2 is a finite product of invertible linear maps and 
elementary polynomial maps (we call such an F tame). 

3.2 Remark Several proofs of this theorem appeared. See [33], where a survey 
of all these proofs is given. 

It was conjectured for a long time that the conclusion of Theorem 3.1 is also 
true for n 3: the so-called tame conjecture. However in 1972, [39] Nagata 
constructed an example of an invertible polynomial map which is most probably 
not tame, namely 

:z: I--+ :z: - 2y(:z:z + y2) - z(:z:z + y2)2 
y 1--+ y + z(:z:z + y2) 
z I--+ z 

3.3 Remark In [5] Alev and Le Bruyn give a general method to constuct 
such "weird" automorphisms, by using some elementary properties of Clifford 
algebras. 

3.4 Conjecture (Nagata) The map <1' is not tame. 

However it is believed that polynomial maps of degree 2 are nicer. 

3.5 Conjecture (Rusek, [46], 1989). For every n 2 an invertible polynomial 
map F : kn --+ kn of degree 2 is tame. 

We conclude with two more conjectures. 

3.6 Conjecture (Adjamagbo, van den Essen [3], 1988) If F : k2 --+ k2 sat-
isfies det JFE k•, then ai Rx2 (F1, F2) E k• (this conjecture is equivalent to 
the Jacobian Conjecture, [31, Proposition 2.6). 

3. 7 Conjecture The Jacobian Conjecture is false if n 3 ! 
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Two applications of the theta functions based on the root and weight 
lattices of simple Lie algebras to exactly-solvable statistical mechanical models 
are described. In the first part of this paper, viz. §§2-7, we reformulate Baxter's 
8-vertex model in terms of the Lie group SU(2), its associated root and weight 
lattices and the theta functions based on them. To be more precise, we will 
make use of the abelian subgroup of SU(2) only. We will see that Baxter's 
model, which is the basic building block of almost everything that we know 
about exact solutions of statistical mechanical models, is directly related to 
the spin 1/2, or vector representation of the Lie group SU(2). This material 
has appeared, in a shorter form, in [Fo]. 

The second part is a report on work in progress: a study of a class of 
models that describe the coupling of n copies of the 8-vertex model. Statistical 
mechanical models are described in terms of parameters called the Boltzmann 
weights. The condition for exact solvability is that these weights satisfy a set 
of equations called the Yang-Baxter equations. The above statements will be 
explained in an elementary way in the following section. What we wish to 
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mention here is that the weights obtained in the second part of this paper, are 
the most general that can be considered. I have not managed, as yet, to prove 
or disprove, that these Boltzmann weights satisfy the Yang-Baxter equations, 
or equivalently, that this class of models is indeed exactly solvable. In fact, it is 
likely that only special cases of these weights lead to exact solutions. However, 
I find these models sufficiently interesting to report on. 

In the rest of this section, I would like to motivate both the first and the 
second parts of this work. 

It can be argued that, in the subject of exact solutions, two major issues 
need to be addressed. Firstly, almost all exact solutions that we know are 2-
dimensional. The only exception is the Zamolodchikov model: a solution of the 
tetrahedron equations: the 3-dimensional analogue of the Yang-Baxter equa-
tions. But it is not entirely satisfactory, since some of the Boltzmann weights 
are negative; this makes the model non-physical: the Boltzmann weights are 
probabilities, and furthermore, the solution cannot be extended away from crit-
icality. (We will explain in the following section what these words mean.) How 
can we go beyond 2 dimensions? Recasting the 8-vertex model in the language 
of group theory, as described in the first part of this work, might give us ideas 
on how to go in this direction. After all, higher-rank groups are usually associ-
ated with transformations on higher-dimensional spaces. This is the motivation 
of the first part. 

Next, we come to the second limitation on known exact solutions. Al-
most all solutions that we know are 'symmetric'. An example of a 'non-
symmetric' exact solution that describes a physical system in an external 
symmetry-breaking field, is the 6-vertex model in an external field. There 
are more, but not many. Hopefully, once we learn how to solve models that 
correspond to coupling more than one copy of the same model, or even differ-
ent models, one can consider certain limits in which one of these components 
'freezes' (in the sense that its variables remain fixed in a certain direction, thus 
breaking the spatial symmetry of the entire system), and acts as an external 
field that breaks the symmetry of the other components. This is the motivation 
of the second part, though as we will see, we will come way short of what we 
wish to obtain. 

The presentation is informal and elementary. It is not the intention here 
to give an introduction to statistical mechanics, or the relevant mathematics. 
Instead, references to original works and reviews are provided. 

1. Exact solutions in Statistical Mechanics 

All known physical phenomena that can be theoretically investigated, be-
long to one of two classes: those with a very small number of degrees of freedom, 
and those where the number of degrees of freedom is very large. Later, we will 
be more specific about what we mean by 'very small' and 'very large.' The gen-
eral case ofan arbitrary number of degrees of freedom is simply too complicated 
to handle. 

Only in the above limits can we hope that a small number of features 
remain dominant, while all others vanish, or could be safely ignored. When that 
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is indeed the case, then things become sufficiently simple that one can describe 
them in terms of an abstract model that can be mathematically investigated. 

Naturally, the above scenario can work with different degrees of success: 
There may be situations where one ignores certain effects that are small but 
not vanishing. In such cases, one can regard the small but non-vanishing ef-
fect as a perturbation, and work in terms of a perturbation expansion up to 
a certain order in a small parameter. The most successful example of that 
approach is Quantum Electrodynamics: a theory that describes the electro-
magnetic interactions between elementary particles. No other known example 
of a perturbative expansion is nearly as successful. The reason is that the per-
turbation effects that one wishes to include are typically small, but not small 
enough to guarantee that the perturbation expansion converges. 

There are cases where things can go even better: a very small number 
of features are important, all others are strictly vanishing; however the model 
remains far from trivial: one can write down a non-trivial set of equations that 
describe the model exactly. If one can find an exact and non-trivial solution to 
such a set of equations, then one has an exactly-solved model. Such solutions 
can be found in the limit where the number of degrees of freedom is three. (The 
cases of one and two degrees of freedom are trivial.) In these cases, things are 
simple because we strip all complications off the problem. Astronomers, and 
nuclear physicists are typically interested in such cases. Here, one talks about 
an exact solution ofa 'few-body problem'. We will not be concerned with these 
in this work. 

One the other hand, statistical mechanists and quantum field theorists 
are interested in the other limit: that of systems with a very large number of 
degrees of freedom. This is usually referred to as the infinite-volume limit. 

In that case things become simple because almost all complications cancel 
each other out. Furthermore, there are certain systems, typically 2-dimensional, 
where what emerges in the infinite-volume limit can be described in terms of 
an exact model: an exact set of equations, for which exact and non-trivial 
solutions can be found. 

These models typically describe 2-dimensional critical phenomena. Let us 
explain what we mean by that. Given the right conditions: temperature, pres-
sure, etc., matter can change its state: a solid, such as ice, can melt into liquid: 
water; and liquid can evaporate into gas: vapour. Each of these transformations 
is an example of a 'phase transition.' 

Depending on the conditions under which they occur: temperature and 
pressure in the case of water boiling, or external electric and magnetic fields, in 
the case of transitions in electric and magnetic materials, phase transitions can 
be 'sudden' and non-homogeneous: watching water freezing, one can actually 
distinguish, here and there, chunks of ice forming; or gradually and homoge-
neously: in that case, at no point can one say that part of the system is in one 
phase, while another part is in the other. Phase transitions that occur freely 
in nature are almost always first order. Continuous phase transitions require 
delicate conditions that can be achieved only in the controlled environment of 
the laboratory. 
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Sudden and non-homogeneous phase transitions are called 'first order' 
phase transitions, for a reason that we need not go into. Continuous and homo-
geneous transitions are second, or higher order phase transitions. Second and 
higher order phase transitions are collectively known as 'critical phenomena'. 
They are the subject of our interest here. 

Phase transitions can be further classified from a different point of view. 
They can occur in the 'bulk': think of water boiling in kettle. These are 3-
dimensional phase transitions: they take place in systems with a finite volume. 
Or, they can occur on a surface: the way that the liquid crystal display in a 
digital watch reacts to a change in an applied electric current, thus indicating 
the time of day, is an example of a surface phase transition. These are 2-
dimensional phase transitions. But any physical system, no matter how thin, 
has a definite thickness, even a single layer of atoms has the thickness of a single 
atom; how could we still talk about a 2-dimensional physical system? The point 
is that, in discussing critical phenomena, we will be mainly interested in the 
way that the variables of the system fluctuate. In a very thin system, all 
fluctuations will take place in the two extended dimensions of the system. In 
other words, critical behaviour will not take place in the third direction. It is in 
that sense that we can talk about a 2-dimensional system, and 2-dimensional 
critical phenomena. How about one-dimensional phase transitions? : they are 
trivial! 

In the rest of this work, we will be concerned with one solution in 2 di-
mensions: Baxter's model. 

2. Baxter's model 

Baxter's symmetric 8-vertex model [Baxt] is central to studies of exactly-
solvable lattice models in two dimensions: all known off-critical solutions can 
be regarded as special cases or generalizations of it. For reviews of recent 
developments, see [JMT], [Bow]. 

Let us explain what we mean when we mention that a solution is 'off-
critical.' We are interested in describing critical behaviour. That includes not 
only the behaviour of a model right at the critical point, but also the way 
it approaches criticality. For that last purpose, we need a solution that is 
valid also off criticality. There do exist exact solutions that are valid only at 
the critical point, such as the 3-dimensional Zamolodchikov model, referred 
to previously, but these are considered as incomplete. Now, back to Baxter's 
model. 

The model is formulated on a 2-dimensional square lattice. Each site on 
the lattice has 4 nearest-neighbours. One-dimensional line segments, called 
bonds, extend between each pair of nearest-neighbour sites. We attach to each 
bond an arrow, that can point in either direction. A site, together with its 4 
bonds, and the attached arrows, is called a vertex. One can think of an N x N 
square lattice: a lattice with N 2 vertices. The bonds at the edges are attached 
to a single site only. Each vertex can take one of 16 possible configurations. In 
the following, by 'a vertex' we will mean a vertex with a given configuration of 
arrows. 
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To each vertex one associates a weight: a probability that the vertex can 
occur; more explicitly, i,t is the probability that a certain site on the lattice, 
together with the attached 4 bonds, can have a certain arrow configuration. A 
vertex that has weight zero cannot occur. A configuration of the entire lattice 
has a weight equal to the product of the weights of the individual vertices. 

To recall, we are interested in describing the critical behaviour of a model, 
including its behaviour as it approaches criticality. An important characteristic 
of approaching criticality is that certain quantities that characterize the system 
behave in a peculiar way. 

These quantities are typically . 'correlation functions.' They give us the 
answer to questions such as: if the variable located at the origin is in a certain 
state, what is the probability that the corresponding variable at a point at 
distance r is in the same state? At criticality, these correlation functions are 
inversely proportional to the distance r, raised to some power. This power is 
called a critical exponent: a number that describes the decay of the correlation 
functions at large distances. 

The reason this behaviour is regarded as peculiar is that these critical ex-
ponents are typically non-canonical: they are different from what one would 
naively expect on the basis of classical considerations, e.g. dimensional anal-
ysis. They are also important because they can be measured in computer 
simulations, or even in the laboratory. An exact solution of a model means 
that we can compute quantities such as the critical exponents exactly. The 
reason why this is important is that-if we are fortunate-the models that we 
are dealing with can be descriptions of physical systems that can be studied 
in the laboratory. When this is the case, then the critical exponents can be 
measured, and the measurements can be compared with the predictions of the 
theory. 

To the best of my knowledge, the theoretic predictions of the exact solu-
tions, have always agreed with the experimental results, whenever it was possi-
ble to carry out a relevant experiment, and within the bounds of experimental 
accuracy. 

Now back to our model on a lattice: The general 16 vertex model, where 
all 16 vertex configurations have non-vanishing and independent weights has 
not been solved. There is no guarantee that an arbitrary model can be exactly 
solvable. The most general exact solution, of a special case of the 16 vertex 
model that we have is that of the symmetric 8-vertex model, where only the 8 
vertices shown in Figure 1 are allowed. 

Figure 1. The vertices of the symmetric eight vertex model 
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The model is symmetric in the sense that vertex configurations that are 
related by inverting all arrows have the same weight. The fact that the non-
symmetric vertex models has not been solved gives an example of what we 
mentioned in the above section, regarding the lack of non-symmetric exact 
solutions. 

The weight of a vertex is called a Boltzmann weight. The basic step in 
solving a model is to find a set of Boltzmann weights that satisfy a certain set 
of conditions called the Yang-Baxter equations. 

Baxter's model is important since it serves as a starting point for further 
generalizations. The basic observation that underlies these generalizations can 
be phrased as follows: the model is related to the 2-dimensional, or spin 1/2 
representation of the Lie group SU(2) in the sense that each bond can take ei-
ther one of two states, and these correspond to the weights of the 2-dimensional 
representation of SU(2): spin-up and spin-down. 

Accordingly, we can think of generalizations that correspond to higher 
dimensional representations of SU(2), and beyond that to any irreducible rep-
resentation of any Lie group [JMT] and [T]. 

Once again, a basic step towards solving a lattice model exactly is to 
show that one has a family of Boltzmann weights that satisfy the so-called 
Yang-Baxter equations. By a family of Boltzmann weights one means that 
the weight of a given vertex configuration depends on a continuous complex 
parameter, known as the spectral parameter, in addition to other dependences 
that will be considered later. The spectral parameter can be interpreted as 
a parametrization of the shape of the underlying lattice. In other words, it 
describes the deformation of the unit cells of the underlying lattice. 

The reason one requires such a dependence on an extra parameter is, 
very briefly, as follows: Suppose we would like to generate all possible vertex 
configurations on a given N x N lattice. We can start from a row of N vertices at 
a boundary, with a given configuration of arrows, with non-vanishing weights. 

We can think of this configuration as a boundary condition. To generate 
the rest of the lattice, we can proceed adding rows, row by row. This can 
be done using a certain operator that acts on the row at the boundary of the 
lattice to generate the next, and so on. 

This operator has a matrix representation, which should be obvious from 
the fact that it acts on a 'row' of variables. It is called the transfer matrix. The 
elements of the transfer matrix can be expressed in terms of the Boltzmann 
weights, since it has to do with the arrow configurations. If the Boltzmann 
weights depend on a spectral parameter, then so would the transfer matrix, 
and we end with a family of transfer matrices. Why do we need an entire 
family of transfer matrices, and not just one? The reason is as follows. 

The condition of exact solvability can be expressed in terms of the re-
quirement that one has as many conservation laws as the number of degrees of 
freedom. In the infinite volume limit one has an infinite number of degrees of 
freedom, therefore one needs an infinite number of conservation laws. Where 
can we get these from? Let us first try to find out what exactly is being 
conserved. 
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.Let us digress and give a 'space-time' interpretation to our lattice model. 
We are familiar with the idea of 4-dimensional space-time: 3 space dimensions 
and I time. Disregarding the fact that the metric on our lattice is Euclidean, 
we can think of our lattice model as a space-time with I space and I time 
dimensions. (In fact we can reformulate our entire discussion in terms of a 
Minkowskian metric, but we avoid that here.) 

One can think of each row as a space-like slice, that propagates forward in 
time. The transfer matrix is the operator that takes care of propagating our I-
dimensional space forward in time. It is roughly the equivalent of a Hamiltonian 
in classical and quantum mechanics. More precisely, it is the equivalent of the 
exponentiated Hamiltonian, up to factors that do not concern us here. In this 
description, a row with a given configuration of arrows represents the state of 
our I-dimensional space at a given moment in time. 

A conservation law means that certain quantities remain constant as the 
system propagates in time. When this is the case, then the state of the system 
at any given moment of time: a row configuration, is the eigenvector of some 
operator, while the corresponding eigenvalue is the conserved quantity. 

We need an infinite number of these operators. Where can we get them 
from? It turns out that if the transfer matrix is a function of a spectral pa-
rameter, then the coefficients of a Taylor expansion, in the spectral parameter, 
around a suitable value, are the operators that we are looking for. 

These operators can be explicitly given as N x N matrices. Since we 
wish that their eigenvalues be simultaneously well defined and conserved, these 
matrices should be simultaneously diagonalizable. From that it follows that 
they should be all mutually commuting. This will be indeed the case if the two 
original transfer matrices, with different spectral parameters, commute. 

The condition for this commutativity to take place is that the Boltzmann 
weights, the building blocks of the transfer matrices, satisfy the Yang-Baxter 
equations. 

Typically, there are many more Yang-Baxter equations than Boltzmann 
weights. Therefore one is faced with a highly over-determined system of equa-
tions. Thus, it is no wonder that solutions could be found only in the presence 
of a symmetry that reduces the number of constraints by making many of them 
equivalent. 

In this work we are interested in off-critical systems that exhibit critical 
behaviour in certain limits. All known off-critical solutions to the Yang-Baxter 
equations are given in terms of elliptic functions. Why is that so? One can say 
that this simply follows from the computations. But this is not satisfactory. 
The deeper reasons behind that fact are beyond the scope of this work. Let us 
accept this as a fact. 

Elliptic functions are infinite series in a complex parameter q, called the 
modulus or nome, that parametrize the departure from criticality. In the crit-
ical limit, q tends to zero, and the Boltzmann weights reduce to trigonometric 
functions. 

Back once again to the connection between Baxter's model and the vector 
representation of SU(2). Baxter's original parametrization of the Boltzmann 
weights does not make the connection with SU(2) manifest. In fact, it does 
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not make a connection with group theory at all. However, as explained above, 
the connection with group theory is necessary once we attempt to study more 
general models. 

Here, we wish to re-derive Baxter's parametrization, in a way that makes 
this connection clear. The purpose of the exercise is to formulate things in such 
a way that generalization to models based on other representations and/ or other 
Lie groups becomes straightforward. 

What we wish to do here is to rewrite Baxter's model in terms of the 
vector representation of SU(2). To go beyond Baxter's model, we would e.g. 
replace the vector representation everywhere by another representation, or re-
place SU(2) by another group. 

3. The Zamolodchikov Algebra 

Let us recapitulate some of the statements we made above. A necessary 
condition for a lattice model to be exactly solvable is that it has a number of 
conserved charges that is equal to the number of degrees of freedom. In the 
infinite-lattice limit, one should have an infinite number of conserved charges. 
The operators corresponding to these charges are obtained as terms in a Taylor 
expansion of the transfer matrix with respect to a 'spectral parameter'. 

The dependence of the transfer matrix on the spectral parameter is equiva-
lent to the presence of a one-parameter family of commuting transfer matrices. 
A sufficient condition to ensure the presence of a family of commuting transfer 
matrices, is that the Boltzmann weights of the model satisfy the Yang-Baxter 
equations. Obtaining new exactly-solvable models amounts to finding new so-
lutions of the Yang-Baxter (YB) equations. 

In [Z] Zamolodchikov noticed that the YB equations are related to a non-
commutative algebra: Consider an algebra generated by the set {Ai(x)}, where 
i is a discrete index, and x is a continuous parameter. The generators satisfy 
the following braiding operation: 

(1) 

If the algebra is associative: 

(2) 

and all third degree monomials in the generators { Ai ( x)} can be shown to be 
independent with respect to variations that leave the coefficients {S} constant, 
then the latter satisfy 

I /3 II /3' /3" I II /3" /3/3' s;:,(u)s.,;,, (u + v)S1 ,1 ,, (v) = s;,!,,(v)s;.,,, (v + u)S.,.,, (u) (3) 

which are the YB equations, once we interpret Sf} ( u) as a Boltzmann weight, 
and its argument u as the spectral parameter. 

Let us explain what we did above. We start from the triple product: 
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where in the *-product of two A operators the order from left to right is :relevant. 
Then we start braiding. We will do that in two different ways, and compare 
the results. 

1. We braid the operators with arguments :z: 1 and :i:2. Then we braid 
the result with the operator of argument :z:3 • This means braiding it firstly 
with an operator that has argument :i: 1 , and then with an operator that has 
an argument :z: 2 : remember that the relative positions of :z: 1 and :i:2 have been 
interchanged in the first braiding. 

2. We repeat the same exercise, but then in the :reverse order: firstly we 
braid the operators with arguments_ :i: 2 and :z:3 , and then braid the result with 
the operator with argument :z: 1 . That means that the latter has to go first, from 
left to right, through an operator that has an argument :z:3 , and then through 
another with argument :i:2. 

Demanding the equality of the two final results obtained above, is an 
expression of the associativity of the braiding operation, or equivalently, the 
Zamolodchikov algebra. However, the final results have the form of a sum 
of terms, each consisting of the product of 3 A operators, with a coefficient 
that consists of the product of 3 S coefficients, one from each time that an A 
operator was braided with another A operator. Now here comes a complication: 
If these coefficients were numerical constants, then one could use the fact that 
triple products of A operators, all with different indices are all independent, 
and equate the coefficients of identical terms on each side. This would give us 
directly, the Yang-Baxter equations in (3). However, the S coefficients, or S 
matrices, depend on the parameters that appear in the A operators. Therefore, 
one has to work harder in order to extract the Yang-Baxter equations. We will 
indicate below, once we work in terms of an explicit representation of the A 
operators, one way of doing this. 

We can find new solutions to the Yang-Baxter equations by looking for 
new realizations of the Zamolodchikov algebra (1). Although in principle one 
can think of the Yang-Baxter equations as functional equations and proceed to 
find solutions to them, it should be easier to find new candidates for associative 
Zamolodchikov algebras. 

4. Cherednik's Representation 

In [Ch] Cherednik proposed a realization of the Zamolodchikov algebras in 
terms of theta functions, that leads to off-critical Boltzmann weights satisfying 
the YB equations. Let us begin with a few definitions. 

4.1 Theta functions 
Our main reference on theta functions is [KP]. The classical theta functions 

0µ,m of degree m, parameter q, characteristic µ, and complex argument z are 
defined as 

0µ,m(z) = (4) 
-rEZ+µ/m 

The parameter q is the modulus, or the nome. It can also be rewritten as 
q = ei1r-r, where r is a complex number, with positive definite imaginary part, 



54 Omar Foda 

called the period matrix. In the rest of this work, we will only consider T with 
Im T > 0, so that the theta functions in ( 4) have a very fast rate of convergence. 
(See page 1 of [M] for a discussion; [M] is recommended as an introduction to 
the subject of theta functions.) 

Notice that the definition given in (4), is different from the standard one 
used in [Ml, [Fa]: we have only one characteristic rather than two, since the 
second can always be absorbed in z. (Our functions are those of characteristic 
(µ / m, 0) in [M].) For fixed m E N and /3 E C, define H m,/3 to be the vector space 
of all analytic complex functions f satisfying f(z + 1) = f(z) and f(z + r) = 
e- 21rimz-1rif3. Then Hm,{3 has dimension m. Moreover, for /3 = rm then the 
space Hm,/3 contains the theta functions 0µ,m (µ E {O, ... , m - 1} ); they form 
a basis. 

4.2 A realization of the Zamolodchikov algebras 
Next we turn to Cherednik's realization of the Zamolodchikov algebra [Ch]. 

Since Cherednik's work is quite technical, we will follow the clear exposition 
given in Appendix II of [TF], with modifications that suit our purposes. 

Consider the operators that act on Hm,/3 as follows: 

Ai,n(x)f(z) = 0i,n(z - x)f(z -17). (5) 

That is, they act on f by shifting the argument by a constant 17, and 
multiplication by a degree n theta function. This results in an operator Ai,n : 
Hm,{3 -> Hm+n,n(r-2x)+f3-2rJm• This can be verified directly by use of the 
definition of Hm,/3 or by observing that the result of multiplying two degree 
m1 and m2 theta functions can be expanded in terms of degree m1 + m2 theta 
functions: 

0µ,,m, (z1)0µ,,m 2 (z2) = d1 0µ,+µ,+m,-y,m,+m,(z1 + z2), 
-yEZ/(m,+m2 )Z 

(6) 

where 
(7) 

For, applying (6), (7) with z1 = z - x and z2 = z - 17, we see that d1 does not 
depend on z, and that the argument of the theta functions depending on z is 
2z - X - 1). 

Clearly, the action of Ai,m(x), as explained above, is not the most general 
that one can consider, but it is what we need in this work. Next, we consider 
the compositions: 

Ai,m(x )A1,m(y)0µ,m, 
Ak,m(y)A1,m(X )0µ,m· 

(8) 

Both operations map Hµ,rm into H3µ,2m(r-x-y)+(r-6rJ)m· As the images 
lie in each other's span, we can relate them by a matrix: 
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The justification for the choice of arguments in the matrix S follows form the 
equation below, which is gotten from (9) by some obvious rewritings. 

To derive the Yang-Baxter equations in this formalism we consider the 
action of the triplet Ai,m(w)Aj,m(x)Ak,m(Y), braid them in two different ways 
as discussed above, then consider the action of each result on the state 0µ,m, 
expressed in terms of theta functions. 

Next we wish to show that the structure constants Sf/(x - y) satisfy the 
Yang-Baxter equations. The basic idea is to make use of the linear indepen-
dence of the triple products of theta functions with different characteristics, 
which follows from the independence of the single theta functions. But then 
the problem, as we mentioned above, is that the S coefficients are not entirely 
constant but depend on the variables x, y, z and 'T/· However, we can use the 
fact that the S coefficients depend only on differences of the arguments x, y, z. 
This together with a study of the behaviour of the various terms under discrete 
shifts in TJ allows us to separate the various terms in the sums obtained, and 
prove the Yang-Baxter equations. 

The S matrices obtained above are given in terms of theta functions and, 
therefore, are candidates for the Boltzmann weights of an off-critical model. 
This was Cherednik's realization of the Zamolodchikov algebra. But how can 
we obtain the Boltzmann weights of a specific lattice model? Let us consider 
Baxter's symmetric eight vertex model. The allowed vertices are shown in 
Figure 1. 

At this point, we can make use of another idea, also due to Zamolodchikov: 
one can think of each vertex as a description of a scattering process between 
two particles. Recall our space-time description of a lattice model: think of a 
vertex as a picture that describes two particles, each carrying a spin variable: an 
attribute, that can take one of two values. They approach each other, collide, 
then proceed ahead. All that can happen during the collision, is that particles 
exchange their spins, or change it. It is also possible that nothing happens at 
all. 

We refer to the two particles coming in, and before they participate in a 
collision, as the incoming states. We refer to the two particles that go their 
separate ways after the collision, as the outgoing states. Of course, each out-
going state of a collision later becomes one of the incoming states of another, 
and so forth. 

We wish to associate theta functions with the incoming states i and j, 
and the outgoing k and l, for definite values of the indices, then compute the 
Boltzmann weight from (10). Since each index has two values, we wish to have 
a 2-dimensional vector space of theta-functions. For that we take m = 2 in ( 4). 
The rest of the computation is straightforward, and has been outlined in [TF]. 

We wish to redo this computation in a way that makes the connection 
with the spin 1/2 representation of SU(2) explicit. For that we propose to use 
a Cherednik-type representation of the Zamolodchikov algebra based on theta 
functions that are related to SU(2). We will see that they reduce to the theta 
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functions used above. However, as we have mentioned before, we expect that 
the relationship with Lie groups allows one to extend the derivation to more 
general vertex models. 

5. Theta functions based on SU(2) lattices 

There is a direct generalization of the classical theta functions ( 4) to func-
tions based on symmetric quadratic forms I f-+ ,QL, ( cf. [Sehl). Following 
the notation of [KP], these are defined as 

et,m(z) = L qm(-yQL-y)e-2,rim(-yQL z) 

-yEL+:;;:-

(11) 

where L is an r-dimensional lattice, µ and z are r-dimensional vectors, and the 
quadratic form QL acts as a metric in the space of the lattice L. 

An important class of theta functions are those based on quadratic forms 
associated to Lie groups. Here we are interested in those related to SU(2). 

5.1 The weight and root lattices of SU(2) 
Our main references on lattices associated with Lie groups are [Serre], [CS]. 

Here we wish to recall some simple facts, and phrase them in a very elementary 
language. In a matrix representation of a rank r Lie group, r torus generators 
can be simultaneously diagonalized. They form the 'Cartan subalgebra' of the 
corresponding Lie algebra. For SU(2) we have r=l, and only one generator 
can be diagonalized. The states that form the irreducible representations of 
the group are eigenvectors of the diagonalized generators. The corresponding 
eigenvalues are the 'weights' associated with the representation. 

For a rank r group, the weights form r-dimensional vectors, and can be 
represented as vertices of an r-dimensional lattice called the weight lattice of 
the group. For SU(2) the lattice is one dimensional. 

The normalization of the weights will be explained below. The weights 
of the adjoint representation-for SU(2) this is the spin 1, or 3-dimensional 
representation-are called the 'roots'. Any root is an integral linear combina-
tions of r 'simple' roots; they generate a 'root lattice'. 

We shall only consider the irreducible root systems in which the squared 
norm of each simple root equals 2 (these are the root systems with the so-called 
simply-laced diagrams). The weight lattice can be shown to be dual to the root 
lattice: it is generated by the 'fundamental weights', which are defined as the 
duals to the simple roots. Notice that the root lattice is a sublattice of the 
weight lattice. 

The inner product of the vectors that generate a lattice defines a matrix. 
The matrix corresponding to the root lattice is the Cartan matrix. The matrix 
of the weight lattice is the inverse Cartan matrix. In the case of SU(2), these 
are one-by-one matrices. 

We can write down a theta function based on a quadratic form as in (11). 
In this case, the characteristics would take values in the dual lattice modulo 
the lattice corresponding to the quadratic form. It is therefore natural to write 
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dowri theta functions based on the root lattice of a group with characteristics 
taking values in the weight lattice modulo the roots. 

We can do that for the lattices based on SU(2), and obtain a parametriza-
tion of the eight-vertex model that way, since the unit cell of the SU(2) root 
lattice contains two sites from the weight lattice. However, the characteristics 
do not take values in the weights of the spin 1/2 representation. Therefore, 
we wish to proceed differently. We start with theta functions based on L •, 
the weight lattice of SU(2), with characteristics taking values in the root lat-
tice L. But since Lis only a sub-lattice of L*, we will have to work with level 
m > 1 theta functions, where the ch;:i.racteristics take values in L mod mL•, and 
choose m such that there are precisely two independent characteristics. This 
way, the characteristics, and consequently the incoming and outgoing states in 
a vertex, can be directly related to the weights of the spin 1/2 representation 
of SU(2). 

6. The Boltzmann weights of the eight-vertex model 

In the normalization where the squared norm of the simple roots is 2, the 
Cartan matrix of SU(2) is simply the scalar 2. The inverse Cartan matrix is 
1/2. The level m theta functions based on the weight lattice of SU(2) are: 

0µ,m(z) = 

The above is identical to (4), up to the 'inverse Cartan matrices', which are 
simply factors of 1/2. In this case, this can be absorbed in the other parameters, 
but we wish to leave it this way, to remind us that in more general cases, if we 
deal with theta functions based on groups of a higher rank, full matrices will 
show up. 

The only possibility that leads to a 2-dimensional space of theta functions, 
where the characteristics have the correct periodicity properties, is m = 4. In 
this case, the characteristics, that take values in L mod 4L*, can be chosen 
as {-1/2, 1/2} or {O, 1}. The two choices are equivalent, since they differ by 
shifts of the origin of the weight lattice, and the first coincides with the weights 
of the spin 1/2 representation. 

To simplify the computations, we will make use of the invariance of the 
theta functions under shifts by vectors in the weight lattice, so that the char-
acteristics can be in the second set {O, 1 }, and write our theta functions as 

0t,4(z) = L q2'Y2 e-4,ri'Yz. 

'YEL+µ/2 

Note that these are identical to what one obtains starting with theta func-
tions based on the root lattice and m = 1. These are precisely the theta 
functions used in [TF] to compute the weights of the symmetric eight-vertex 
model. 
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Next we proceed with the derivation of the Boltzmann weights. For each 
vertex, we associate theta functions with the incoming states, take their prod-
uct, and expand it in terms of a basis of weight 2m theta functions using 
equation (6). We do the same for the outgoing states, and relate the two ex-
pansions using equation (10). Then, we solve for the Boltzmann weights, using 
the orthogonality relation 

where the proportionality factor will not concern us. This above orthogonality 
relation can be proven quite simply using the series expansions of the theta 
functions involved. 

The S coefficients can be obtained starting from (10), with all allowed 
values of indices. In each equation, taking the product of the theta functions 
on each side, one obtains the analogue of a vector equation in theta functions 
of degree 2 (those whose arguments are the sum of the arguments of the initial 
thetas that entered the product). 

Using the fact that these are orthogonal, and that all other terms are 
constants with respect to their arguments, we find that each equation separates 
into two independent linear algebraic equations in two S coefficients, that we 
can solve. The answer is 

sgg(z) = Sii (z) = ( 0 0 (-z + 77)00 (z + 77) - 0 2 (-z + 77)0 2 (z + 77)) /d1 

sJJ(z) = Sff(z) = ( 0 0 (-z + 77)02 (z + 77) - 0 0 (z + 77)02 (-z + 77)) /d1 

Sig(z) = sgi(z) = ( 0 1 (-z + 77)0 1 (z + 77) - 0 3 (-z + 77)03 (z + 77)) /d2 

SfJ(z)=SJf(z)= (01 (-z+77)03 (z+77)-01 (z+77)03 (-z+11)) /d2 

where 

d1 = 0~(-z + 77) - 0~(-z + 77), 
d2 = 0i(-z + 77) - 0~(-z + 77). 

This is not manifestly equivalent to Baxter's parametrization [Baxt], but 
one can show that it is, cf. [TF]. 

7. What next? 

The purpose of the above exercise was to elucidate Cherednik's realization 
of the Zamolodchikov algebra, and to parametrize the weights of the symmetric 
eight-vertex model in a way that makes the connection with Lie group theory 
clear. In fact, we wanted to do things in such a way that a generalization to 
other models becomes straightforward. The next obvious step is to generate 
parametrizations of extended models based on higher representations of SU(2), 
and beyond that to models based on arbitrary representations of Lie groups of 
type An, Dn, En-
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· In the rest of this paper we will look at another direction for generalizing 
Baxter's model: We remain with the fundamental representation of SU(2), but 
consider Boltzmann weights that describe the coupling of n copies of the basic 
8-vertex model. 

8. Coupled vertex models 

In the previous sections, we discussed Baxter's model: a vertex model that 
has 2 states per bond. Thinking of a vertex as a scattering process, where two 
particles come in, collide, then go their separate ways, we have represented the 
scattering states: the incoming and outgoing states in terms of theta functions 
that belong to a 2-dimensional vector space of theta functions. 

We used the two elements of the basis of that vector space to represent 
the two possibilities for incoming and outgoing states: states with spin-up or 
spin-down. 

These theta functions are genus-1 theta functions: their period matrices 
are 1 x 1 complex matrices, i.e., complex scalars. More generally, there are 
theta functions of genus n: their period matrices are n x n complex symmetric 
matrices. Can we obtain statistical mechanical models that generalize Baxter's 
model, where the genus-n theta functions play the same role that the genus-1 
thetas played in Baxter's model? 

Consider a vertex model with 2n states per bond. We propose a represen-
tation of the scattering states in terms of the level-2 n-loop theta functions. 
Here we wish to consider the n = 2 case in some detail. It should be evident 
that the discussion generalizes directly to all n. 

Just as we did above, we represent the scattering states by operators {Ai} 
that act as 

(12) 

We will restrict our attention from now on to the multiplicative factor of the 
action of the {Ai} operators on the states 0i. Up to the shift in the argument 
by 'f/, it contains all the information we need: keeping track of the anisotropy 
introduced by 'f/, these theta functions will stand for the bond states. 

The vector space oflevel-2 2-loop theta functions is 2 x 2 = 4 dimensional. 
Therefore we can associate the basis elem.ents with the bond states of a 4-state 
model. Representing these by 2 arrows on each bond, and using the notation 
0[µ1, µ2] for the theta functions, where µi is the ith characteristic, we associate 
the basis theta functions with the bond states as follows: 

[spin-down, spin-down) ~ 0[0, O], [spin-up, spin-down] ~ 0[1, 0) 

[spin-down, spin-up] ~ 0[0, 1), [spin-up, spin-up] ~ 0[1, 1) 

There are 42 = 16 possible pairs of initial/final states. As a consequence of 
the product relation (6), the set of all initial states divides into four subsets, the 
elements of each sharing the same subspace of intermediate states, exclusively. 
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Therefore, we can divide the set of all scattering processes, into 4 distinct ones. 
Giving only the characteristics that denote the bond states, these are: 

(ooJ (ooJ = sgg gg (ooJ (ooJ + s6g 6g [IO] [10] + sg6 g6 [01] (01] + sJJ 66 [11] [11] 
[10] [10] = sfg fg [00] (00] + sfg fg [10] (10] + sn fJ [01] (01] + sn i6 [11] [11] 
(01] (01] = sgf gf (ooJ (ooJ + sif lf [IO] [IO]+ sgf gf (01] (01] + sM M [11] (11] 
[11] [11] = sff ff (00] (00] + stf tf [10] (10] + sn n (01] (01] + su ii [11] [11] 

(10] (00] = s}g gg [IO] (00] + sfg ig [00] (10] + S}l 8J [11] [01] + sn 66 (01] [11] 
(00] [10] = sJg fg [10] [00] + sgg }g [00] (10] + sit n [11] [01] + sgJ i6 (01] [11] 
(11] [01] = s}f gf (10] (ooJ + sff lf (ooJ [IOJ + st} g} (11] (01] + sf} M (01] (11] 
(01] [11] = SJf ff [10] (00] + sgf ff [00] [10] +SJ}?} [11] [01] + sg} ii (01] [11] 

[OIJ (ooJ = sg} gg (01] (ooJ + sM 6g [11] [IO]+ sgf g6 (ooJ (01] + sJf JJ (10] [11] 
r11J r10J = sn fg ro1J rooJ + st} fg [11J [10J + sff ?6 rooJ ro1J + stf M [10J r111 
(ooJ [OIJ = sg6 gf (01] (ooJ + sJJ Jf [11] [Io]+ sgg 8I (ooJ (01] + sJg M (10] (11] 
[10] [11] = sn ff [01] (00] + s}J if [11] [10] + sfg n [00] [01] + sfg ii (10] [11] 

[11] [00] = Sf} gg [11] (00] + sn Jg (01] [IO]+ Sff gJ [10] [01] + Sff 66 [00] [11] 
(01] (10] = sJ} fg [11] (ooJ + sgf fg (01] [IO]+ sJf fJ [IO] (01] + sgf M (ooJ (11] 
[IO] (01] = s}J gf [11] (ooJ + sfJ Jf (01] [IO]+ sfg gf [IO] (01] + sfg M (ooJ [11] 
rooJ [11J = sJJ ff [11J rooJ + sgJ If ro1J r10J + sJg n r101 ro1J + sgg U rooJ [11J 

To obtain the S matrix elements that appear in the above equations, we 
consider each in turn. Let us illustrate the procedure for the first. We begin 
by writing it explicitly: 

0 (00] (x)0 [00] (y + 1J) = sgg gge (00] (y)0 (00] (x + 17) 
+ s6g 6ge [IO] (y)e [IO] ( x + 11) 
+ sgJ gJe (01] (y)0 [01] (x + 17) 
+ sit JJe [11] (y)0 [11] (x + 1J) 

This corresponds to the scattering process in Figure 2. 

01x) 01y+i]) 
Figure 2. A two-particle scattering process 

Notice that it is the presence of a non-vanishing 7/ that leads to non-
trivial scattering. We expand the product oflevel-2 theta functions in terms of 
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level~4 functions using (6), the coefficients of each level-4 function must vanish 
separately, since the latter form a basis. This leads to the following 4 equations: 

[ 
0[00] l [ 0[00] 
0[20] _ 0[20] 
0[02] - 0[02] 
0[22] f 0[22] 

0[20] 
0[00] 
0[22] 
0[02] 

0[02] 
0[22] 
0[00] 
0[20] 

0[22]l [sgg ggl 
0[021 s6g 6g 
0[201 sg6 g6 
0 [00] 8 11 11 

i 00 00 

(13) 

where the argument of the initial states with subscript i, is (y - x - TJ), and 
that of the final states with subscript f is (x -y-TJ). Notice that the S matrix 
elements depend only on the difference of the variables x and y, up to shifts by 
the parameter T/· This is the difference property, as in the 8-vertex model. The 
matrix of theta functions in (13) has non-vanishing determinant; this can be 
seen from the fact that the components of each column are independent theta 
functions, and that subsequent columns are formed by independent permuta-
tions of the components of the first. Thus, the S matrix elements in (13) can 
be computed explicitly. 

Notice that though we have 64 S matrix elements to consider, they are not 
all independent: the representation of the scattering states is given in terms of 
n-loop theta functions that are based on a product of n copies of the weight 
lattice of SU(2). Since each such lattice is Z2 symmetric, our solutions possess 
(Z2 t-symmetry. These are symmetries under flipping all spins that belong to 
each copy of the n-coupled vertex models independently. In our n = 2 example 
these are: 

(14) 

where k1 = (k1 + 2) mod 4, etc. This reduces the number of S matrix elements 
that we need to compute explicitly by a factor of 2 x 2 = 4. 

Let us end this section with an outline of the procedure for general n: 
1. Each bond is assigned n arrows. Thus we have 2n states per bond. 
2. Associate to each bond a level-2 n-loop theta function, the ith characteristic 
being 0 or 1, depending on the direction of the ith arrow. 
3. Relate the 22n possible final pairs of states to the initial in terms of S matrix 
elements. A given final state is related with non-vanishing S matrix elements 
to 2n initial states only, due to the (Z2 t symmetries (14). 
4. Expanding the products of level-2 theta functions in terms of level-4 func-
tions, only 2n of the latter contribute. This can be deduced from (6), and 
the symmetries (14). Thus we obtain 2n equations in 2n unknowns that can 
be solved since the matrix of coefficients is invertible: the column vectors are 
independent permutations of 2n independent level-4 theta functions. 

9. Interpretation and discussion 

An interesting aspect of the Boltzmann weights that we have obtained is 
that the spectral and crossing parameters are multi-component vectors. How 
do we interpret that? A clue is obtained from the fact that in the limit where 
all off-diagonal terms in the period matrix vanish, an n-loop theta function 
degenerates into the product of n 1-loop theta functions ( cf. [Ml). Consequently 
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our weights degenerate into a product of n solutions that are based on 1-loop 
theta functions, and these correspond to the 8-vertex model. 

That is the reason we interpret the multi-loop weights as coupled 8-vertex 
models. The coupling between two copies i and j is proportional to the off-
diagonal elements of the period matrix. 

In our approach, the basic building blocks of a vertex model are not the 
vertices - these are regarded as composite objects - but rather the scattering 
states associated with the bonds. Consequently, one does not start by looking 
for a set of Boltzmann weights by solving an overdetermined set of YB equa-
tions, that can be complicated; but for a representation of the scattering states 
with an associative algebra. Once we settle on an acceptable representation, 
the Boltzmann weights are obtained using simple algebra. 

We have reported on a derivation of the Boltzmann weights of Baxter's 
model that makes the relationship with the group SU(2) very explicit. We 
can explicitly show that the Boltzmann weights obtained do satisfy the Yang-
Baxter equations. Furthermore, we have presented a class of models, that can 
be considered as direct generalizations of Baxter's model, but based on higher 
genus theta functions. What has not been shown is whether the Yang-Baxter 
equations remain satisfied. 

It is very likely that only a restricted class of these higher-genus models, 
where the Boltzmann weights are restricted by extra conditions, are exactly 
solvable. 
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The subject of this paper has a history that is somewhat unusual within 
the field of computational mathematics. Instead of the usual order of events 
that an algorithm is devised in order to answer effectively a problem arising 
in some field of mathematics, we have here the case of a pair of well known 
combinatorial algorithms, whose properties have been extensively studied for 
their own sake, which have been found to occur as solutions of certain math-
ematical questions of relatively recent study. The algorithms referred to are 
an algorithm first formulated by G. de B. Robinson in 1938 [Rob], and inde-
pendently rediscovered in 1961 by C. Schensted [Sche], which is now known 
as the Robinson-Schensted algorithm, and a related algorithm formulated by 
M. P. Schiitzenberger in 1963 [Schiil], which we shall call the Schiitzenberger 
algorithm. The related mathematical questions have arisen in the study of the 
unipotent variety of the general linear group GLn, and the relationship with 
the Robinson-Schensted algorithm was found by R. Steinberg in 1976 [Stbl]; 
statement and proof of this relationship can be found in [Spa II 9.8] and [Stb2]. 
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In the latter article part of the material of the present paper is treated in a 
very succinct form. The relationship with the Schiitzenberger algorithm does 
not appear to have been noted before, although it is quite natural in view of 
the known combinatorial relation to the Robinson-Schensted algorithm. Be-
cause of the historic order of discovery, we shall consider the mathematical 
questions involved, and their solutions, as 'interpretations' of the indicated al-
gorithms. Although they are certainly not the only problems that are related to 
the Robinson-Schensted algorithm, we believe the interpretations to be rather 
fundamental, since they actually give more insight into the combinatorial prop-
erties of the algorithms. 

Our paper is organised into two sections, the first giving the combinatorial 
definitions and properties (without proofs) of the algorithms, the second section 
giving the indicated interpretations with proofs, which effectively also proves 
the combinatorial properties stated in the first section. 

1. The Robinson-Schensted and Schiitzenberger algorithms 

In this section we present the algorithms under consideration in a purely 
combinatorial fashion. First, the combinatorial concepts such as partitions, 
Young diagrams and Young tableaux are introduced, in terms of which the 
algorithms operate. Next the Robinson-Schensted is given, which establishes a 
bijection between pairs (P, Q) of Young tableaux of equal shape on one hand, 
and permutations on the other hand. From the representation theory ( over C) 
of the group Sn of permutations ofn symbols it is known that its irreducible rep-
resentations are parametrised by partitions of n, and for such a partition A the 
corresponding representation has a dimension equal to the number of Young 
tableaux of shape A. Therefore the bijective correspondence defined by the 
Robinson-Schensted algorithm can be considered as a combinatorial realisation 
in this particular case of the general fact that the sum of squares of the di-
mensions of the irreducible representations of a finite group equals the order of 
the group. Finally we introduce the Schiitzenberger algorithm, which defines 
a shape preserving bijection from the set of Young tableaux to itself. The cor-
respondences defined by these two algorithms are related in many ways: their 
definitions are quite similar, they can be characterised by simple recurrence 
relations, for both an identity can be proved that exhibits a symmetry which 
is not at all obvious from the definition, and most importantly, there is an 
identity that interrelates them in a very strong way. 

1.1. Partitions and tableaux. 
In this subsection we introduce some combinatorial concepts for later use. 

A partition A of some n E N is a weakly decreasing sequence A1 2': A2 2': · · · 
of natural numbers, that ends with zeros, and whose sum IA I = :Ei Ai equals n; 
the terms Ai of this sequence are called the parts of the partition. Although 
conceptually partitions are infinite sequences, the trailing zeros are usually 
suppressed, so we write A= (A 1 , ... , Am) if Ai = 0 for i > m. We denote by Pn 
the ( obviously finite) set of all partitions of n, and by P the union of all P n for 
n EN. 
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We associate to each A E Pn an n-element subset of N>o x N>o, namely 
its Young diagram Y(A), defined by {i,j) E Y(A) <==> j S Ai. The elements of 
a Young diagram will be called its squares, and we may correspondingly depict 
the Young diagram: the square ( i, j) will be drawn in row i and in column j; 
e.g., for A= (6, 4, 4, 2, 1) E P11 we have 

Y(,\)=F· 
Clearly any partition A E Pis completely determined by Y(A), and it is often 
convenient to mentally identify the two; in this spirit we shall use certain set 
theoretical notation for partitions, which is defined by passing to their Young 
diagrams, e.g., A~µ for A,µ E P means Y(A) Y(µ). The set N>o x N>o has 
a natural partial ordering given by ( i, j) :S:: ( i', j') whenever i S i' and j S j'. 
A finite subset S of N>o x N>o is a Young diagram if and only if for any 
square s E S we also have s1 E S for all s1 s s. From this characterisation it is 
clear that the set of all Young diagrams is closed under transposition of all of 
their squares (written ( i, j)t = (j, i) ), hence we have an involution on each Pn 
{also called transposition and written A 1-+ At) defined by Y(At) = Y(A)t. The 
parts of At can be interpreted as the column lengths of Y(A), from which we 
get AJ = #{ i I Ai 2:: j} (the operator '#' denotes the number of elements of a 
finite set). 

Whenµ~ A and lµI = IAJ-1, the difference Y(A)-Y(µ) consists ofa single 
square, which lies both at the end ofa row and ofa column ofY(A), while it lies 
one position beyond both the end of a row and of a column of Y(µ). We call 
such a square a corner of A, and a cocorner ofµ (so for A= (6, 4, 4, 2, 1) whose 
diagram is displayed above, we have as corners {1,6), {3,4), {4,2), and {5,1), 
and as cocorners (1, 7), (2, 5), (4, 3), (5, 2), and {6, 1) ). There is a corner in 
column j of Y(A) if and only if j occurs as a non-zero part of A, while there is 
a cocorner in column j if and only if j - 1 occurs as a part of A {here we allow 
zero); consequently, the number of cocorners exceeds that of the corners by 1. 

The principal reason for referring to the elements of a Young diagram 
Y (A) as squares ( rather than as points), is that it allows one to represent maps 
f: Y(A) --+ N by filling each square s E Y(A) with the number f(s). We 
shall call such a filled Young diagram a Young tableau (or simply a tableau) of 
shape A ifit satisfies the following two conditions*: all numbers are distinct, and 
they increase along each row and column. This is equivalent to requiring that 
the map f: Y{A) --+ N be injective and monotonous (a morphism of partially 
ordered sets). If T is a Young tableau of shape A we write A = sh T. Any 
tableau T' that can be obtained from T by renumbering the entries in an order 

* The term Young tableau is used by different authors for quite different 
classes of filled Young diagrams, and several adjectives are used to indicate 
certain subclasses, in particular standard; unfortunately its meaning is not 
standard. Our use of the term is quite common in the literature about the 
Robinson-Schensted algorithm. 
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preserving way is called similar to T (written T' ~ T) (for the corresponding 
maps f, f': Y(>.)-+ N this means f' =go f for some monotonous g: N-+ N), 
and we call T normalised if its set of entries (i.e., Im f) equals {1, 2, ... , [>.[}. 
Clearly '~' is an equivalence relation, and every equivalence class contains a 
unique normalised element; let T;. denote the set of normalised Young tableaux 
of shape>.. 

Another way to characterise tableaux among the filled Young diagrams is 
by the following recursive predicate P. Let T consist of a diagram Y(>.) filled 
with numbers, then P(T) holds if either A = (0) or the highest occurring entry 
appears in a unique squares, which is a corner of>., and the restriction T' ofT 
to Y(>.) - {s} satisfies P(T'). An elementary verification shows that indeed 
P(T) holds if and only if T is a tableau. We introduce operators fl and ! 
on non-empty tableaux, by defining fTl as the corner of sh T containing the 
highest entry of T, and T! as the tableau obtained by removing that square 
from T (so in the above definition of P we have s = fTl and T' = TL). 
Repeatedly applying the operator ! to T until reaching the empty tableau, we 
obtain a sequence of tableaux whose shapes form a decreasing chain 

ch T ~t ( sh T => sh T! => sh T!! =:> • • • => ( 0)) (1) 

in P. Conversely, from any chain >. => >.' => >.." => • • • => (0) in P with [>..(i)[ = 
n-i for all i, a tableau T E T;. may be constructed for which the sequence equals 
ch T, namely by assigning the number [>.[ to the unique square in Y(>.)-Y (>.'), 
and filling the squares of Y(>.') in the same way according to the chain >.' => 
>." => · · · => (0). It is also clear that for an arbitrary tableau T, this construction 
applied to ch Twill yield the normalised tableau similar to T. To illustrate the 
correspondence, consider the tableaux 

11 

T= 

19 r I T = E 7i3,2,l,1), 

both of which correspond to the chain 

So T;. corresponds bijectively to the set of maximal strictly decreasing chains 
in P that start in >.. 

1.2. The Robinson-Schensted algorithm. 
We shall now define the Robinson-Schensted correspondence in its traditional 
form. It should be noted that in the literature there exist many different defini-
tions of this correspondence, often seemingly without much resemblance, except 
that they all are of an algorithmic nature. Indeed, the oldest definition, in a 
paper by Robinson [Rob, §5] (where it appears as a special case ofa rather ob-
scurely defined construction used in a proof of the Littlewood-Richardson rule) 
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is so unlike the algorithm given independently by Schensted almost a quarter 
century later [Sche], that it was not recognised for quite a few years that two 
algorithms had been defined giving rise to essentially the same correspondence. 
Schensted's definition, which we shall reproduce, may be considered to be the 
basic one since it is doubtlessly the easiest ·one to understand and to perform 
by hand. 

The algorithm is based on a procedure to insert a new number into a 
Young tableau, displacing certain entries and eventually leading to a tableau 
with one square more than the original one. More precisely, there is a pair of 
mutually inverse procedures that convert into each other the following sets of 
data: on one hand a tableau P and a number m not occurring as entry of P, 
and on the other hand a non-empty tableau T and a specified corner s of sh T. 
The procedures are such that the following always holds: the set of entries of T 
is that of P together with the number m, and the shape of P is that of T with 
the corner s removed. 

Given a tableau P and a number m, the insertion procedure I computes 
the pair (T, s) = I(P, m) as follows. The first step is to insert m into the first 
row of P, where it either replaces the smallest entry larger than m, or, ifno such 
entry exists, it is simply appended at the end of the row, and the procedure 
stops. Then, in case a number has been replaced, the following (similar) step is 
repeated until it tells you to stop: the entry replaced by another in the previous 
step is inserted into the row succeeding its original row, where it either replaces 
the smallest entry larger than itself, or, if no such entry exists, it is appended 
at the end of that row and the procedure stops. If an empty row is encountered 
during this process, a one-square row is created and the procedure stops, so 
termination is guaranteed in all cases; the tableau then obtained is T, while 
the square occupied in the last step is the corner s. 

The inverse procedure E extracts a number from a tableau T, clearing a 
specified corner s, and yielding {P, m) = E(T, s) as follows. The first step is 
to remove the square s and the number it contains from T, then repeat the 
following step until it tells you to stop: if the number removed or replaced in 
the previous step was in the first row then m is that number, Pis the current 
tableau, and the procedure stops; otherwise the number is moved to the row 
preceding its original row, where it replaces the largest entry smaller than itself 
{such an entry exists, since the number originally directly above it is certainly 
smaller). A more formal and elaborate description of these algorithms can be 
found in the excellent exposition [Kn2]. 

Although we have yet to show that after each of these procedures has acted 
the tableau properties still hold, it can be verified immediately that the two 
procedures are inverses of each other in the sense that the effect of one can be 
undone by applying the other ( even if the intermediate array of numbers were 
no tableau). We illustrate the rules by an example that involves four steps. 
We show the intermediate stages of the procedure I; for an example of the 
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procedure E, read from right to left. 

2 5 6 81 2 5 6 71 2 5 6 71 
m= 7,P = 3 10 12 3 10 12 3 8 12 

9 13 15 9 13 15 9 13 15 

2 5 6 71 2 5 6 71 
3 8 12 
9 10 15 

3 8 12 
9 10 15 = T, s = (4, 1) 

13 

At each stage except the rightmost there is one number missing: this is the 
entry that has been superseded but not yet inserted into another row. 

Before we prove that the arrays of numbers returned by the procedures 
will always be tableaux, provided that the input is as specified, we establish 
a recurrence relation that the results of these procedures satisfy. We compare 
the computation of I(P,m) with that of I(P!,m), under the assumption that 
the highest entry h of P exceeds m. The presence of h can only affect the 
insertion steps if at some point it is the only entry in its row that exceeds a 
number being inserted into that row. If this occurs then the next step will 
be the final one of the computation of I(P, m) (since h can replace no other 
element) while in absence of h (as in the computation of I(P!, m)) the insertion 
procedure already terminates without this last step. Therefore if Tis the result 
of inserting h into P, then inserting h into p! will yield T!. More formally, we 
may write 

if I(P,m) = (T,s) then I(P!,m) = (T!,s1 ) for some square s1• (2) 

The relation between s and s' can be expressed as follows. In the first place 
we must have 

{s, I Pl}= {s', fTl} (3) 

because both sets are equal to Y(sh T)-Y(sh p! ); in cases' -1- I Pl this already 
implies that s = s1 and fTl = I Pl, which is in agreement with the case that h 
is not displaced during the insertion. The remaining case that h is displaced is 
fixed by the additional condition 

if s' = I Pl then s lies one row below s'. (4) 

For E(T, s) we get a recurrence by replacing (2) by the equivalent 

if E(T,s) = (P,m) then E(T!,s1) = (P!,m) for some squares', (5) 

where again sands' are related by (3) and (4), although in this case it is more 
natural to replace the condition s1 = I Pl in ( 4) by s = fTl, which is equivalent 
by (3). Recall that for (2) we excluded the case that m exceeds all entries in P; 
we must correspondingly exclude in (5) the case that s = fTl and this square 
lies in the first row. 
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Now we prove that the insertion procedure preserves the tableau proper-
ties, i.e., that if Pis a tableau and (T, s) = I(P, m), then Tis also a tableau. 
First consider the set of squares that are occupied by numbers during the inser-
tion process; this changes only in the last step. Since the number appended to 
some row in the last step is higher than all other entries in that row, it cannot 
have been displaced from a square directly above any of them, which excludes 
the possibility that this row has become longer than its predecessor; therefore 
the shape will remain a Young diagram. Now by the recursive characterisation 
of tableaux in the previous subsection, to prove that Tis a tableau it remains 
to show that Tl is a tableau. By our remarks above this follows by a trivial 
induction, for if m exceeds all entries of P then Tl = P, which is a tableau by 
assumption, while otherwise Tl may be obtained by inserting m into pl, and 
therefore is a tableau by induction. The proof for the extraction procedure is 
easier still, since the shape will remain a diagram simply because s is required 
to be a corner of sh T. Then P is a tableau because either P = Tl (in the 
case excluded above) or pl can be obtained by extraction from Tl, hence is a 
tableau by induction. 

Having verified the proper behaviour of the auxiliary procedures, we can 
now define the full Robinson-Schensted algorithm. This establishes a bijection 
between the group Sn of permutations and the set LJ>.E'Pn T.,. x T.,. of pairs (P, Q) 
of normalised tableaux with sh P = sh Q E 'Pn- Given a permutation a- E Sn, 
represented as a sequence ( a-1, ... , a-n) of distinct numbers (so a- maps i f-> <7i ), 

we build up the pair (P, Q) in n stages as follows. Let (Pi-l, Qi-1) be the 
pair at the beginning of stage i (we put Po = Q0 equal to the empty tableau), 
and compute (Pi, s) = I(Pi-1, a-i)i then Qi is obtained from Qi-1 by adding 
the number i in the position of square s. Since the number added to Q-i-1 is 
the highest until then, it is clear that each Qi is a (normalised) tableau; the 
set of entries of Pi is { a-1, ... , a-i}, so the last one Pn is a normalised tableau. 
Also, the shapes of the two tableaux will be the same after each stage, in 
particular it holds for (P, Q) = (Pn, Qn), so that P and Qare as required. Like 
the auxiliary procedures, this algorithm too can be directly reversed: starting 
with (Pn, Qn) = (P, Q) repeatedly transform (Pi, Qi) into (Pi-1, Qi-1) (for i = 
n, ... , 2, 1), meanwhile determining the numbers Pn, ... , Pl, namely Qi-1 = Qf 
and (Pi-1, a-i) = E(Pi, fQil)- We illustrate the algorithm by an example; again 
one may read from right to left for an example of the inverse process. 

6 2 7 

@] [E tETI 
IT] tE 

3 5 

filE [ffipJ 

ffiE BRfJ 

4 1 

r 
r 
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If by these bijections the permutation (7 E Sn corresponds to the pair of nor-
malised tableaux (P, Q), we write (7 = R(P, Q) and (P, Q) = R- 1 ((7) (so we 
let R stand for the function defined using the extraction algorithm, mainly 
because functions with multiple arguments are notationally more convenient 
than those with multiple results). The procedures I and E have obvious trans-
posed counterparts It and Et, whose definition can be obtained by replacing 
all occurrences of the word 'row' by 'column'. These transposed procedures 
can be used to define another bijection Rt: u.\E'P T,x X 7>.. Sn in exactly the 
same way that R is defined; it obviously satisfies Rt(P, Q) = R(Pt, Qt). 

We now turn to the first of the "remarkable properties" announced above. 
Recall that the set Sn of permutations forms a group, so its elements can be 
inverted; in terms of sequences of numbers, the inverse (J'- l of (7 = ( (71, ... , (J'n) 
is the sequence ((J'- 1 1 , ..• ,(J'- 1n) whose term (J'-\ is the unique index j such 
that (J'i = i. 
1.2.1. Theorem For all (P, Q) E U.x 7>.. X T,x 

R(Q, P) = R(P, Q)- 1 . 

In view of the asymmetry between P and Q in the definition of R, this 
is unexpected indeed. This theorem was first stated (without proof) in [Rob], 
and first proved in [Schiil]. A better proof (and of a slightly more general 
statement) can be found in [Knl] while an elementary proof may be given 
using the recursion relation for E given above; however, the theorem will also 
follow from the interpretation given in the second section of this paper. 

We defer the statement of other properties of the Robinson-Schensted cor-
respondence to the next subsection, as they require other definitions not yet 
introduced. However, to give some indication, we mention a fact that will 
follow from a stronger statement given later. Let Im denote the operation 
of inserting a number m into a tableau P not containing it, where only the 
tableau yielded is considered (so if I(P, m) = (T, s) then T = Im(P) ); also 
let I;,. be its transposed counterpart. Then every Im commutes with every 
I;,,, i.e., for m -::j:. m' and every tableau P not containing m or m' we have 
Im(I;,,,(P)) = I;,,,(Im(P)). Since moreover the operations Im and I;,. are in-
terchangeable when applied to the empty tableau, we have that reversing the 
order of the sequence of numbers of a permutation has the effect that the left 
tableau (' P') obtained by applying R- 1 will be the transpose of the original 
one (but nothing is said about the right tableau). Historically, it is this fact 
that led to the formulation of the Schiitzenberger algorithm described in the 
next subsection. 

We close this subsection by describing a convenient method of performing 
the Robinson-Schensted algorithm, especially useful for computer program-
ming. It is an iterative procedure, but it is based on the recursion relations 
for I and E. For this purpose tableaux are represented not by 2-dimensional 
arrays, but rather by linear ones: the i-th entry of the array describes the po-
sition of the square whose entry is i ( or has a special value if no such square 
exists). A very convenient circumstance is that it is sufficient to record the 
row numbers of the squares, since the tableau property guarantees that the 
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c-th occurrence from left to right of some number r corresponds to a square 
in column c of row r. In fact the array of numbers must satisfy an extra con-
dition in order to denote a tableau, namely, if r > 1 then the c-th occurrence 
of r - 1 must precede the c-th occurrence of r (for all applicable r, c). The 
number 0 can be used to denote an absent square. We call such an array of 
numbers a row-encoded tableau; in the literature they are known under the 
hardly informative names 'lattice permutations' and 'mots de Yamanouchi'. 

The computation of (T, s) = I(P, m) is performed by modifying a row-
encoded tableau P with entries P[i] for 1 i n, into the row-encoded-
tableau T. This is done by making an increasingly large subtableau correspond 
to T rather than to P; an index i in<licates up to which number the entries have 
been incorporated, and a variable r records the row number of the square s 
by which the shape of the subtableau has been extended due to the insertion. 
The according to (2) all that is needed when the index i is increased by 1 
is to possibly update the values of P[i] and r. By (3) nothing needs to be 
done if P[i] -:j:. r, and if P[i] = r then by (4) both values should be increased 
by 1. Therefore, it suffices to put r := 0, and then repeat the following for 
i = m, ... , n in that order: if P[i] = r then increase both P[i] and r by 1 
(otherwise do nothing). Note that the condition P[i] = r is satisfied the first 
time, since we assume that m does not occur in P initially; the final value of r 
represents the row of the square s. The complete computation of R- 1(a) for 
a E Sn consists of initialising P to all zeros and then performing the above 
loop successively form= a 1 , ... , O"n in that order, each time inserting the final 
value of r into the next position of a row-encoded tableau Q. The procedure 
can be reversed in an obvious way (but the number of iterations of the inner 
loop can not be predicted in this case: it stops when r becomes 0, which will 
not fail to happen if we start with proper values for P and Q). In the limit of 
huge n these procedures are theoretically less efficient on the average than a 
straightforward 2-dimensional approach, but their extreme simplicity probably 
makes them more favourable in most practical situations. 

1.3. The Schiitzenberger algorithm. 
In this subsection we introduce an algorithm due to Schiitzenberger that is 
intimately related to the Robinson-Schensted algorithm. The Schiitzenberger 
algorithm defines a shape preserving transformation of normalised tableaux, 
i.e., for each ). E 'Pit defines a map S: T>,,---. T>,,. Like the Robinson-Schensted 
algorithm, it is based on the repeated application of a basic procedure that 
modifies a given tableau in a specific manner. In the current case we shall 
call this the "deflation" procedure D, since it starts by emptying the square 
in the upper left-hand corner, and the proceeds to rearrange the remaining 
squares to form a proper tableau. Like the other procedures we have seen, 
D can be reversed step by step, giving rise to an ''inflation" procedure D- 1 . 

More precisely, these procedures convert into each other the following sets of 
data: on one hand a non-empty tableau P, and on the other hand a tableau T, 
a specified cocorner s of sh T, and a number m. These are such that sh P is 
obtained by extending sh T with s, and the entries of T are those of P with 
the smallest entry m left out. 
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Given a tableau P, the deflation procedure computes (T, s, m) = D(P) as 
follows. The first step is to put m equal to the smallest entry of P, and remove 
that entry, leaving an empty square in position (1, 1). Then the following 
step is repeated until the empty square is a corner of the shape sh P of the 
original tableau: move into the empty square the smaller one of the entries 
located directly to the right of and below it (if only one of these positions 
contains an entry, move that entry). Because the empty square moves down 
or to the right in each step, termination is evidently guaranteed; s is defined 
to be the final position of the empty square, and T consists of the remaining 
non-empty squares. The latter is indeed a tableau, since at each stage of the 
process the entries of the non-empty squares remain increasing along each row 
and column. In fact, when there are entries both to the right and below the 
empty square, the choice to move the smaller one is dictated by the tableau 
property.* By the same consideration it is also clear that each intermediate 
state of the tableau determines the previous position of the empty square, and 
hence the previous state: this position is directly to the left of or above the 
empty square, whichever contains the larger entry. Consequently, given T, s, 
and m the deflation procedure can be run in reverse to determine P, and this 
defines n- 1 . We demonstrate these procedures by an example: 

1 2 5 101 2 5 101 2 5 101 2 4 5 101 2 4 5 101 
P= 3 4 9 

6 7 11 
3 4 9 
6 7 11 

3 4 9 
6 7 11 

3 9 
6 7 11 

3 7 9 
6 11 

8 8 8 8 8 - - - -
2 4 5 101 2 4 5 10 
3 7 9 
6 11 so that we have T = 3 7 9 (2 2) 1 611 ,s= ',m= · 

8 8 -
There are recursion relations for D and n- 1 similar to those for I and E. 

For any tableau P with at least two squares we compare the computation 
of D(P) with that of D(Pl ). Since the highest entry h of Plies at some corner 
of sh P, it can only be moved in the final step; like in the case of I we conclude 
that if applying D to P yields a tableau T, then applying D to pl will yield Tl. 
This may be formalised as 

if D(P) = (T,s,m) then D(Pl) = (Tl,s',m) for some squares'. (6) 

As in the case of I the relation between s and s1 is expressed by a pair of 
requirements, of which the first is 

{s, fTl} = {s', I Pl} (7) 

* The rule stating which square to displace during the insertion procedure 
of the Robinson-Schensted algorithm cannot be characterised in such a way, 
since displacing the last smaller entry might equally well preserve the tableau 
property; the definition given in [Schiil] of that insertion procedure is therefore 
incorrect. 
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since both sets are equal to Y(sh P) - Y(sh Tl). For the second requirement 
we use the notation x II y to express the fact that the squares x and y are 
adjacent, either horizontally or vertically; to be precise x 11 ( r, c) holds if either 
x = ( r - 1, c) or x = ( r, c - 1) · (it is not necessary to include the case that x lies 
to the right or below y). Then if S1 11 r Pl no additional condition is needed, 
smce s = r Pl is forced because s1 is no corner of sh p. It therefore suffices to 
require 

if s' J,f r Pl then s = S1• 

The recurrence relation for n- 1 is obtained by taking 

(8) 

if n- 1 (T, s, m) = P then n- 1 (Tl, s', m) = pl for some squares', (9) 

where again s and s1 are related by (7) and (8), and T should not be empty. 
As is the case for the Robinson-Schensted algorithm, the full Schiitzen-

berger algorithm essentially consists of repetition of the basic procedure. To 
compute S(P) for P E T>,. with A E Pn, put Po = P, and for i = 1, ... , n 
compute (Pi, si, mi) = D(Pi_i); we will have rn; = i and Pn will be the empty 
tableau. The sequence of shapes A = sh Po :J sh Pi :J · · · :J 0 equals ch p• for 
a unique p• E T>., and we define S(P) = p•. Note that while the smallest 
entries of P are removed first, it is the largest entries of P* whose position is 
determined first, as we have r P*l = S1, r p•l 1 = s2 etcetera. The values mi, 
being entirely predictable, play no role whatsoever; they were only introduced 
to make the procedure D fully invertible. In fact the concrete values of the 
entries are more a nuisance than that they are of any help for this procedure, 
as it essentially deals with chains of partitions only. The inverse algorithm 
s- 1 of S is obviously the following: set Pn equal to the empty tableau, and 
successively compute Pi-l = n- 1 (P;,P*[n+ 1- i],i) for i = n, ... ,l, where 
P*[j] denotes the square with entry j in P*; then s- 1 (P*) = P0 . Again we 
give an example; here we display the successive stages P = Po, P 1 , P2, ... , 
and meanwhile the entries of p• that are determined up to this point. Reading 
from right to left for the inverse algorithm, those entries of p• that have already 
served their purpose are erased. 

r 7 
5 
6 

0 

p• r 5 
4 
6 

It is obvious from the definition that S commutes with transposition: S(Pt) = 
S(P)t; however, like the Robinson-Schensted algorithm, it also has an unex-
pected symmetry, which is expressed by the following 
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1.3.1. Theorem The Schiitzenberger algorithm S de.i.nes an involution, i.e., 

for all TE LJ;\ T;\, 
This fact was first stated and proved by Schutzenberger in [Schul §5], but 

the proof is indirect, being based on the relation of the Schutzenberger algo-
rithm with the Robinson-Schensted algorithm that we shall formulate below. 
We do not now of any published direct proof of this fact, although such a 
proof can be given on the basis of the recursion relations for D and n- 1 . We 
shall see that the fact also comes about quite naturally in our interpretation 
of S. The most important combinatorial fact about the Robinson-Schensted 
and Schutzenberger algorithms that we shall discuss is the interrelation, ex-
pressed by the following far reaching 

1.3.2. Theorem Let A E 'Pn and P, Q E T;\, and let <7 E Sn be determined 
by 

Then we also have 
<7 = R(P, Q). 

WO'= Rt(S(P), Q) 
<7w = Rt(P, S(Q)) 

w<7w = R(S(P), S(Q)) 

(10) 
(11) 
(12) 

where w E Sn is the "order reversing" permutation given by Wi = n + l - i. 

The permutation O'W has as sequence of numbers the reverse of that of <7, 

so ( 11) generalises our earlier statement that this reversal of terms leads to 
transposition of the left tableau. That statement about the left tableau was 
proved by Schensted [Sche Lemma 7], while the remainder of the identity is 
proved in [Schul §5]; from (11) one immediately deduces 1.3.1, and using 1.2.1 
one also obtains (10) and (12). The current formulation of the theorem (more 
or less) is due to D. E. Knuth, and can be found in [Kn2 Theorem D]. He 
expresses the remarkable character of these facts as follows (p. 60) 

"The reader is urged to try out these processes on some simple ex-
amples. The unusual nature of these coincidences might lead us to 
suspect that some sort of witchcraft is operating behind the scenes! 
No simple explanation for these phenomena is yet known; there seems 
to be no obvious way to prove even that case {(12)} corresponds to 
tableaux having the same shape as P and Q." 
There are more interesting properties of these algorithms, such as the 

following (due to Schensted): the first part of the partition sh P = sh Q is 
equal to the length of a maximal increasing sequence of numbers obtainable 
by deleting O or more terms from (<71, ... , <7n)- We do not go into any such 
properties here, which generally interpret only partial information about the 
tableaux, although it may be interesting to reconsider them in the light of 
the geometric interpretations to be given in the next section. We conclude 
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this first section with remarking that there exists an apparently completely 
different approach to the Robinson-Schensted and Schiitzenberger algorithms, 
which is followed in [Schii2). It is based on a generalised version of the deflation 
procedure that is non-deterministic, i.e., there is an element of choice in the 
prescription of the actions to be performed. In this approach most of the 
results we mentioned become almost trivial, but the hard part is to prove 
that the correspondences are well defined, namely that the final outcome is 
not affected by any of the choices made. Although Schiitzenberger does not 
mention how his alternative definitions have come about, we deem it likely that 
this non-deterministic scheme could 'l?e deduced from the theorems given above, 
in combination with more obvious properties of the correspondences involved, 
such as that truncating the sequence of a to an initial subsequence will imply 
truncation of the right ('Q') tableau to a subtableau. 

2. Interpretations 

The combinatorial facts of the previous section are quite remarkable, even 
if they can be proved in a fairly straightforward combinatorial manner. In this 
section we present a geometric construction, encountered in the study of the 
general linear group GLn, in which partitions, Young tableaux and permuta-
tions have natural interpretations. The algorithms of the first section emerge 
in this setting as procedures for computing certain geometric correspondences. 
In this interpretation the combinatorial identities given above become quite 
natural. 

More precisely stated, we have the following. Partitions of n parametrise 
unipotent conjugacy classes in GLn, and for any unipotent u in the class 
parametrised by a partition A, there is a corresponding subvariety :Fu of the 
flag variety of GLn, whose irreducible components are parametrised by nor-
malised Young tableaux of shape A. Also there is a concept ofrelative positions 
between elements of the flag variety, which associates to each pair of flags a 
permutation. Now the Schiitzenberger algorithm describes the effect of passing 
to the dual vector space on the set of irreducible components of :Fu, and the 
Robinson-Schensted algorithm computes the relative position between a pair 
of flags generically chosen in a specified pair of irreducible components of :Fu, 
The transpose Robinson-Schensted algorithm has a similar interpretation in 
case one of the irreducible components is specified in the ordinary way, and the 
other is given in terms of the dual flag variety; this provides an interpretation 
for theorem 1.3.2. 

2.1. The group GLn, unipotent elements. 
Our intended interpretations of the Robinson-Schensted and Schiitzenberger 
algorithms involve certain geometric structures related to the general linear 
group G Ln over some field. As we shall be using the Zariski topology on alge-
braic varieties defined over this field, a natural choice for it is any algebraically 
closed field; however, all that matters is that such varieties have a well-defined 
dimension, such that the complement of any subvariety of codimension 2: 1 is 
dense, and therefore the milder requirement that the field is infinite will suffice. 
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Let V be a vector space of dimension n, and view G Ln as the group of 
automorphisms of V. An element u E G Ln is called unipotent if all of its 
eigenvalues (over the algebraic closure of the ground field) all are 1, or equiv-
alently if 77 = u - 1 is nilpotent, i.e., rt = 0. By the theory of Jordan normal 
forms, V can then be decomposed into a direct sum of Jordan blocks for u, i.e., 
u-stable subspaces each of which admits a basis x 1 , ... , Xd (for varying d) such 
that 77(x1) = 0 and 77(xi) = Xi-1 for 1 < i::; d. This decomposition is generally 
not unique, but the multiset of dimensions of the blocks (i.e., disregarding or-
der but counting multiplicities) is determined uniquely by u. Arranging these 
dimensions in weakly decreasing order, we obtain a partition of n, that we call 
the Jordan type of u, denoted J(u). 

Denote by P(V) the projective space of V; its elements are lines through 
the origin in V. For l E P(V) the conditions u[l] = l, 17[l] l and 77[l] = 0 
are equivalent (since 77 is nilpotent), so the set of fixed points of u in P(V) is 
P(Ker 77). For such fixed points l, there is a transformation U[l] induced by u 
in the quotient space V /l, and it is also unipotent; we also define 77[1] = U[z] - 1 
which is nilpotent. We have J(u[I]) C J(u) by the following argument. If 
p: V----+ V/l denotes the natural projection then we have by definition Im 77{_11 = 
p[Im 17i]. Putting A= J(u) we have .Xj = dim (Im 1-1) - dim (Im 1), as each 
Jordan block of dimension 2'. j contributes 1 to this number. Comparing this to 
the same formula for µ = J ( U[l]), we find that µ} = .X} unless l E P (Im 1-1 ) -

P(Im 17i), in which case µ} = .X} - 1. This establishes µ C A, and moreover 
determines the square by which Y(µ) differs from Y(.X). Since by assumption 
l E P (Ker 77), we are led to define for j > 0 subspaces Wj = Im 1-1 n Ker 77 
of V, and subvarieties Uj = P(Wj) - P(Wi+i) of the projective space P(V); 
then there is a unique j for which l E Uj, and it is the column number of 
abovementioned square in Y(.X) - Y(µ). The centraliser Zu in GLn of u acts 
on each variety Uj, and using linear algebra it can be shown that these actions 
are transitive; therefore the non-empty sets among the Uj are in fact the orbits 
in P(Ker 77) under the action of Zu. The number of these orbits is finite; in fact 
one easily shows that Uj is non-empty if and only if j occurs as a part of J(u). 

To determine for a hyperplane H C V the Jordan type J ( u I H), we may 
reason similarly using the dual vector space V*. Since the decomposition of V 
into Jordan blocks induces asimilar decomposition ofV*, we have J(u*) = J(u) 
for the (unipotent) transformation u* induced by u in V* (sometimes called 
the transpose of u); we define WJ V* and UJ P(V*) analogously to 
Wj and Uj, but using u• instead of u. Denote by H 0 the subspace of V* of 
linear forms vanishing on H; since H is a hyperplane, dim H 0 = l and therefore 
H 0 E P(V*). In the same way as above, the unique j > 0 for which H 0 E UJ 
determines the square by which Y(J(ulH)) differs from Y(J(u)). 

2.2. Flags. 

A (complete) flag f in V is a chain fa C Ji C · · · C fn = V of subspaces, 
where dim Ji = i; the individual spaces Ji are called the parts of f. We 
define :F to be the set of all such flags, called the flag variety of V, which is a 
(projective) variety on which GLn acts; the subset of flags fixed by u is denoted 
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:F,,. There are {GLn-equivariant) maps a::F---+ P{V) and w::F---+ P{V*) given 
by a: I 1-> Ji and w: I 1-> ln-l O • For l E P{V), each flag IE a- 1 [l] determines 
a flag I! in V/l by Jl = p[/i+1l for O::; i < n, where as before p: V---+ V/l is the 
natural projection; it is easily seen that this defines an isomorphism between 
a- 1 [l] and the flag variety of V/l. Similarly for each hyperplane H C V, 
the inverse image w- 1 [H0 ) is isomorphic to the flag variety of H, where the 
image 1- of I E :F is obtained by simply forgetting the largest part In = V 
of I-

In the case offlags IE :F.,, we have l = a(!) E P(Ker77) and I! lies in the 
subvariety :F.,, 111 of the flag variety qf V/l. We may repeat this process for I! 
in place of I, and thus obtain a sequence of flags I, I!, I!!, ... in the spaces 
V, V /Ji, V / fz, ... , which flags are fixed by the uni potent transformations 
u, U[Ji], U[J.] ... respectively induced by u in these spaces. Taking Jordan types 
we obtain a decreasing chain of partitions J(u) :J J(u[Ji]) :J J(u[J,]) :J · · ·, 
which determines a normalised Young tableau q.,,(f) of shape .X = J(u). The 
column number j of any entry d of this tableau is determined as above by 
the position of the I-dimensional part of the flag I!···! in the space V/ln-d 
relative to the nilpotent transformation U[f,,_,i] - 1 of that space. Using re-
striction to hyperplanes instead of dividing out lines, we similarly define flags 
I, 1-, 1--, ... in the spaces V = In, ln-1, ln-2, ... , which flags are fixed 
by the unipotents u, ulJ,,_ 11 ult .. -•, ... respectively; from this we obtain a 
decreasing chain of partitions A= J(u) J(ulf,..__J, J(ulJ,..,_,), ... , determining 
a tableau r.,,(f) E TA. Defining for each flag I E :Fa dual flag /* in the flag 
variety of V* by ft = ln-i 0 , we obviously have q.,,(f) = r.,,.(J*). The two 
tableau-valued functions q.,, and r.,, on :F.,, can be used to distinguish a finite 
number of subsets of :F.,,: for TE TA we define 

:F.,,,T ={IE :F.,, I r.,,(f) = T} and :F~,T ={IE :F.,, I q.,,(f) = T}; 
{13a, b) 

these sets are non-empty by a simple inductive argument. Note that we have 
"switched preferences" by using r.,, rather than q.,, for the unstarred notation; 
this follows the notation in [Stb2), but [Spa 11.5.3] effectively uses q.,,, not r.,,. 
The advantage of using r.,, is that it is somewhat easier to define (using re-
strictions rather than quotients), and the numbers in the tableau r.,,(f) relate 
more directly to the parts of I {for instance, J(ul,J is the shape of the sub-
tableau of r.,,(f) containing entries ::; i); moreover the interpretation of the 
Robinson-Schensted algorithm comes out ,more naturally. A disadvantage how-
ever is that when studying r.,, in an inductive way, we generally have to work 
in P{V*) rather than in P{V) (as we have already seen), and this can be more 
cumbersome. Where possible we shall take the "best of both ways" by stating 
properties for both :F.,,,T and :,:;,T, but proving them for :,:;,T only. In any case 
we shall see that our results enable a translation between the two conventions. 

2.2.1. Proposition 
(a) For each TE TA the sets :F.,,,T and :,:;,T are irreducible. 
(b) dim :F.,,,T = dim F;,T = I:i{i - 1).Xi independently ofT ETA. 

Proof. We give the proof for :,::T, by induction on I.XI= dim V. Fitst note 
that by construction each set :,:;,'T is Z.,,-stable. For each non-empty Uj the 
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set a- 1[U1] is the union of the sets ;:; T for those tableaux T E T>,, whose 
entry n occurs in column j. If T is such a tableau, then for any l E U1 the 
isomorphism ff--+ J! of a- 1 [l] with the flag variety of V/l maps;:; T n a- 1 [l] 
isomorphically to :F* T!, which is irreducible by induction. Beca~se U1 is a 

U[z), 

Zu-orbit and connected, and therefore already is an orbit for the connected 
component Z~ of Zu, we find that ;:; T is irreducible, as it is the surjective 
image of the irreducible set z~ X (:F: T n a- 1[l]) by the map (z, f) f-+ z. f; this 
proves part (a). (In fact for GLn ev~ry unipotent centraliser Zu is connected, 
so Z~ = Zu, but we can do without that knowledge here.) We also have 
dim :F; T = dim U1 + dim :F* T!, so to prove (b) it suffices to show that 

' U[I)' 
dim U1 = i - l, where i is the row number of the entry n in T. But this 
is clear since i is the number of parts 2: j of J(u), which equals dim W1, 
while U1 is a dense part of P(W1). 

It follows from the proposition that the set of irreducible components of :Fu 
can be described as the set of the closures :Fu,T for TE T>,,, but equally well as 
the set of closures ;:; T for T E T>,,. We shall show below that the Schiitzen-
berger correspondenc~ relates these two descriptions to each other: 

(14) 

To illustrate these parametrisations of the irreducible components of :Fu, 
we consider the simplest case where there is more than one such component, 
which occurs for GL3 with J(u) = (2, 1); we have 'Ji2,1) = {T, T'} where 

and 

To be specific, we take 
1 
1 
0 

Calling the standard basis vectors e1, e2, e3 we have W1 = (e1, e3), W2 = (e1), 
and W1 = 0 for j > 2. There are two orbits of Zu on P(Ker 77) = P(W1 ), 

namely U 1, which is the projective line P ( W1) with the exception of the single 
point (e1), and U2 = {(e1)}. For any l E U1 and flag f E :Fun a-1[l] we 
have Ji = l, and since h :J Ji must be u-stable, there is no choice but to 
take h = W1 = (e1, e3), and of course h = V. Therefore :Fun a- 1[l] consists 
of just one flag for any l E U1, and ;:; T is the union of these for all l E U1, 
whence it is isomorphic as a variety to lfi. On the other hand for l E U2 (i.e., 
l = (e1)) and f E :Fu n a- 1[l], we may take for h any plane containing the 
line l, since 77[!2] will certainly be contained in Im 77 = ( e1 ) and hence in f2. 
This gives a projective line of choice, and it follows that :F* T' is isomorphic u, 
to a full projective line. Observe that :F* T and :F* T' both have dimension 1, u, u, 
as stated by the proposition. Of the flags in :F* T' there is one that lies in the u, 
closure of :F: T• namely the one that has h = (e 1 , e3 ). Therefore, the whole 
variety :Fu ca~ be depicted as 
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The map a: :Fu -+ P (Ker 17) corresponds to a vertical projection onto a projec-
tive line in this picture. On the other hand the map w, which discriminates 
upon the part fz of flags only, corresponds to a horizontal projection in the 
picture. Therefore the set :Fu,T is the vertical line in the picture, but without 
the intersection point, and :Fu,T' is the horizontal line including that point. 
Since S(T) = T' we have agreement with (14); the example also shows that 
the closures taken in (14) cannot be omitted. 

2.3. Interpretation of the Schiitzenberger algorithm. 
In this subsection we prove (14), using the recurrence relation for the "defla-
tion" procedure D. The crucial ingredient is the following lemma which gives an 
interpretation of that procedure. Thos procedure may produce non-normalised 
tableaux; for such a tableau P we therefore define :Fu,P to be equal to :Fu,PN, 
where PN is the normalised tableau similar to P. 

2.3.1. Lemma Let P be a non-empty tableau, from which we compute 
(T, s, m) = D(P) by the deflation procedure, and let j be the column number 
of the square s. Then there exists a dense Zu-stable subset 'D of :Fu,P such 
that a['D] U3, and IL E :Ful<>U)l ,T for all I E 'D. Moreover for any l E Uj the 
set { IL I IE 'D n a- 1[l]} is dense in :Fu 111 ,T, 

Proof. In the proof we shall be considering the line and hyperplane part of 
the same flag; we make the following preliminary remarks. For n 2:: 2 and 
I E :Fu, let l = Ji and H = ln-1• Then l H and u induces a unipotent 
transformation in H/l, which can be obtained either as (ulH)[I] or U[z]IH/li we 
shall denote it simply by UH/I· The flag induced by I in H/l is 1-L =IL-. For 
the analogue CY.Hof a on the flag variety of H we have aH(f-) =a(!)= Ji. 
We shall also need the analogues of the spaces W3 and U3 defined for the 
hyperplane Hand using ulH instead ofu; these shall be written as W3(H) H 
and U3(H) P(H). 

We now prove the first statement of the lemma by induction on the number 
of squares of P. If P has just one square it is trivially true. Otherwise, let 
c be the column number of I Pl; we have w[:Fu,P] = u:. By (6) we have 
D(PL) = (TL, s1 , m) with s' satisfying (7) and (8); let j' be the column number 
of s'. We proceed to formulate the induction hypothesis applied to pL in place 
of P. Let H CV be a hyperplane with H 0 Eu;; for any IE :Fu,Pnw- 1 [H 0 ] we 
have 1- E :FulH,P!. The induction hypothesis now implies that by restricting 
I to lie in a dense subset 'DH of :Fu,P n w- 1 [H0 ], we can achieve that the line 
l = a(!) lies in U3,(H) and that the flag 1-L lies in :FuH;,,Ti; the latter may 
be rephrased as: ruH/z (JL-) =TL. 
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We claim that if we can prove for f in a dense subset of 1) H that l E U1 , 
then we are done. First of all, the statement can then be extended by the Zu-
action to fin a dense subset of { z · f I z E Zu, f E 1)H }, which is Zu-stable and 
dense in :Fu,P• Secondly, the statement Ji E .'Fu 111 ,T to be proved is equivalent 
to ru 1!J (Ji) = T, and of the chain of Jordan types encoded in ru 1!J (Ji), all but 
the first are in order by the induction hypothesis; so it remains to prove only 
J(u[z]) = shT. But since Y(shT) differs from Y(shP) by the squares which 
appears in column j, this will follow directly from l E U1, which proves our 
claim. 

The induction hypothesis gives us for f E 1)H that l E Uj'(H), and we 
wish deduce, for a dense subset of those f, that l E U1. To this end it will 
be sufficient that a dense part of U1, ( H) is contained in U1, because the map 
aH: 1)H -> U1,(H) is open, so that inverse images of dense subsets are dense. 
(The openness of aH follows from its equivariance for the centraliser ZulH 
of ulH in GL(H), which acts on 1)H via its isomorphism with { 1- I/ E 1)H }, 
and which acts transitively on U1,(H); in the sequel similar arguments will 
be tacitly assumed.) We now consider the relation between the spaces of the 
form Ui(H) and the spaces Ui. As it is given that H 0 E u;, we easily see 
that Wi(H) = Wi for all i # c, while Wc(H) has codimension 1 in We. Now 
if j' (/_ {c - 1,c}, then we cannot haves' II I Pl, so that j = j' by (8), while 
U1 ( H) = U1, and we are done. When j' = c on the other hand we must have 
s' II I Pl (vertically), and hence j = c by (7); in this case U1(H) is a subvariety 
of codimension 1 of U1, and we are done as well. When j' = c-1 we may or may 
not have s' 11 I Pl (horizontally). In the first case we have j = c = j' + 1 and 
W1,(H) = W1_ 1 = Wj # Wj+l (because columns j - 1 and j of P must have 
equal length that exceeds that of column j + 1 ), and it follows that U]'( H) <:;; U1. 
Only in our final case j' = c - 1 and s1 ,h' I Pl do we have to resort to a dense 
subset of Uj'(H). Indeed j = j' and W1(H) = W1, and Uj is strictly a subset 
of U1(H), since its complement in P(Wj) is one dimension higher; nevertheless 
Uj, being non-empty, is dense in P(W1) and hence a fortiori in U1(H). 

This proves the first statement of the lemma, the last statement follows 
most easily by a dimension consideration ( although it can also be proved 
directly similarly to the first statement). All fibres 1) n a-1[1] for l E Uj 
are isomorphic by the Zu-action, whence they must have dimension dim 1) -
dim U1 , and since 1) is dense in :Fu,P this is equal to dim .'Fupi,T· The map 
f f--+ Ji is an isomorphism on each :Fun a- 1[1], and its image of 1) n a-1[1] 
1s therefore dense in :Fu11J,T· D 

The main theorem of this section follows easily. 

2.3.2. Theorem Let PET>-., and let Q = S(P) be obtained from it by the 
Schiitzenberger algorithm, then the intersection .r:,P n .'Fu,Q is dense in both 
:F:,P and :Fu,Q• 

Proof. By induction on the size of the tableaux, the case of empty tableaux 
being trivial. Applying the lemma and the definition of the algorithm S, we 
see that J(u[f,]) = shT = sh Qi and Ji E :Fu 11,1,T for all/ E 1) <:;; :Fu,P (using 
the notation of the lemma). Of those f, a dense subset has Ji E :,:• QJ. by 

ul/,1• 
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the induction hypothesis, and this implies f E :F;,Q. Using the second part 
of the lemma (or a dimension argument), this set is also dense in :F;,Q. 

The theorem immediately implies (14). Since f E :Fu,P {=} f* E F;.,P 
and f** = f, it also implies 1.3.1. 

2.4. Relative positions. 
The interpretation of the Robinson-Schensted algorithm we intend to give also 
uses the correspondence of tableaux to irreducible components of :Fu, but in 
addition needs the concept of relative positions of flags. It is obvious that a 
pair of flags f, f' E :F can be in a number of qualitatively different positions 
with respect to each other, depending on for instance whether Ji is or is not 
contained in f~ and similar questions. The relative position of f and f' is 
completely determined if for all O < i, j < n the values dim (/i n fJ) are 
given (and vice versa), but these numbers are not entirely independent; it is 
therefore convenient to encode a relative position in a different way, namely 
by a permutation of n, which we shall denote 1r(f, f'). Since 1r(f, f') does not 
depend on a choice of basis for V, we have 1r(g · f, g · f') = 1r(f, f') for all 
g E GLn. On the other hand if f is the standard flag for the basis e1, ... , en, 
given by /i = (e1, ... , ei) for O '.S: i :Sn, and f' is the standard flag for this basis 
permuted by some a- E Sn, i.e., ff = (ecr,, ... , ecrJ, then 1r(f, f') is defined to 
be equal to a-. From Bruhat 's lemma for G Ln it follows that these two rules 
uniquely define 1r(f, f') for all f, f' E :F. 

We give some examples. For every f E :F we have 1r(f, f) = e, the 
identity permutation. The other extreme occurs when f, f' are generically 
chosen: then f; n fJ is zero whenever possible, i.e., whenever i + j :S n; in that 
case 1r(f, f') is the permutation w E Sn of 1.3.2. In the above GL3 example 
with :Fu consisting of two intersecting lines, we have 1r(f, f') = (2, 1, 3) for any 
pair of distinct f, f' E :F: T (since only their I-dimensional parts differ), and 
1r(f, f') = (2, 3, 1) for any 't E :F: T and any f' E F: T' except the flag at the 
intersection of the two components of :Fu (since Ji # ff h but Ji <£ f~). 
It is clear from this definition that 1r(f', f) = 1r(f, f')- 1 for all f, f' E :F, and 
also that 1r(f*, f'*) = w1r(f, f')w (the latter identity comes from the fact that 
the dual f* of the standard flag is given by ft = (e~+l-i> ... , e~) on the dual 
standard basis). 

We can describe a- = 1r(f, f') more explicitly in two ways. First, in terms 
of the numbers ai,j = dim (Ji n JJ) for O :S i, j :S n the permutation a- is given 
by O"j = min{ i I ai,j > ai,j-1 }, and its permutation matrix by 

for 1 :S i, j :S n. (15) 

Secondly, 1r(f, f') can be determined by a recursive formula, and it is this form 
that we shall be using in the sequel. This formula on one hand explicitly gives 
the final term in the sequence of a-: 

O"n = min{ i I /i <£ f~-1 }. (16) 

Since this number O"n depends only on f and the hyperplane part H = f~-l 
off', we shall also denote it by 1r(f, H), the relative position off and H. The 
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remaining values of O" are computed from the relative position of a pair of flags 
in the subspace H, namely flH and f'-, where flH is defined as follows. For 
those i for which /i H we put (flH )i = /i, and for those for which /i-1 <j;_ H 
we put (flH)i-1 = /i nH. (One part /i in not used-in the present case this 
is fu,,.. -since for that part /in H = fi-1-) Now let 0"1 E Sn-1 be the relative 
position 1r(f lH, f'-), then the remaining values of O" are defined by 

(for i < n). (17) 

Note how adding 1 in the second case ensures that we get a proper permutation, 
and that in each case the part (f lH )u~ was obtained from f u;. The latter remark 
implies that if we would endow the parts of flags derived from f with numeric 
labels to indicate which part off they stem from (setting the label equal to the 
dimension for parts off itself, but keeping the label unaltered when restricting 
to a hyperplane) and change the right hand side of (16) so that it returns the 
label of /i rather than its dimension i, then a recursive definition of 1r(f, J!) 
could be given in which (17) would simply read O"i = O"! (i < n) (but the 
recursive calls of 1r would yield sequences such as 0"1 that are not necessarily 
permutations). 

The correctness of both explicit descriptions of 1r(f, f') can be verified 
easily in the basic case of the definition of 1r(f, f'), in which f and /' are 
respectively the standard and permuted standard flag. Incidentally, there 
is yet another recursive description of 1r(f, f') that starts by giving 0"1 = 
min{ i I /i ;;;? f~ }, and uses 1r(f[J~], f' ! ) for suitably defined fu;J to find the 
remaining values of O"j however, we shall not use such a description. 

2.5. Interpretation of the Robinson-Schensted algorithm. 
In terms ofrelative positions the Robinson-Schensted algorithm has a geometric 
interpretation analogous to that of the Schiitzenberger algorithm. We need 
some additional notation. Since the function 1r on :F x :F takes only a finite 
number of values, we have for every irreducible subset X that 1r is constant on 
a dense subset of X; the value it takes on that subset will be denoted 7(X), and 
is called the generic relative position on X. The geometric interpretation of the 
Robinson-Schensted algorithm now states that the generic relative positions on 
the irreducible components of :Fu x :Fu can be expressed as follows: 

7(:F-u,P X :Fu,Q) = R(P, Q) 
7(:F:,P x :Fu,Q) = wRt(P, Q) 
7(:Fu,P x :F:,Q) = Rt(P, Q)w 
7(:F:,P x :F:,Q) = wR(P, Q)w 

(18) 
(19) 
(20) 
(21) 

By (14) and the properties of 1r(f, f'), the last two identities follow from the 
first two, so it is those first two identities that we shall focus on. Note that 
the last equation implies that to obtain a nice interpretation of the Robinson-
Schensted algorithm using the notation of [Spa], relative positions have to be 
conjugated by w. 
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Like in the case of the Schiitzenberger algorithm, most of the work is 
required in proving an interpretation of the basic step, in the current case the 
"extraction" procedures E and Et. In the following lemmas Zu,H denotes the 
stabiliser in Zu of H. 

2.5.1. Lemma Let,\= J(u) and let a tableau TE T>. and a corners of,\ 
be given; put c equal to the column number of s and let (P, m) = E(T, s) be 
computed by the extraction procedure. Then for all hyperplanes H V with 
H 0 E u; there exists a dense Zu,H-stable subset 'DH of :Fu,T such that for all 
f E 'DH we have 1r(f, H) = m and JIH E :FulH,P· 

2.5.2. Lemma Let,\= J(u) and let a tableau TE T>. and a corners of,\ 
be given; put c equal to the column number of s and let (P, m) = Et(T, s) be 
computed by the transpose extraction procedure. Then for all hyperplanes H 
V with H 0 E u; there exists a dense Zu,H-stable subset 'DH of :F;,T such that 
for all f E 'DH we have 1r(f, H) = n + l - m (= wm) and JIH E :F;IH,P' 

The proofs of these two lemmas are somewhat similar, and we prove here 
only the latter, leaving the proof of the former as an exercise to the reader (a 
proof can also be obtained from [Stb2) whose lemma 1.2 is essentially equivalent 
to our lemma 2.5.1). 
Proof of 2.5.2. We use the notations Wi(H) and Ui(H) as in the proof of 
2.3.1; as we have seen there we have Wi(H) = Wi unless i = c, and Wc(H) 
has codimension 1 in We, Let f E :Fu,T and l = Ji; we examine in which 
circumstances we can have l <l:_ H, which is equivalent to 1r(f, H) = l. If the 
square fTl is in column j, then l W1 W1 , so unless j = c = 1 it follows that 
l W1(H) H. When j = c = 1 on the other hand, U1 n P(H) = U1(H), 
which is either empty or of codimension 1 in U1 , so for f in a dense subset 
of :Fu,T we will have 1r(f, H) = 1; this is as claimed by the lemma since in this 
case Et(T, s) = (TL, n). Furthermore, for such f we may decompose V = l ffi H 
as direct sum of u-stable subspaces, so there is an isomorphism H :::::, V / l 
that transforms ulH into U[l], and also flH into JL; therefore it follows from 
qu l!J (f L) = T 1 that qu I H (f I H) = TL, completing the proof for the case j = c = l. 

The proof of the lemma is by induction on I.\ I, and for I,\ I = 1 we are always 
in the case j = c = 1 already treated. In the remaining cases we wish to find the 
numbers j' and c' such that l E U1,(H) and H 0 E u;,(1°), where 1° CV* is the 
hyperplane of functions vanishing on the line l (which is canonically isomorphic 
to (V / l) •), and U;* ( 1°) is defined in analogy to U;*, but using u • I 10 instead of u •. 
Because j' is the column number of the square in Y(J(ulH)) - Y(J(uH;i)), 
and c' is the column number of the square in Y(J(u[!])) - Y(J(uH;i)), we 
must always have {c,j'} = {c',j}, so either one of j',c' determines the other. 
Moreover, if j -::p c then we must have j' = j and c' = c (this can also be 
deduced directly from U1(H) 2 U1 and u;(Z0 ) 2 u;). When j = c we have 
that W1(H) has codimension 1 in W1 while W1 W1_ 1 = W1_ 1(H), so a dense 
part of U1 lies in U1_1 (H), and for f in a dense subset of :Fu,T we will have 
j'=c'=j-1. 

From the transpose counterpart of(5) we know that Et(TL,s1 ) = (Pl,m) 
for some corner s1 of sh TL, that is together with I Pl uniquely determined 
from s and fTl by (3) and the transpose counterpart of ( 4). But we have just 
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established that those conditions are met if we take for s' the corner of sh TL 
in column j', and for I Pl the corner in column c' of sh P. Now we apply the 
induction hypothesis, replacing V, u, s, c, T and H by Vjl, U[I], s', c', TL 
and H/l respectively. We obtain that fixing any l E Uj n Uj,(H) as determined 
above, and for fL in a dense subset of :F* T.l we have 1r(Jl, H jl) = n - m and 

"[zJ' 
fl IH/I E :,::•1 p.1. Using that 1r(JL, H /l) = 1r(f, H) - 1 (since dimensions are 

U H/1• 

decreased by 1 in descending from f to fl) and fl IH/1 = (f lH )l, together with 
l = Ji E Uj,(H), the conclusions 1r(f, H) = n + 1 - m and flH E :Fi1H,P of 
the lemma follow. The denseness and Z,,,H-stability of the set DH of all f 
for which these conclusions are valid are obvious. 

Contrary to what was the case for the interpretation of the Schiitzenberger 
algorithm, the main results do not follow immediately from the lemma's here; 
this is due to the fact that in general the set { flH I f E 'DH} is not dense 
in its component of :F,,IH' despite the fact that 'DH is dense in its component 
of :F,,. We resolve the difficulty here in the same way as in [Stb2], using the 
invertibility of the Robinson-Schensted algorithm and the following 

2.5.3. Fact For each a E Sn there are unique A E Pn and P, Q E T» such 
that for any unipotent u E GLn with J(u) =Awe have a= 7(:Fu,P x :F,,,q). 

This fact comes from the general study of the unipotent variety, see [Sprl 3.8], 
[Spr2 4.4.1] or [Stbl 3.5, 3.6]. We also use the fact that the closure of a subset 
:F; = { (f, f') I 1r(f, f') =a} of :F x :F is the union of similar subsets :F; for 
certain r E Sn; putting a 2: r for these permutations then defines a partial 
order on Sn called the Bruhat order (in fact a 2: r holds if and only if the 
numbers ai,j associated to a as in the previous subsection are all greater than 
or equal to the corresponding numbers for r). It is then clear that the generic 
relative position on some irreducible component of :F,, x :F,, is also maximal on 
that component in the Bruhat order. 

2.5.4. Theorem Let P, Q E T>., and let a = R(P, Q) be obtained from 
them by the Robinson-Schensted algorithm, then for (f, f') in a dense subset 
of :Fu,P X :Fu,Q one has 1r(f, f') = a. 

Proof. We prove first that on a dense subset 1r(f, f') :S a holds in the Bruhat 
order, which implies that it holds on all of :F,,,p x :Fu,Q• This is done by 
induction on I.\I, comparing the definition of R(P, Q) with the recursive formula 
for 1r(f,f'). Let c be the column number of 1Ql, we have w[:F,,,q] = u;, so 
we may choose any hyperplane H with H 0 E u; and restrict ourselves to the 
case f~-l = H. We now apply lemma 2.5.1 with s = 1Ql and find for f 
in a dense subset DH of :F,,,p that 1r(f, H) = O'n and flH E :F,,IH,T, where 
(T, an) = E(P, s). Here T differs from its normalised counterpart TN in that 
all entries 2: O'n are increased by 1 in T. Invoking the induction hypothesis 
for TN, Ql we find that 1r(flH, f-) :S R(TN, Ql) for all (f, f') E 'DH x w- 1 [H 0 ]; 

by ( 17) and the definition of R this implies 1r(f, f') :S R( P, Q), completing 
the proof of our initial claim. To prove that in fact 1r(f, fl) = R(P, Q) for 
generically chosen f, f', consider the values 'Y( :F,,,p x :Fu,Q) and R( P, Q) as 
(P, Q) traverses U»E'Pn T» xT». On one hand, by 2.5.3 and the invertibility of R, 
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both values traverse S,,. meeting each permutation exactly once; on the other 
hand the former is always less than or equal to the latter. This is only possible 
if both values are equal for each pair (P, Q), which proves the theorem. 

2.5.5. Theorem Let P, Q E T>., and let a = Rt(P, Q) be obtained from 
them by the transpose Robinson-Schensted algorithm, then for (!, /') in a 
dense subset of :F:,P x :Fu,Q one has 1r(f, /') = wa. 

This is entirely analogous to the previous proof, using lemma 2.5.2 instead 
of 2.5.1. D 
Remark The way we have completed the proofs of these theorems is not the 
only possible one: there is another approach that is in some ways more satis-
factory than the current one, although it needs a longer proof. That approach 
is to prove that, although { /IH I / E 'DH} may not be dense, we do obtain 
a dense subset from it by applying the action of ZulH to it (note that this is 
different from applying the action of Zu,H-which indeed has no effect-since 
not all elements of ZulH lift to Zu)- Roughly speaking one attempts to realise 
a given flag /' in H as /IH for f E :Fu,P by adapting not only f but also u 
to the situation, while keeping ulH fixed. Full details shall be given elsewhere; 
this technique is also used in a more complicated situation in [vLee 4.6]. This 
alternative method makes no use of 2.5.3 or the invertibility of R, and it implies 
that either of these facts may be deduced from the other. 

2.6. Conclusion. 
The above theorems obviously prove equations (18)-(21). Together with (14) 
these equations imply the combinatorial statements of 1.3.2. As 1.3.1 and 1.2.1 
are also immediate from the given geometric interpretations, and the invert-
ibility of R is directly related to the geometric fact 2.5.3, we may conclude 
that these are quite natural interpretations of the Robinson-Schensted and 
Schiitzenberger algorithms (not only of the resulting correspondences, but also 
of the procedures they are built-up from), and indeed we may claim to have 
revealed ( at least one sort of) the "witchcraft operating behind the scenes" of 
those algorithms. The parallel between the recursive definitions of the algo-
rithms and the proofs of our interpretations is so close that, had the algorithms 
not been known long before the questions about :Fu were studied, they could 
have been deduced from that study of :Fu. In fact, the varieties :Fu have their 
analogues for other algebraic groups than GLn (see [Spa]), and in his the-
sis [vLee], the author has studied the question of computing generic relative 
positions for them in the case of the other classical groups (SP2n and On), and 
using analogous methods to those above has derived algorithms similar to the 
Robinson-Schensted algorithm to compute the desired quantities. 
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0. Introduction 

Let G be a simply connected, split semisimple algebraic group defined over 
a field k. Fix a maximal split torus T and a Borel subgroup B containing T. 
For a B-character µ let Cµ be the associated line bundle on G / B (l. 1 ), and if 
µ is a dominant character, then denote by Vµ the G-module H 0 (G/B,Cµ) of 
highest weight µ. 

If k is an algebraically closed field of characteristic zero, then the modules 
Vµ are simple (Borel-Weil theorem), and every finite dimensional G-module 
is isomorphic to a direct sum of them (Weyl's complete reducibility theorem). 
This is not true in general. The notion of a good filtration of a G-module can 
be seen as a substitute for semisimple modules. Here we say that a G-stable 
filtration of a G-module M is good if all the subquotients are isomorphic to 
Vµ for some dominant B-character µ. 

Consider the G-module V.,,,µ := V:>. © Vµ- If k is algebraically closed, then 
the existence of good filtrations for V.,,,µ has been proved in [2, 13,20] (in the 
first two papers certain restrictions are made on the characteristic of k ). For 
arbitrary fields, a proof is given in [17] for the case where G has no simple 
component of type F4, E7, Es. 
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The aim of this paper is to give for G = Sln+l ( k) an explicit construction 
of a good filtration of V>.,w We wish to give an outline of the construction: 
The main tool is the basis of Vµ given by the standard monomials ( see section 
2). These monomials are T-eigenvectors, they are indexed by standard Young 
tableaux, and we denote by -v(T) the weight of a standard monomial p(T). 
Using the geometrical properties of the standard monomials, we define a B-
stable complete flag 

such that the Fi have as basis a subset of the standard monomials. Enumerate 
the tableaux such that Fi is generated by the standard monomials p(Tj), j::; i. 
Now let A be another dominant B-character. In [10] we introduced a special 
subclass of tableaux, the A-dominant tableaux (see section 2). Let T;, 1 , ••• , T;,, 
be the A-dominant standard tableaux, and consider the corresponding subflag 
0 C Fi, C · · · C Fi, = Vw Denote by :Fi; the vector bundle on G / B associated 
to the B-module Fi;. We show that the induced G-stable filtration 

is a good filtration. Moreover, l';/l';-i::::: V>.+v(T;.), so this gives at the same 
J 

time for char k = 0 a decomposition rule for the tensor product: 

r 

Vi,µ= V>. © Vµ '.::::'. EB V>.+v(T;;)• 
j=l 

In fact, it is easy to see that the notion of a A-dominant tableau corresponds to 
the notion of a lattice permutation in the usual formulation of the Littlewood-
Richardson rule, so the good filtration constructed above gives also a proof of 
the Littlewood-Richardson rule. 

Moreover, we study the following more general situation: Let Q ::) B be 
a parabolic subgroup of G, denote by L ::) T its Levi subgroup, and let Y 
be a union of Schubert varieties in G/ B. Denote by 1-t0 (Y, .Cµ) the bundle 
(see 1.1) on Q/ B associated to the B-module H 0 (Y, .Cµ)- Suppose that A is 
Q-dominant (see 1.3). We are going to construct a good filtration of the Q-
module H 0 ( Q / B, .C>. © 1-t0 (Y, .Cµ) ), i.e., t.he subquotients of this filtration are 
isomorphic to H 0 ( Q / B, .Cv) for some Q-dominant weight v. For char k = 0, 
a decomposition rule for the L-module H 0 (Q/B,.C>. @1i0 (Y,.Cµ)) ensues. In 
particular, we get a decomposition rule for Vµ considered as L-module. 

A standard monomial theory has been also developed for other simple 
groups (see [6,7,8,9,18]). We give a short introduction into this theory in section 
3. Using the notion of a standard Young tableau in the sense of Seshadri et al., 
the notion of a A-dominant tableau has then a straightforward generalization. 
In fact, the results for G = Sln+l (k) hold also for all simple groups for which 
a standard monomial theory has been developed. We state the results in 3.13 
and 3.14 without proof. We refer to [11] for a detailed proof. 
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1. Schubert varieties 

1.0 The aim of this section is to introduce some notation and to recall the 
vanishing theorem for the higher cohomology of certain line bundles on (gen-
eralized) Schubert varieties. To motivate our interest in Schubert varieties, we 
would like to consider first the following example: 

Let ,\,µbe dominant B-characters and let Y C G / B be a Schubert variety, 
i.e. Y is a B-stable irreducible subvariety of G/ B (see 1.2). By Theorem 1.3, 
the restriction map Vµ = H 0 (G/B,Cµ)---+ H 0 (Y,Cµ) is surjective, so we get a 
short exact sequence of B-modules: 

0 -- Ker--+ Vµ = H 0 (G/B,Cµ) -- H 0 (Y,Cµ) -- 0. 

To see how this sequence induces a filtration of V;,,,µ, let ri 0 (G/ B, Cµ) be the 
vector bundle (cf. 1.1) on G/ B associated to the B-module Vµ = H 0 (G/ B, Cµ)-
But Vµ is a G-module, so the bundle ri0 (G/B,Cµ) is in fact a trivial bundle 
(see 1.1) and we have 

By use of this isomorphism we can view V;,,,µ as the global sections of the vector 
bundle £ .>. ® H 0 ( G / B, C µ,) on G / B. Next consider the vector bundles K, and 
ri 0 (Y,Cµ} on G/B associated to the B-modules Ker and H 0 (Y,Cµ) in the 
short exact sequence above. We get a short exact sequence of vector bundles: 

Now by Corollary 1.4 and Theorem 1.3, the associated long exact cohomology 
sequence is in fact a short exact sequence of G-modules: 

0---+ H 0 (G/ B, £.>. ® K)---+ V.>.,µ = H 0 (G/ B, £>-. ® ri0 (G/ B, Cµ)} 

---+ H 0 (G/B,C.>. @1i0 (Y,Cµ)) -- 0. 

The next task will be then to investigate the structure of the B-modules Ker 
and H 0 (Y, Cµ)- This will be done in the next section with the help of the 
standard monomial theory. 

1.1 We shall first recall the construction of the associated fibre bundle. Let Z 
be a B-variety. We define a right B-action on G x Z by (g, z) ob:= (gb, b- 1z). 
This is a free B-action, and we denote by G x B Z the or bit space ( G x Z) / B. 
Since the left action of G on G x Z, defined by g • (g', z) := (gg', z), commutes 
with the right action of B, the orbit space G xB Z has in a natural way the 
structure of a G-variety. The projection G x Z ---+ G commutes with the right 
action of B on G and induces a natural map G x B Z ---+ G / B. In fact, this 
map makes G xB Z into a fibre bundle on G/ B with fibre Z (see [4], I, 5.14). 
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• Recall that any character .>. : T--, k• extends (trivially) to a character of 
B, so the character groups X(T) and X(B) can be identified. For .>. E X(T) 
let MA be the one-dimensional B-module corresponding to the representation 
.>.: B __, GL(MA) k*. We denote by CA the line bundle G xB M_A on G/B. 

If Q ::) B is a parabolic subgroup of G and Z is a B-variety, then we 
denote by Q x B Z the associated fibre bundle on Q / B ( same construction as 
above). By abuse of notation we write also CA for the line bundle Q xB M_A 
on Q/B. 

Note if the B-action on Z comes from a Q-action on Z, then the canonical 
map 

Q XB Z __, Q/B x Z, (q,z) 1--+ (qB,qz) 

is an isomorphism ofQ-varieties (where Q acts on the right side via the diagonal 
action). For example X := Q xB G/B Q/B x G/B. Let p1 ,p2 be the 
projection maps. We denote by CA,µ the line bundle pt CA© p;Cµ on X (~ 
Q/B x G/B), where p1 : X __, Q/B and p2 : X __, G/B are the projection 
maps. 

1.2 Let Nora(T) be the normalizer ofT in G and denote by W := Nora(T)/T 
the Weyl group of G. For w E W let nw E NoraT be a representative and 
denote by ew the point nw B in G / B ( which is independent of the choice of 
nw ). By the Schubert variety X(w) we mean the closure of the orbit B · ew in 
G / B. By the Schubert variety X ( w) in X = Q x B G / B we mean the closed 
subvariety Q xB X(w). (Of course, if Q = B, then X(w) = X(w)). Note that 
the isomorphism Q x B G / B __, Q / B x G / B induces an isomorphism of X ( w) 
onto the closure of the Q-orbit Q · ( e1, ew) in Q / B x G / B. 

1.3 Let L C Q be the Levi subgroup of Q containing T. Fix a W-invariant 
scalar product ( ·,·)on X(T) ©z Q and set (.>., µ) := 2(.>., µ)/(µ, µ). We say that 
.>. E X(T) is Q-dominant if(.>., a) 2:: 0 for all simple roots a of G contained in 
the root system of L. 

Theorem ([5,11,12,14,16]) Let>.,µ E X(T) be such that>. is Q-dominant and 
µ is dominant. For a union of Schubert varieties Y in G / B let Y be the union 
of Schubert varieties Q x B Y in X. 

(ii) The restriction map H 0 (X, CA,µ) __, H 0 (Y, CA,µ) is surjective. 

About the proof For Q = B, this is just a reformulation of Theorem 2 
in [16]. For Q = G this has been proved in [5] for char k = 0, and for 
char k > 0 in [12] and [14]. The proofs in [12] and [14] easily generalize to 
the situation above (see [11]). 

1.4 Suppose that .>. is Q-dominant and µ is dominant. Let Y be a union of 
Schubert varieties in G / B and let Y be as above. The cohomology groups 
Hi(Y, CA,µ) can be calculated as the cohomology groups of a vector bundle on 
Q/ B (cf. 1.0 for the case Y = G/ B): 
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Consider the bundle map 7r: Y -> Q/ B. Since 7r is a Q-equivariant map 
and Q / B is a homogeneous Q-space, to calculate the higher direct images 
Ri1r • .C>.,µ (see [3], III, §8) of .C>.,µ it suffices to calculate the stalk at the point 
l ·BE Q/ B. Now the fibre of 7r over 1 ·Bis Y, and .C>.,µ = pi.C>. © p2.Cµ- But 
the restriction ofpi.C>. to Y is a trivial bundle on which B acts via the character 
->., and the restriction of p2.C>,. is the line bundle .Cµ- Since Hi(Y, .Cµ) = 0 for 
i > 0 (Theorem 1.3), it follows that Ri1r .£>.,µ = 0 for i > 0, and 7r .£>.,µ = 
Q xB (M->. © H 0(Y, .Cµ)) (see [3], III, Corollary 12.9). So 1r • .C>.,µ is the tensor 
product of .C>,. and the vector bundle 1i0 (Y, .Cµ) associated to the B-module 
H 0 (Y, .Cµ)- Since the higher direct images of£>.,µ vanish, we get the following 
isomorphism in cohomology (see [3], III, Exercise 8.1): 

Corollary Hi(Q xB Y, £>.,µ) '.:::'. Hi(Q/B, .C>. © 1i0 (Y, .Cµ)). 

2 Standard monomial theory and the Littlewood-Richardson rule. 

2.0 The aim of this section is to show the close connection between the standard 
monomial theory and decomposition rules for the group G = Sln+1(k). The 
aim of standard monomial theory (SMT) can be described as follows: Let G 
be a simply connected, simple split algebraic group and denote by w1, ... , Wn 

the fundamental weights. Let X(w) C G/B be a Schubert variety. 
The first step in SMT is to construct for i = 1, ... , n a basis fi,1, ... , fi.d(i) 

of H 0 (X(w), .CwJ• Ifµ= I:;;=1 aiWi is a dominant weight, then the canonical 
map 

is surjective ([15]), so H 0 (X(w),.Cµ) is spanned by the monomials I]fi,ii, i = 
1, ... , n, j = 1, ... , ai. The second step in SMT is now to give a rule for which 
monomials to choose to obtain a basis of H 0 (X(w), .Cµ)• These monomials are 
then called the standard monomials. 

In this section G will always denote the special linear group Sln+1(k). We 
keep the other notation introduced in the preceding section. 

2.1 Let p = (P1, ... , Pn) with P1 2: p2 2: · · · 2: Pn be a partition of a natural 
number m. We identify p with its associated Young diagram, which consists 
of left justified rows of boxes with Pl boxes in the first column, p2 boxes in the 
second column, ... , and Pn boxes in the nth column. 

By a Young tableau T of shape p we mean a filling of the boxes of the 
corresponding diagram with positive integers. We identify a row or a column 
of a Young tableau with the sequence of integers filled in the boxes of the 
corresponding row or column. 

The Young tableau T is called row standard if the integers are strictly 
increasing in the rows and are smaller than or equal to n + l. We say that 
T is standard if T is row standard and the integers are non-decreasing in 
the columns (from the top to the bottom). Here we enumerate the rows of a 
tableau from the bottom to the top. For 1 :S l :S p1 we denote by T(l) the 
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Young tableau obtained from 7 by omitting the (l + l)st row up to the top 
row. 

Below we give an example of a standard tableau 7 of shape (5, 2, 1) and 
of the truncated tableaux 7(1), 7(2), 7(3) and 7(4): 

1 2 4 
2 4 

7= 3 
4 
4 

T(l) =(I], T(2) = tE, T(3) = ~, T(4) = r 
If i is a positive integer, then we denote by er ( i) the number of boxes in 7 filled 
in with the number i. In the example above, we have cr(l) = 1, cr(2) = 2, 
cr(3) = 1 and cr(4) = 4. 

2.2 For i = 1, ... , n let Wi = E1 + · · · + Ei be the i-th fundamental weight. We 
associate to a dominant weight µ = I:~=l aiwi the partition p(µ) = (P1, ... , Pn) 
with Pi := I:j=i aj. For simplicity we will sometimes write that a Young 
tableau is of shape µ instead of p(µ). If 7 is a row standard Young tableau of 
shape µ, then we define the weight of 7 as 

For 1 ::; l::; p1 denote by v1(7) the weight v(7(l)). 
For the tableau 7 in 2.1 we have v1(7) = E4, v2(7) = 2E4, v3(7) = E3+2E4, 

v4(7) = E2 + E3 + 3E4 and v(7) = vs(7) = E1 + 2E2 + E3 + 4E4. 

Definition Let>. be a Q-dominant weight. A standard Young tableau of shape 
µ is called ( Q, >.)-dominant, if all the weights >. + v1(7), l = l, ... , P1, are Q-
dominant. If Q = G, then we say just that 7 is >.-dominant, and if >. = 0 we 
just say that 7 is Q-dominant. 

If we consider the example above, (where G = Sl4(k)), then 7 is not w2 

dominant since w2 + v1(7) = E1 + E2 + E4 is not a dominant weight. But it is 
easy to see that 7 is (6E1 + 4E2 + 3E3)-dominant. 

2.3 In this section we assume k to be an algebraically closed field of charac-
teristic zero. For a dominant weight >. denote by V>. the simple G-module 
H 0 (G/B,£>.), and for a Q-dominant weight 1J denote by U11 the simple L-
module H 0 (Q/B,£11 ). 

Littlewood-Richardson rule. 

(i) Let Ti_, ..• , Ti be the >.-dominant standard Young tableaux of shape µ. 
Then the decomposition of the tensor product V;>. ® V,, is given by 

I 

Vi® Vµ = EB V>.+v(Tj)· 
j=l 



Good :filtrations, decomposition rules and standard monomial theory 95 

(ii) · Let T1 , ... , 7i be the Q-dominant standard Young tableaux of shape µ. 
The decomposition of Vµ into simple L-modules is given by 

l 

resL Vi, = ffi U,,(T;)· 
j=l 

2.4 We wish to show that these decomposition rules can be seen as special cases 
of a more general decomposition rule. We shall first recall a few facts about 
standard monomial theory. In the following, k is again an arbitrary field. 

Let Pi, i = I, ... , n, be the maximal parabolic subgroup of G associated to 
the fundamental weight wi, let fV; be the Weyl group of Pi, and let 7l'i : W-+ 
W /Wi be the projection. Recall that W is isomorphic to the symmetric group 
Sn+l, and wi '.:::'. Si X Sn+l-i is the stabilizer of Wi in w. 

For T E W/Wi let 1 ii < · · · < ji n + 1 be such that T(wi) = 
"ii+···+ Ej;• We associate to T the sequence (j1, ... , ji)- It is easy to see this 
induces a bijection 

W/Wi---> I(i,n+ 1) := {(ii, ... ,ji) 11 ~ii<···< ji n+ 1}. 

In the following, we will identify W/Wi with I( i, n+ 1). Moreover, on I(i, n+ 1) 
we have a canonical partial order: (ii, ... , ji) (j~, ... , j:_) if jz j: for 
l = 1, ... , i. Note that this partial order coincides with the usual Bruhat 
order on W /Wi under the bijection above. Further, if T = (ii, ... , ji), then 
T(wi) = €j 1 + · • · + €j,· 

2.5 Let Y = X(wi) U · · · U X(wr) be a union of Schubert varieties in G/B. 
Denote by Jy the set of elements TE I(i,n+ 1) such that T 7ri(w1) for some 
j = 1, ... , r. The following theorem can be found in [19], or [9], Theorem 3.15. 

First Basis Theorem There exists a basis {p(T)} of H0 (G/ B, CwJ, indexed 
by the elements of I(i,n + 1), such that p(T) is a T-weight vector of weight 
-T(wi)- The restriction p(T)IY ofp(T) to Y is not identically zero if and only 
ifT E Jy, and the set {p(T)IY IT E Jy} is a basis for H 0 (Y,CwJ-

In what follows, we refer to this basis as the standard basis of H 0 ( G / B, CwJ· 

2.6 Suppose that µ = L~=l aiwi is a dominant weight, and let T be a row 
standard Young tableau of shape p(µ) = (p1, ... ,Pn)• For 1 l P1 let 
1 i1 n, 1 jz ai, be such that l = a1 + · · · + ai, -1 + jz. The 1th row 
Ti,,j, of T can then be considered as an element of I(i1,n + 1). Denote by 
p( Ti,,j,) E H0 ( G/ B, CwJ the corresponding section. By the monomial p(T) of 
type p(µ) we mean the product 

p, 

p(T) := IlP(Ti,,i,) E H 0 (G/B,Cµ)-
l=l 
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For simplicity we denote by p(T) also the restriction of this section to a union 
of Schubert varieties Y. To give a basis of H 0 (Y, Cµ), we need first the notion 
of a defining chain for a row standard tableau T. 

2.7 Letµ be a dominant weight and let T be a row standard Young tableau of 
shape p(µ). Denote by r1 the lth row of T. We have already seen that we can 
consider r1 as an element of I( i1, n + l ). For l = l, ... , p1 let r1 E W be such 
that ?riz (r1) = 7i. The sequence (r 1, ... , r p,) is called a defining chain for T, if 

One can prove that T is standard if and only if such a defining chain exists 
([7]). Moreover, if T is standard, then there exists a unique minimal defining 
chain (r1, ... , r pi); i.e., if (r~, ... , r~J is any other defining chain for T, then 
r 1 ::; r~, ... , fp, ::; r~, in the Bruhat order on W. 

Definition Let Y = X(wi) U · · ·UX(wr) be a union of Schubert varieties, and 
let T be a row standard Young tableau of shape p(µ). The tableau Tis called 
standard on Y if r1 ::; w1 for some j = 1, ... , r for the minimal defining chain 
(r1, ... , r p,) of T. The monomial p(T) of type p(µ) is called standard, if the 
tableau T is standard. If T is standard on Y, then p(T) is called standard on 
Y. 

The following theorem is taken from [9], Corollary 9.8. In fact, it is stated there 
only for Schubert varieties. But the (scheme theoretic) intersection of Schubert 
varieties is a union of Schubert varieties ([16]). Now an easy induction on the 
number of irreducible components of maximal dimension proves the following 
generalization. 

Second Basis Theorem Let µ = I:;=l aiwi be a dominant weight. The stan-
dard monomials on Y of type p(µ) form a basis ofT-eigenvectors of H 0 (Y, Cµ)-
The weight ofp(T) is -v(T). 

2. 7 Using the basis given by the standard monomials, we wish now to define 
a complete flag in H 0 (Y, Cµ)- Recall that we identify W/Wi with I(i, n + l), 
and that we can view a row in a standard tableau also as a coset in W /~ for 
some i = 1, ... , n. Let now l(·) be the length function on W/Wi, and fix a total 
ordering "-<" on W/Wi such that 1(61) < 1(62 ) implies 61 --< 62 • Denote by"<" 
the corresponding lexicographic order on the set of standard Young tableaux 
of shape µ, i.e., 7i < 7-J if there exists a number l, 1 ::; l ::; p1, such that the 
first (l - 1) rows of the tableaux are equal, and the lth row of 7-J is greater 
than the lth row of T1. Let now 7i_, ... , Tm be the standard Young tableaux 
on Y of shape µ, enumerated such that 7i > 7-J > · · · > Tm. Denote by Fi the 
subspace of H 0 (Y, Cµ) spanned by the monomials p(Yj), j::; i. 

Theorem 2.8 

(i) The complete flag Fo := 0 C F1 C · · · C Fm = H 0 (Y, Cµ) is B-stable. 
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(ii) Suppose that >. E X(T) is Q-dominant and let T;,, ... , T;,, 1 :s; i1 :s; · · · :s; 
i, :s; m, be the subset of ( Q, >.)-dominant tableaux. Denote by Fi,, ... , Fi, 
the vector bundles on Q/ B associated to the B-modules Fii, j = l, ... , s. Set 
Mj := H 0 (Q/B,£>,. ®FiJ• The filtration ofQ-modules 

2.9. The Littlewood-Richardson rule Before we prove the theorem note 
that (ii) implies the Littlewood-Richardson rule: Suppose now that k is an 
algebraically closed field, char k = 0. Set first Q = G and Y = G / B. Since 
H 0 (G/B,£µ) is a G-module, we get by Corollary 1.4: 

H 0 (G xB G/ B, L>-.,µ) '.:::'. H 0 (G/ B, £>-. ® 1i0 (G/ B, £µ)) '.:::'. 

'.:::'. H 0 (G/B,£>-.) ® H 0 (G/B,£µ), 

Now by (ii) the tensor product is a direct sum EB!=l H0 (G/ B, L>,.+v(Tii)), where 
T;,, ... , ½i are the >.-dominant standard Young tableaux of shape µ. 

If ). = 0 and Y = G / B, then we see similarly that 

and by (ii) this module decomposes into the direct sum EB!=l H 0 (Q/ B, Lv(Ti;)), 
where T;,, ... , ½i are the Q-dominant standard Young tableaux of shape µ. 

2.10 Proof of the theorem The proof of (i) is by induction on lµI = I::~=l ai, 
For simplicity we assume that a 1 > 0 ( otherwise one has to replace a1, w1, etc. 
by ai 0 ,Wi0 etc., where io is such that ai 0 > 0 and ai = 0 for i < io), 

Enumerate the elements in Jy such that To >-- T1 >-- · · · >-- Tp, Let be 
the union of all Schubert varieties X(w) in Y such that 7r1 (w) = Ti, If we set 
Zi := LJj~i Yj, then Zp C Zp-1 C · · · C Zo = Y. 

Let Ui be the kernel of the restriction map H 0 (Y, £µ) --+ H 0 (Zi+l, £µ), 
We obtain a B-stable flag 

Let p(T) = p( Tj )p1 be a standard monomial in H 0 (Y, £µ) where p1 is an element 
of H 0 (Y, Lµ-w, ). If j :s; i, then Tj 1. Tz for all l 2: i + 1, so p( Tj) vanishes on 
Zi+1, and p(T) E Ui, On the other hand, if j > i, then let (r1, ... , I'p,) 
be the minimal defining chain for T. Now X(ri) C Y and 7r(I' 1 ) = Tj, so 
X(I' 1 ) C Yj C Zi+l and p(T) is standard on Zi+l· Hence the set of standard 
monomials p(T) E H 0 (Y, £µ) of the form p(T) = p( Tj )pi, j :s; i, forms a basis 
of Ui, and the flag U is a subflag of the complete flag F in the theorem. 

Let Ri+l denote the scheme theoretic intersection n Zi+l (which is a 
union of Schubert varieties by [16)). The same arguments as above show that 
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the kernel Ni of the restriction map H 0 (Y;, Cµ) -----> H 0 (Ri+i, Cµ) has as basis 
the standard monomials p(T) in H0 (Y;,Cµ) such that p(T) = p(Ti)P'· So 
the restriction map H 0 (Y, Cµ) -----> H 0 (Y;, Cµ) induces an isomorphism Ni :::::: 
Ui/Ui-l· 

Now put p(T) = Ph)P1 E Ni. Consider the map Ji : Ni -----> H 0 (Y;, Lµ-w, ), 
where fi(p(T)) := p1• The map is well defined and injective. Moreover, if 
p' E H 0 (Y;, Cµ-w,), then p(Ti)P' is a standard monomial by the construction 
of Y;. So we have B-equivariant isomorphisms 

Ifµ= wi, then U = F, which proves (i) in this case. Else we proceed by 
induction on lµI. Since lµ-w1 I = lµI - 1, the flags (F n U1 )/U1-i, j = 1, ... , t, 
are B-stable by the isomorphism above, so the flag F is also B-stable, which 
proves (i). 

To prove (ii), note that the subquotients in the flag M_;,. © U are of the 
form 

M->.-T;(w,) © H 0 (Y;, Lµ-w,)-

Moreover, the subquotient M_;,. © Ui/Ui-l has as basis the images of the stan-
dard monomials p(T), where T has Ti as first row. 

If i is such that A+ Ti(wi) is not a Q-dominant weight, then we do not 
change the flag. Note that if A+ Ti(wi) is not Q-dominant, then none of the 
standard tableaux having Ti as first row is ( Q, A)-dominant. 

If A+Ti(wi) is Q-dominant and lµI > 1, then we repeat the construction of 
the filtration in the proof of (i) for H 0 (Y;, Lµ-w,), and we refine corresponding 
to this filtration the flag U. So we get a flag 

o c • • • c M_;,.@ ui-1 = M_;,.@ ui,-1 c ... 
· · · C M_;,. © Ui,p' = M_;,. © Ui C · · · C M_;,. © H 0(Y, Cµ)• 

M_;,. © ui,j/Ui,j-l is isomorphic to M->.-T;(w,)-T_;(w~) © H 0 (Y;,j, Lµ-w,-wJ, 
where a = 1 if a1 2 2 and a = min{ i 2 2 I ai > O} else. Further, the 
subquotients have as basis the standard monomials p(T), where T has Ti as 
first row and T} as second row. Now if A+ Ti(w 1 ) + TJ(wa) is not Q-dominant, 
then we do not change the flag. But if lµI 2 3 and A+ Ti(wi) + TJ(wa) is 
Q-dominant, the we repeat the procedure. 

So if we repeat the procedure lµI times, then we obtain a flag 

having the following properties: 
(a) V is a su bflag of the complete flag F. 
(b) There exists a number l, 1 :::; l :::; Pl, and a standard tableau S., of shape 

µ' = a1w1 + · · •+ai1-1Wi1-1 + j1Wi1 (see 2.6) such that V,. /V,.-1 has as basis 
the images of the standard monomials p(T) with T(l) = S,.. 
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(c) Sr(l - l) is (Q, >.)-dominant, and if Sr (= Sr(l)) is (Q, >.)-dominant, then 
l =[µ[,Sr= T;i for some (Q,>.)-dominant standard tableau T;i of shape 
µ, and V,./V,.-1 is isomorphic to M->.-v(T,.)· 

J 

(d) If Sr is not ( Q, >.)-dominant, then V,./V,.-1 e:=: M->.-v(s.) © H 0 (Y:, Cµ-µ' ), 
where Y: C Y is a union of Schubert varieties X(K1) U · · · U X(Kt} such 
that 7ri 1 (Ks) is equal to the lth row of Sr, s = 1, ... , t. 

Denote by Vr the bundle on Q/ B associated to the B-module V,.. Now if Sr 
is ( Q, ,\ )-dominant, then by (b) and ( c) we get 

where Sr = T;i. 
Now suppose that Sr is not (Q, >.)-dominant, so there exists a simple root 

a in L such that(>.+ v(Sr),a) < 0. Let 7(1) be the lth row of Sr. Since 
,\ + v(Sr(l - 1)) is (Q, >.)-dominant and (7(1)(wi 1), a) E {-1, 0, 1}, this implies 
(>.+v(Sr),a) = (7(1)(wiJ,a) = -1. 

Let P(a) be the minimal parabolic subgroup of Q generated by Band the 
unipotent subgroup G_a associated to the root -a. Note that (7(ll(wiJ, a) = 
-1 implies that Sa 7(!) < 7(1), and hence Sa Ks < Ks for s = 1, ... , t, and hence Y: is P(a)-stable. So by the isomorphism in (d), the restriction of Vr/Vr-1 to 
P(a )/Bis the tensor product of a line bundle of degree -1 and a trivial bundle, 
and all cohomology groups of this bundle on P(a)/ B vanish. But this implies 
that the Leray-spectral sequence corresponding to the map Q / B --+ Q / P( a) 
degenerates completely, so H 1(Q/B, Vr/Vr-i) = 0 for all l 2". 0. 

Consider the flag (V n M_.x © Fii )/ M1 © Fii_,. Since the only subquotient 
of this flag corresponding to a (Q, >.)-dominant tableau is M_.x © Fii/ Fii-1 '.'.::: 
M->.-v(T,.), we get 

J 

In particular, we see by induction on j that H 1( Q/ B, C.x © :Fii) = 0 for l > 0, 
so we get 

H 0 ( Q/ B, C.x © :Fii )/ H 0 ( Q / B, £ © :Fii-,) e:=: H 0 ( Q / B, £.x © :Fii/:Fii-,) 

e:=: H 0 (Q/ B, C.x+v(T,.)), 
J 

which proves (ii). 

3. Standard monomial theory and good filtrations 

3.0 We wish to give a short introduction into the theory of standard monomials 
for the other simple groups. For a detailed discussion we refer to (6,7,8,9,18]. 

We have already seen in section 2 that one might view a standard Young 
tableau as a sequence of elements in W /Wi. A Young tableau for the other sim-
ple groups will be a sequence of so-called admissible quadruples of elements in 
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W /Wi. Note that only for G = Sln+l ( k) all fundamental weights are miniscule, 
i.e., all weights in H0 (G/ B, LwJ can be written as --r(wi) for some -r E W/Wi. 
So it is clear that in general the cosets in W /Wi do not suffice for an indexing 
system for a basis of H 0 ( G / B, LwJ. 

The notion of a ( Q, ,\ )-dominant tableau generalizes in a straightforward 
way also to these Young tableaux. We state (without proof) the generalization 
of the decomposition rules in 3.13 and 3.14. 

Using similar identifications as in the case Sln+i(k), one can associate to 
a Young tableau in the sense of 3.5 a Young tableau in the "classical" sense 
(see [10]). We discuss the case G = Sp4 as an example in 3.15. 

3.1 Let µ be a dominant weight. We say that µ is of type ( *) if the following 
holds: 
( *) Let w1, ... , Wn be the enumeration of the fundamental weights as in [1]. 

Then the coefficient ai inµ= I:;=l aiWi is greater than O only if i = 1, 3, 4 
for G of type F4, i = 1, 2, 3, 6, 7 for G of type E7, i = 1, 7, 8 for G of type 
Es. 

Remarks (i) If a fundamental weight w is of type ( * ), then I (w, ,6) I :::;: 3 for any 
positive root ,6. 

(ii) SMT is also available if ai > 0 for i = 5 for G of type E7, i = 2 for 
G of type Es. But for the B-stable filtration defined later one needs certain 
detailed information about weight multiplicities and the indexing system of the 
standard basis. This information is only available ifµ is of type ( * ). 

3 .2 We recall the indexing system for the standard basis of H 0 ( G / B, Lw), 
where w is a fundamental weight of type ( * ). Let P be the maximal parabolic 
subgoup corresponding to w, and denote by Wp the Weyl group of P. Let 
?r : W -+ W /W p be the projection map. Recall that W p is the stabilizer Ww 
ofw in W. 

We use the usual notation -r > 1,, and l(-r) for the Bruhat order and the 
length function on Wand W/Wp. An m-chain for a pair (-r, 1,,), -r, 1,, E W/Wp, 
is a sequence wo, ... ,wr of elements in W/Wp and a sequence f31, ... ,{3r of 
positive roots, such that either r = 0 and -r = w 0 = "', or -r = w 0 > · • · > Wr = 
"', and 

Remark An equivalent way to define an m-chain for a pair (-r, "') is the fol-
lowing: Let Ch(G/P) be the Chow ring of G/P. For w E W/Wp let [X(w)] 
be the element in Ch( G / P) determined by the Schubert variety X ( w) C G / P. 
Denote by H the unique Schubert variety in G / P of codimension one. Then 

[X(w)] · [H] = Ldi[X(¢j)], dj ?'. 0, 
j 
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where· the summation runs over all Schubert varieties of codimension one in 
X(w). Now an m-chain for a pair (r, 11:) is a sequence of Schubert varieties 

X ( T) = X ( Wo) :J · · · :J X ( Wr) = X ( 11:), 

such that either X(r) = X(w0 ) = X(11:), or X(w1) is of codimension one in 
X(w1_ 1 ) and the coefficient of[X( w1 )] in [X( w1_i)] · [H] is m for j = 1, ... , r. 

Definition 3.3 A quadruple 0 = ( 'Y, o, a-, ¢) of elements in W /W p is called 
admissible if 'Y 2: o 2: a- 2: ¢, and there exist 3-chains for the pairs ('Y, o) 
and (a-,¢) and a 2-chain for the pair (o,a-). The weight v(0) associated to an 
admissible quadruple is defined as 

v(0) := (21(w) + o(w) + a-(w) + 2¢(w))/6. 

Remark If G is of type An, then all admissible quadruples are trivial, i.e., they 
are of the form ( 'Y, 'Y, 'Y, 'Y). If G is of type Bn, Cn or Dn, then they are of the 
form ('Y, 'Y, a-, a-). 

3.4 Denote by I the set of admissible quadruples 0 in W/Wp. For a union 
of Schubert varieties Y = X( w1 ) U · · · U X( Wr) let Jy be the subset of I of 
admissible quadruples 0 = ('Y, o, a-,¢) such that 'Y ::; 7r( w1) for some j = 1, ... , r. 

First Basis Theorem ([6,8,9]) Let w be a fundamental weight of type (*)-
There exists a basis {p(0) I 0 EI} of H0 (G/B,Cw), called the standard basis, 
such that p(0) is a T-weight vector of weight -v(0). The restriction ofp(0) to 
a union of Schubert varieties Y is not identically zero if and only if0 E Jy, and 
the set {p(0)IY I 0 E Jy }, is a basis for H 0 (Y, Cw)-

3.5 We fix an enumeration of the fundamental weights w1 , ... , Wn (the enumer-
ation need not coincide with the one in [1]). Letµ= I:;=l aiWi be a dominant 
weight of type ( *). We wish to recall the definition of standard monomials of 
type (a)= (a1, ... , an), 

Let Pi be the maximal parabolic subgroup associated to Wi, let Wi be its 
Weyl group, and denote by 7l"i : W-+ W/Wi the projection. 

A Young tableau of shape (a) = (a1, ... , an) is a sequence T = (0i,j ), 
1 ::; i ::; n, l ::; j ::; ai, where 0i,j is an admissible quadruple in W /Wi. The 
weight v(T) associated to a tableau is defined as 

v(T):= L v(0i,j), 
l<i<n 
l~j~a; 

The monomial p(T) of shape (a) associated to Tis the product 

p(T) := Ilp(0i,j) E H 0 (G/B,£µ), 
i,j 
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where p(0i,j) E H 0 (G/B,CwJ is the section associated to the admissible qua-
druple 0i,j • The restriction of p(T) to a union of Schubert varieties will also be 
denoted by p(T). 

3.6 To describe the standard monomials we need the notion of a defining chain 
for a Young tableau T = ( 0i,j). For 0i,j = ( ri,j; 8i,j, ai,j, </Ji,j) let 0i,j = 
(ri,j, fii,j, 'Ei,j, ~i,j) be a quadruple of elements in W such that the projection 
'Tri maps r i,j, fii,j, 'Ei,j, ~i,j to ri,j, 8i,j, ai,j, respectively </Ji,j • Let io be such 
that ai0 > 0 and ai = 0 for i < io. The sequence 0 = (0i,j) is called a defining 
chain for T if 

Definition 3. 7 The Young tableau Tis called standard if there exists a defining 
chain 0 for T. If Y = X ( wi) U · · • U X ( Wr) is a union of Schubert varieties, 
then T is called standard on Y if there exists a defining chain 0 for T such that 
r 1,1 :S w1 for some j = l, ... ,r. The section p(T) E H 0 (G/B,Cµ) associated 
to Tis called a standard monomial of type (a) if the tableau T is standard; 
and p(T) is called standard on Y if T is standard on Y. 

Second Basis Theorem (6,8,9] Let Y be a union of Schubert varieties in 
G / B and let µ = I:~=l aiwi be a dominant weight of type ( * ). The set of 
standard monomials of type (a) = (a1 , ... , an) on Y form a basis of H 0 (Y, £µ)-
Moreover, the standard monomials p(T) are T-weight vectors of weight -v(T). 

3.8 Using SMT we wish now to define a filtration of H 0 (Y, £ 11 ). To simplify 
the notation we say ( i, j) < ( i', j'), i, j E N, if either i < i' or i = i' and 
j < j'. For i = 1, ... , n fix a total ordering "-<" on W/Wi such that T -< K, if 
l(r) < l(K,). Denote by "<" the induced lexicographic ordering on the set of 
admissible quadruples in W /Wi, i.e. 0 < 0' if 1 -< 11 , or 1 = 11 and 8 -< 81, etc. 
Let "<" also denote the induced lexicographic ordering on the set of Young 
tableaux of a fixed shape; i.e., if T = ( 0i,j) and T' = ( 0~,j) are Young tableaux 
of shape ( a), then T < T' if there exists a pair ( io, io), 1 :S io :S n, l :S io :S aio, 
such that 0i,j = 0~,1 for (i,j) < (io,io), and 0i0,10 < 0~0,10 . 

Let Y be a union of Schubert varieties and letµ= I:~=l aiWi be a dominant 
weight of type ( * ). Denote by {7i, ... , T-m} the set of standard Young tableaux 
on Y of shape (a). We suppose that the enumeration of the tableaux is such 
that 7j_ > · · · > T-m. Let Fi be the subspace of H 0 (Y, Cµ) spanned by the 
standard monomials p(Tj), j :Si, and denote by F the complete flag F: F0 := 
0 C Fi C ··· C F-m = H 0 (Y,£µ)-

Proposition 3.9 ((11]) The complete flag Fis B-stable. 

3.10 We wish to recall the definition of a ( Q, >.)-dominant tableau. For an ad-
missible quadruple 0 = (,, 8, a,¢) in W/Wi let vz, l = l, ... , 4 be the following 
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elements in X(T) ©z Q (cf. Definition 3.3): 

1 1 
111 := A+ f'Y(wi), 112 := 111 + i(wi), 

1 1 
113 := 112 + 60-(wi), 114 := 113 + fP(wi) = A+ 11(0). 

Definition 3.11 Let A be a Q-dominant weight and let Wi be a fundamen-
tal weight of type(*)· An admissible quadruple 0 in W/Wi is called (Q, A)-
dominant, if (vi, a) 2:: 0 for i = 1, ... , 4 and for all simple roots a of L. A 
standard Young tableau T = (0i,;) of shape (a) is called (Q, A)-dominant if 
for all pairs (i,j), 1 ::; i ::; n, 1 ::; j ::::; ai, the admissible quadruple 0i,j is 
(A+ I:(i',j')<(i,j) v(0i',i' ))-dominant. 

Remark Denote by li the base point in W/Wi. The tableau T = (0i,j) with 
0i,j = (li, li, li, li) for all 1 ::; i ::; n, 1 ::; j ::::; ai, is the minimal standard 
tableau with respect to the total ordering, and T is ( Q, A )-dominant for any 
Q-dominant weight A. 

3.12 Let Y be a union of Schubert varieties in G/B, letµ= I::=l aiWi be a 
dominant weight of type(*), and suppose that A is a Q-dominant weight. As in 
3.8, denote by {'Ii, ... , Tm} the set of standard Young tableaux on Y of shape 
(a), and let {~w .. , ~.}, i1 < • · · < i., be the subset of ( Q, A)-dominant 
tableaux. We suppose that the enumeration is such that 7i > ···>Tm. Let 

F' : Fo = 0 C Fi, C · · · C Fi. = H 0 (Y, £µ) 

be the subflag of the complete flag F in 3.8 corresponding to the (Q, A)-
dominant tableaux. Denote by :Fi; the vector bundle on Q / B associated to 
the B-module Fi;-

Theorem 3.13 ([11]) Denote by M; the Q-module H 0 (Q/B,£>,. © :Fi;), The 
Q-stable filtration Mo = 0 C M1 C •••CM, = H 0(Q xB Y, £>-.,µ) is a good 
filtration such that 

Moreover, H 1(Q/ B, £>,. © :Fi;/:Fi1_J = 0 for l > 0. 

3.14 Generalized Littlewood-Richa;rdson rule. ([10,11]) Suppose now 
that k is an algebraically closed field of characteristic zero. Then every G- or 
£-module decomposes into the direct sum of simple modules, and the simple 
modules are the modules of the form H 0 (G/B,£>-.) respectively H 0 (Q/B,£>-.), 
where A is a dominant weight in the first case, and a Q-dominant weight 
in the second case. So Theorem 3.13 gives us in fact a rule to compute the 
decomposition of the £-module H 0(Q xB Y, £>-.,µ) into simple £-modules. 

In particular, if Q = G and Y = G/B, then we obtain the tensor product 
decomposition rule 

H 0 (G/B, £>-.) © H 0 (G/B, £µ) = E(,H0 (G/B, £>-.+v(T)), 
T 
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where the sum is taken over all ( G, A)-dominant standard Young tableaux of 
shape (a). 

Further, if we set A = 0 and Y = G / B, then we obtain a restriction rule 
to compute the decomposition of H0 (G/B,Cµ) into the direct sum of simple 
L-modules: 

H0 (G/B,Cµ) = E9H0 (Q/B,Cv(T)), 
T 

where the sum is taken over all (Q, 0)-dominant standard Young tableaux of 
shape (a). 

3.15 Example A translation of the notion of a standard Young tableau in the 
sense of section 3 into the "classical" notion of a Young tableau (as in section 
2) can be found in [10] for the classical groups. As an example we shall discuss 
the case G = Sp4 • We use the same notation for the fundamental weights 
w1, w2 as in [1]. 

Since l(wi,,6)1:::; 2, i = 1, 2, for all roots, the admissible quadruples are all 
of the form ( r, r, 8, 8), so we might rather talk about the admissible pairs ( r, 8). 
We identify first W/Wi with the orbit W · Wi, i = 1, 2. We get 

To each weight ( or coset) we associate a sequence of numbers in the following 
way: E1 : (1), E2 : (2), -E2 : (3), -E1 : (4), E1 + E2 : (1, 2), E1 - E2 : (1, 3), 
-E1 + E2 : (2, 4), -E1 - E2 : (3, 4). If 0 = ( r, 8) is an admissible pair in 
W/W;, then we identify 0 with the (classical) tableau of shape (2) (for i = 1), 
respectively (2, 2) (for i = 2), having the sequence corresponding to T as first 
and the sequence corresponding to 8 as second row. We have the following 
admissible pairs: 

i = 1: 
1 

1 

2 

2 

3 

3 

4 

4 
i = 2: 

12 

12 

13 

13 

13 

24 

24 

24 

34 

34 

Suppose now that T = (0i,j) is a standard Young tableau (in the sense of 
section 3) of shape µ = a1w1 + a2w2• We associate to T a "classical" Young 
tableau T' of shape p(µ) := (2a1 + 2a2, 2a2, 0, 0) in the following way: Let T' 
be the tableau having for m = 1, ... , a 1 the tableau corresponding to 01,m as 
(2m- l)st row and 2mth row, and form= 1, ... , a 2 the tableau corresponding 
to 02,m as (2a1 + 2m - l)st and 2(a1 + m)th row. 

It is now easy to check that this correspondence gives a bijection between 
the standard Young tableaux T of shape µ in the sense of section 3 and the 
standard Young tableaux T' of shape p(µ) in the sense of section 2 which 
have the property that for l = 1, ... , a1 + a 2 the subtableau consisting of the 
(2l - 1 )st and 21th row of T' is an admissible pair in the list above. 

Let v(T') := ( CT' (1) - CT' ( 4))E1 + (cT, (2) - CT' (3))E2. Then v(T) = 
v(T'). Further, if A is Q-dominant, then Tis (Q, A)-dominant if and only if 
(A+ v(T'(l)), a) 2: 0 for l = 1, ... , 2a1 + 2a2 and all simple roots a of L. 
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For example, if Q = G and A=µ= w 1 + w 2 , then the (Q, A)-dominant 
standard Young tableaux of shape p(µ) = ( 4, 2, 0, 0) are 

Suppose now that k is algebraically closed and char k = 0. Then, by 
3.14, setting V11 := H 0 (G/ B, £ 11 ) for a dominant weight 1J, we get the following 
decomposition: 

Vw,+w, ® Vw,+w, :::V4w1 EB V2w,+2w, EB 2V2w,+w, 
EB 2Viw, EB Vaw, EB Viw, EB Vw, EB Vo, 
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0. Introduction 

Constructive proofs of the Fundamental Theorem of Algebra are known 
since 1924, when L. E. J. Brouwer, B. de Loor, and H. Weyl showed that 
nonconstant monic polynomials over the complex numbers have a complex 
root. Later that year Brouwer generalized this result by showing that each 
polynomial f(X) having an invertible coefficient for some positive power of X 
has a root. These proofs are constructive equivalents of classical analytical 
proofs of the Fundamental Theorem. Modern versions of their results are in 
[BB, pp. 156ff] and [TvDa, pp. 434ff]. The time has come to give a constructive 
algebraic proof. 

In [M] the authors use algebraic methods to show that the algebraic closure 
ca of the field of rationals Q in the field of complex numbers C is algebraically 
closed and dense in C. In the exercises it is indicated how one can construct 
roots of monic polynomials over the complexes more generally [M, p. 191]. 
There is, however, no indication how to accomplish this without resorting to 
some choice principles, or how to generalize this to polynomials of which it is 
only known that the coefficient of some positive power of X is invertible. We 
show that the more general version is indeed provable, and without resorting 
to choice principles. 
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We have two target audiences in mind: Constructivists and computer 
algebraists. To accommodate the former we present the algebraic results in 
more detail than would otherwise be necessary. For the latter, we will presently 
discuss some aspects of constructive mathematics, how it relates to algorithms, 
and why avoiding choice principles matters to us. 

There exist several schools of constructive mathematics, the most well-
known being Brouwer's intuitionism, Markov constructivism, and Bishop con-
structivism [BR]. Modern followers, however, do not always closely adhere to 
the philosophies of the originators, so many 'dialects' developed, some of these 
motivated by the existence of models for constructive logic. The mathematics 
we use is based on the constructive logic that holds for all topos models [G], 
and is also called intuitionism. This intuitionism is essentially stricter than the 
constructivisms mentioned above, so our results hold in all topos models, and 
are acceptable to most constructivists at the same time. The most important 
restriction is the lack of choice principles. Fortunately, only a small amount of 
knowledge ofintuitionism is required for understanding the constructive proofs 
of the Fundamental Theorem. 

A clear illustration of where constructivism differs from classical math-
ematics occurs in proving statements of the form "there exists :r such that 
A{:r)." Classically it suffices to show that it is impossible that there is no :r for 
which A( :r) holds. A constructive proof must construct :r as well as a proof of 
A{:r). In particular, a constructive proof of "A or B" must consist of a proof 
of A or a proof of B. If B is the statement "not A", then a constructive proof 
of "A or not A" means either proving A, or proving that assuming A leads 
to an absurdity. Such proofs cannot always be found. So the Principle of the 
Excluded Middle fails. 

There is a difference between proving "not A" and showing that A can-
not be proven. We illustrate this through examples. It is well-known that 
constructive proofs have computational content. So if there is a constructive 
proof of the existence of a function /: N ----t N such that A(n, f(n)) holds for 
all natural numbers n E N, then, by classical techniques outside the realm of 
constructivism, one can show that f is a computable function. On one hand, 
if by classical means we know that there is no computable function f such 
that A(n, f(n)) holds for all n, then we know that "there exists f such that 
A(n, f(n)) for all n" cannot be proven. On the other hand, a constructive proof 
of the negation of this statement implies that the negation also holds in clas-
sical mathematics: There is no solution f whatsoever. Let us identify Turing 
machines with natural numbers by some primitive recursive bijective encoding. 
By the Halting Theorem there is no computable function f such that f(n) = 0 
exactly when Turing machine n halts, but there are noncomputable ones. So 
it cannot be shown constructively that such a function exists, and it cannot be 
shown constructively that such a function does not exist. Another example, 
also based on the Halting Theorem, says that there is no constructive proof to 
decide for all binary sequences a: N - {O, 1} whether a(n) = 1 for some n. 

The three constructive schools mentioned above accept certain choice prin-
ciples that are at least as strong as the simple axiom of Countable Choice. The 
simple axiom of Countable Choice says that if A(m, n) is a statement about 
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natural numbers m, n such that for all m there exists n with the property 
that A(m, n) holds, then there exists a function f such that A(m, f(m)) holds 
for all m. [BB] and [TvDa], in their proofs of the Fundamental Theorem of 
Algebra, make essential use of choice principles extending Countable Choice. 
Although not explicitly stated, the construction of the algebraic closure ca in 
[M] does not make essential use of any choice principles. By avoiding choice 
principles, results will hold in all topos models. This implies that if we are 
able to construct a solution x of an equation f(x) = 0 over the (Dedekind) 
reals using topos intuitionism, then x is locally continuous in the parameters 
of the equation. So, for example, we cannot show the existence of a solution of 
X 3 +pX +q = 0 over the (Dedekind) reals when (p, q) is close to (0, 0), because 
it would imply the existence of a continuous solution X(p, q) in a neighborhood 
of (0, 0) [JR]. For the same reason we cannot find a solution to the equation 
X 2 + c = 0 over the (Dedekind) complex numbers when c is near 0. With 
Countable Choice, however, one can find solutions. So if we allow the use of 
Countable Choice, then continuity of solutions in the parameters is no longer 
guaranteed. 

The lack of choice principles does not prevent us from constructing func-
tions. Suppose that A( m, n) is a statement for which we can prove that for all 
m EN there exists a least n for which A(m, n) holds. Define f by f(m) = the 
least n for which A(m, n) holds. Then A(m, f(m)) holds for all m. The key 
distinction is that we are able to give a finite description that uniquely defines 
f. 

Constructive mathematics without choice principles is stricter than 'com-
putable' mathematics. Its constructive nature more than allows us to con-
struct algorithms from the constructive proofs: It also proves the correctness 
of the algorithms. These implicit algorithms, however, are usually grossly ineffi-
cient since in practice constructivists concentrate on abstractness and generality 
rather than on the computational complexity of their results. 

In §1 we prove the existence of algebraic closures of countable discrete fields 
(Poor Man's Algebraic Closure). In §2 these are used to construct algebraic 
closures of countable factorial discrete fields (Rich Man's Algebraic Closure). 
Within such algebraic closures we can factor nonzero polynomials into irre-
ducible factors over many subfields. We apply these results to Q and, in §3, 
establish isomorphisms with the algebraic closure ca of Q in C. Then we use 
the algebraic closedness of ca to show that many more polynomials over C 
have roots in C, strengthening the results of [BB] and [TvDa]. 

1. The Poor Man's Algebraic Closure 

It is not necessary to recapitulate all of algebra just because we use con-
structive methods. It is easily seen that many basic results from classical 
algebra are constructive. Therefore we concentrate on the less obvious results, 
or results that require an original proof, together with some glue to create one 
coherent presentation. 

First and foremost, sets need not be discrete. A set is discrete if for all of 
its elements a, b we can determine whether a = b or not. The natural numbers 
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N, integers Z, and rationals Q are discrete sets. Obviously, polynomial rings 
R[X] over a discrete commutative ring Rare also discrete. But the reals Rare 
not: For a real to exist it suffices, for each natural number m > 0, to be able to 
give a rational interval of length at most 1/m 'in which the real number lies,' 
see §3. For each Turing machine we can construct a sequence {an}n by setting 
an = I/ n if the machine does not stop in n steps, and an = I/ m if the machine 
stops in m n steps. As a Cauchy sequence, {an}n determines a real number. 
By the Halting Theorem, we cannot show for each Turing machine whether the 
limit• of its corresponding sequence { an }n equals O or not. 

A discrete set is finite if there exists a bijection with an initial segment 
{0, ... , n - I} of N. The empty set (if n = 0) is finite. Finite combinatorial the-
orems are essentially constructive. This is true for all finite group theory that 
we will need, including Sylow's Theorem. Some caution is required, though. 
Exceptions are statements like 'each subgroup of a finite group is finite.' For 
example, let G = {0, I} be the group of two elements, and let H be the sub-
group of G generated by the image of a binary sequence { an }n. Then H = G if 
and only if an = I for some n, and H = {O} if an = 0 for all n. By the Halting 
Theorem, such a choice cannot always be made constructively. 

In classical mathematics, groups, rings, and modules are defined by simple 
universal equational axioms like, for rings, x(y + z) = xy + xz. In constructive 
algebra we use the same schemas to axiomatize them. A ring is nontrivial when 
I is not equal to 0. 

We do not require equality on groups, rings, and modules to be discrete. 
This creates problems when we want to define integral domain and field. In the 
case of integral domains, an axiom saying that from xy = 0 one can conclude 
a:: = 0 or y = 0 is too restricting because of the difficulty of establishing "or": 
Even the real numbers cannot be shown to satisfy this axiom. Instead, one has 
a binary relation a:: # y on the ring, classically usually equivalent to "a:: = y is 
false." On Rand C we define a:: # y if and only if a:: -y is a unit. Being nonzero 
and being a unit cannot be shown to be the same. An integral domain then 
satisfies: If a:: # 0 and y # 0, then xy i= 0. Similarly, R and C-obviously-
satisfy the field property: If a:: / 0, then a:: is a unit. The technical problems 
with inequalities grow fast, and we refer the reader to [M, pp. 4Iff] and [Ru] 
for further details and developments. When we restrict ourselves to discrete 
structures, we avoid these problems because we can use the classical definitions: 
A discrete nontrivial commutative ring is a discrete domain if for all a::, y such 
that xy = 0 we have a:: = 0 or y = 0. A discrete domain is a discrete field if all 
nonzero elements are units. One easily verifies that the standard construction 
of a quotient field of a discrete domain produces a discrete field. 

One easily verifies that elementary finite-dimensional linear algebra over 
discrete fields (rank of a matrix, finite-dimensional null spaces and ranges, 
Gaussian elimination, determinant) is constructive. If A is a square matrix 
over a discrete field k, then the commutative matrix ring k[A] is discrete. The 
characteristic polynomial of A is the polynomial f(X) = <let (X - A) over 
k k[A]. For all invertible S, <let (X-A) = <let (X -s- 1 AS). The eigenvalues 
of A are the roots of f(X) in k or in a discrete field extension of k. The 
construction of roots of polynomials over discrete extension fields is a nontrivial 
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matter. Even the existence of such roots is not guaranteed [M, p. 153], unless 
the base field k is countable (Theorem 1.6). 

A module over a commutative ring R is finite-rank free if it is isomorphic 
to Rn, for some n EN. 

1.0 Proposition (Cayley-Hamilton) Let R be a commutative ring, and f(X) 
be the characteristic polynomial of an endomorphism a of a finite-rank free R-
module. Then f(a) = 0. 

Proof For an algebraic proof, see [M, p. 72]. 
Proposition 1.0 allows for a non-algebraic proof. Let A be an n x n matrix 

with variables Xi,j as entries. Then the characteristic polynomial f(A) over 
Z in n 2 variables reduces to 0, as is shown by classical means. A general the-
orem of logic says that the same reduction must work constructively. There 
are several results below that can be reduced to trivialities using general the-
orems from logic. We refrain from using these methods so as to increase the 
accessibility of our results. 

A polynomial over a commutative ring is monic if it has leading coefficient 
1. A polynomial f = an xn + • · •+ao has degree at most n, and degree less than 
m for all m > n. We may not know the degree of a polynomial, because we 
may not know whether a 'leading' coefficient equals O or not. Naturally, monic 
polynomials and polynomials over discrete commutative rings have a degree. 

An R-module M is faithful if r M = 0 implies r = 0, for all r E R. 

1.1 Proposition Let R S be commutative rings, and a E S. Then the 
following are equivalent: 

(i) a satisfies a monic polynomial of degree n over R. 

(ii) R[o:] is generated by n elements as an R-module. 

(iii) S has a faithful R-submodule M, generated by n elements, such that 
aM CM. 

Proof Obviously, (i) implies (ii), and (ii} implies (iii). Suppose (iii) holds, and 
let m1, ... , mn generate M. There are f3i,j E R such that am1 = 'z:::i f3i,jffii• 
Let f be the characteristic polynomial of the matrix {/3i,j }. Then f ( a )M = 0, 
so f(a) = 0. So (i) holds. 

A commutative ring S R is called integral over the commutative ring 
R if all s E S are roots of monic polynomials over R. From Proposition 1.1 
it now follows that if a is root of a monic polynomial over R, then so are all 
elements of R[o:]. We say that a is integral over R if R[o:] is integral over R. 
If R is a discrete field, then-following tradition-we commonly use the term 
algebraic instead of integral. 
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1.2 Proposition Let R S be commutative rings, and let a, /3 E S be such 
that a is integral over R, and /3 is integral over R[a]. Then R[a,/3] is integral 
over R. The elements of S that are integral over R form a subring. 

Proof It suffices to prove the first claim: R[a, /3] is a finitely generated module 
over R[a], and R[a] is a finitely generated module over R. Multiplication 
of the generators of the two extensions yields a finite set of generators of 
R[a,/3] as module over R. 

1.3 Proposition Let R, S be commutative rings such that Sis a finitely gen-
erated integral ring extension of R. Then S is a finitely generated R-module. 

Proof There exist rings Ro~ R 1 · · · Rn such that Ri = R[a1, ... , ai], and 
Rn = S. Then R,+1 is a finitely generated Ri-module, for all i. Multiplication 
of the generators from the different extensions produces a finite set of generators 
for Rn = S as module over Ro = R. 

1.4 Proposition Let R S T be commutative rings such that T 2 S and 
S 2 R are integral extensions. Then T 2 R is integral. 

Proof For each a E T there is a monic polynomial f(X) = xn + a 1xn-l + 
···+an over S such that f(a) = 0. Let S' = R[a1, ... ,an]- Then S'[a] is a 
finitely generated module over S', and S' is a finitely generated module over R. 
So S'[a] is finitely generated as module over R. Thus a is integral over R. 

A set S is countable if there exists a function s: N --+ S from the natural 
numbers onto S, that is, S = {so, s1, s2, .. . }. 

A subset Y X is called detachable from X if for all x E X we can decide 
whether x E Y or x tf:_ Y, that is, x is not an element of Y. So a commutative 
ring R is discrete exactly when {O} is detachable from R. More generally, an 
ideal I R is detachable from R if and only if the quotient ring R/ I is discrete. 

Countable discrete sets may be finite or (countably) infinite, but we cannot 
always know which one. For example, let p0 , p1, ... be the ascending sequence 
of prime numbers, and let { an}n be a binary sequence with at most one 1. 
Let P Z be the ideal generated by the sequence of elements { anPn }n- One 
easily verifies that P is a prime ideal that is detachable from Z. The quotient 
ring R = Z/ P is countable, but, by the Halting Theorem, we may not know 
whether it is finite or not. We may not know its characteristic either. The 
quotient field of R is a countable discrete field whose characteristic we cannot 
determine. 

1.5 Proposition Let R be a countable commutative ring whose finitely gener-
ated ideals are detachable, and Jet I be a proper finitely generated ideal. Then 
I is contained in a maximal ideal that is detachable from R. 

Proof R = {r0 , r 1, ... } for some enumeration r. Construct a sequence of 
finitely generated ideals Io Ii · · · as follows: Set Io = I; if I1 + r1 R = R, 
then set Ij+1 = I1, otherwise set Ij+1 = I1 + r1R. Let M = U; I1. Then 
T j E M if and only if T j E Ij+ 1. So M is a detachable maximal ideal. 0 
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1.6 Theorem Let J be a nonconstant polynomial over a countable discrete 
field k. Then there is a countable discrete field E k and a E E such that 
J(a) = 0. 

Proof By the Euclidean Algorithm all finitely generated ideals of the countable 
ring k[X] are principal and detachable. So J is contained in a detachable 
maximal ideal M. Set E = k[X]/M. 

Let { an }n be a binary sequence, and let k be the countable discrete field 
extension of Q generated by the sequence { an -v'2}n, Then we may not know 
the factorization of X 2 - 2 over k. So in general one cannot give a minimal 
polynomial for a in Theorem 1.6. 

A discrete field K is a splitting field for a monic polynomial J over a 
discrete field kif there exist a1, ... , an E K such that J = (X -ai) · · · (X -an) 
and K = k[a 1 , ••• , an]- Repeated application of Theorem 1.6 now gives: 

1. 7 Theorem Let J be a manic polynomial over a countable discrete field 
k. Then there exists a countable discrete splitting field for J over k. 

In general one cannot show that countable discrete splitting fields are 
uniquely determined up to isomorphism [M, pp. 153ff]. 

The construction in the proof of Proposition 1.5 depends on the enumer-
ation of the ring R. Different enumerations may give different maximal ideals. 
To avoid choice principles when we use Theorem 1.7 in the proof of the theo-
rem below, we need to choose some canonical method to construct one unique 
splitting field K with enumeration from a given discrete field k with enumera-
tion. Let { ao, a 1 , ... } be an enumeration of a countable discrete field k. Then 
the canonical enumeration of k [ X] (based on { an }n) is the one that lists, for 
i = 1, 2, ... successively, all polynomials of degree at most i in the coefficients 
a 0 , a 1 , ... , ai in lexicographical order with the leading term considered most 
significant. If we use the canonical enumeration, then, for all J E k[X], the 
field extension k[a] of Theorem 1.6 is uniquely determined, and k[a] receives 
its (canonical) enumeration from k[X]. Repeating this process, using canon-
ical enumerations at each step, the splitting field of Theorem 1. 7 is uniquely 
determined by the enumeration of k, and by J. 
1.8 Theorem (Poor Man's Algebraic Closure) Each countable discrete field 
k is contained in a countable discrete field that is algebraically closed and 
algebraic over k. 

Proof Let Jo, Ji, ... be an enumeration of the monic polynomials over k. 
Construct a chain of countable discrete fields k0 k1 · · · by setting k0 = k, 
and by letting ki+l be the canonical splitting field of Ji over ki. Let O = LJi ki, 
Clearly, 0 is countable, discrete, and an algebraic field extension of k. Let 
J be a monic polynomial over n. By Proposition 1.6 there is a countable 
discrete field extension E n such that J(a) = 0 for some a E E. By 
Proposition 1.4 a is algebraic over k. So Ji (a) = 0 for some i. But Ji 
splits in ki+l 0. Thus a E 0. 
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Note that the special construction of ki+l from ki enables us to avoid 
choice principles in the construction of 0, since all ki are uniquely determined 
by any enumeration of k0 = k. By the uniqueness of the ki, the union O is 
uniquely determined. 

Splitting fields cannot be uniquely determined up to isomorphism, so one 
cannot show that countable discrete algebraic closures of a discrete field k are 
uniquely determined up to isomorphism. 

1.9 Corollary The field Q of rational numbers has a countable discrete 
algebraic closure. D 

In §2 we will show that for Q countable discrete algebraic closures are 
unique up to isomorphism. 

2. The Rich Man's Algebraic Closure 

A discrete domain R is a GCD-domain if for all a, b E R there exists a 
greatest common divisor c = gcd(a, b). Obviously, e is unique up to a unit, and 
GCD-domains satisfy the familiar equations [M, pp. 108ff] 

gcd(gcd(a, b), c) = gcd(a, gcd(b, e)); 
c · gcd(a, b) = gcd(ca, cb); 
if x = gcd(a, b), then gcd(a, be)= gcd(a, xe); and 
if a I be and gcd(a, b) = 1, then a I e. 

All equations are up to a unit. Equality-up-to-a-unit need not be a discrete 
equality relation on the equivalence classes. (Consider, for example, the subring 
of Q generated by the sequence {an/2}n, for some binary sequence {an}n,) 
Note that, by the Euclidean Algorithm, k[X] is a GCD-domain for all discrete 
fields k. 

Let f be a polynomial over a GCD-domain. Then cont(!), the content 
off, is the greatest common divisor of the coefficients off; f is primitive if 
cont(!) = 1. 

2.0 Lemma (Gauss's Lemma) Let f and g be nonzero polynomials over a 
GCD-domain R. Then cont(fg) = cont(f)cont(g). 

Proof We may assume that f and g are primitive. Let m and n be the 
degrees of f and g, respectively, let e = cont(fg), and let d = gcd(e, am), 
where am is the leading coefficient off. We complete the proof by induction 
on m + n. If f = amxm, then we are done. Otherwise, d I (f - amxm )g, so, 
by induction, d I cont(! - amf)cont(g). Since g is primitive, d I (f - amXm), 
thus also d I f, proving d = gcd(e, am) = 1. Similarly, gcd(e, bn) = 1, where 
bn is the leading coefficient of g. So gcd(e, ambn) = I. Thus Jg is primitive. D 

Let f and g be polynomials over a commutative ring R such that g is 
monic. By the Remainder Theorem there are unique polynomials q and r over 
R, with r of a degree less than the degree of g, such that f = qg + r. The 
coefficients of q and r are polynomials in the coefficients off and g. 
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2.1 Theorem (Unique Interpolation) Let ao, ... , an and vo, ... , Vn be ele-
ments of a commutative ring R such that ai - a1 is a unit, for all i -f- j. Then 
there is a unique polynomial of degree at most n over R such that f(ai) = Vi 
for all i. 

Proof By induction on n. If n = 0, choose f = v0 • If n > 0, then there is a 
polynomial g of degree at most n - 1 such that g(ai) = (vi - vn)/(ai - an) for 
all i < n. Take f = (X - an)Y + Vn, 

For uniqueness it suffices to show that if f ( ai) = 0 for all i, and f is of 
degree at most n, then f = 0. The· case for n = 0 is trivial. Suppose n > 0. 
By the Remainder Theorem, f = g(X - an) for some g of degree at most 
n - l with g(a;) = 0 for all i < n. By induction on n, g = 0. So f = 0. 

A nonzero element p of a discrete domain R is irreducible if it is not a 
unit, and if p = qr implies that q orris a unit, for all q, r ER. 

A discrete domain is a unique factorization domain or UFD if each nonzero 
element is a unit or equals a product ofirreducibles, and such that ifp1 ···Pm= 
q1 · · · qn are two products ofirreducibles, then m = n and there is a permutation 
7r such that Pi and q1ri differ by a unit, for all i. Discrete fields and Z are unique 
factorization domains. A discrete domain R is factorial if R[X) is a discrete 
UFD. This definition seems unnatural at first, but is a natural generalization 
of the notion of factorial field: A discrete field is factorial when we can factor 
polynomials over it into irreducibles. See also Theorem 2.3. Algebraically 
closed discrete fields are factorial, since all nonconstant polynomials factor into 
linear terms. 

A set is infinite ifit contains arbitrarily large finite subsets. Without choice 
principles we cannot show that an infinite set contains a countably infinite 
subset. 

2.2 Theorem (Kronecker 1) If R is an infinite UFD with finitely many units, 
then so is R[X]. Thus R is factorial. 

Proof Obviously R[X] has finitely many units since it has the same units as 
R. Let f E R[X] be of degree n > 0. We complete the proof by induction on n. 
It suffices to provide a finite collection of polynomials that includes all possible 
factors of f. Let ao, ... , an be distinct ekments of R. If f ( ai) = 0 for some i, 
then we divide a factor X - ai out off and apply induction. So we may assume 
f ( ai) -f- 0 for all i. Each nonzero element of R has finitely many divisors, so 
there are finitely many sequences bo, ... , bn such that bi divides f(ai), for all 
i. By the Unique Interpolation Theorem 2.1, there is for each such sequence 
a unique polynomial g over the quotient field of R, of degree at most n, such 
that g(ai) = b;. Since R is detachable from its quotient field, we can find a 
finite subcollection of g with coefficients in R that includes all factors off. 

An essentially identical proof of Theorem 2.2 was given, about nine decades 
before Kronecker, by the astronomer Friedrich Theodor von Schubert ( 1758-
1825) in 1793 [vS). See also [C, pp. 136ff). 
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2.3 Theorem (Kronecker 2) If Risa factorial domain, then so is R[X]. 

Proof Form> 0, let R[X, Y]m be the submodule of R[X, Y] of polynomials 
of X-degree less than m. The submodule R[X, Y]m is closed under taking 
factors. Let 'Pm: R[X, Y]m - R[X] be the R-module map that is the restriction 
of the ring morphism that is the identity on R[X] and maps Y to xm, and let 
¢m: R[X] - R[X, Y]m be the R-module map that takes xn to YqX", where 
n = qm + r with O ::; r < m. Then 'Pm and 1Pm are each other's inverses. 
Each factorization of a polynomial J E R[X, Y] of X-degree less than m must 
be of the form J = 1Pm(g)'l/;m(h). So it suffices to factor 'Pm(!) in R[X]. 

Note that, in the proof of Theorem 2.3, lf'm (f) may have factorizations 
that do not translate into factorizations of f. 

By Kronecker 1 the domain Z is factorial, so, by Gauss's Lemma, Q is 
factorial too. Thus, by Kronecker 2, Q(X1, X 2 , •• • ) is factorial, and so is 
k(X1 , X 2 , •• • ), for all algebraically closed discrete fields k. Next we will show 
that finite algebraic extensions of Q are also factorial. Since Q has charac-
teristic 0, several results are proven for discrete fields of characteristic O only. 
Generalizations involving separability conditions are discussed in [M]. 

Elements a, b of a commutative ring R are strongly relatively prime if 
aR + bR = R. The derivative f' of a polynomial J is defined as usual. A 
polynomial J over a commutative ring is separable if J and f' are strongly 
relatively prime. This is different from tradition: One usually defines separable 
polynomials over discrete fields as the ones that are products of our separable 
polynomials [Ri]. Clearly, factors of separable polynomials are again separable, 
for if Jg is separable, then there exist polynomials s, t such that sJg + t(f' g + 
Jg')= 1; so (sg + tg')J + tgJ' = l. Let R[a] R be commutative rings. Then 
a is separable over R if it is root of a separable polynomial over R. 

Each nxn matrix over a discrete field k is also a vector ofan n 2-dimensional 
vector space. We can find a smallest m such that the vectors I, A, A 2 , ••• , Am 
are linearly dependent. Then A is root of a monic polynomial p over k of degree 
m, the so-called minimal polynomial of A. Since A is root of its characteristic 
polynomial of degree n, we have that m ::; n. The matrix ring k[A] forms 
a discrete commutative ring such that k[A] e:' k[X]/(p). If S is an invertible 
n x n matrix, then k[A] e:' k[s- 1 AS] by the isomorphism that is the identity 
on k and that sends A to s- 1 AS. The matrix A is separable if its minimal 
polynomial p is separable. 

2.4 Theorem Let A be an n x n matrix over a discrete field k. Then the 
minimal polynomial of A is separable and splits into linear factors if and only 
if A is diagonalizable. If A is diagonalizable, then the projections of kn onto 
the eigenspaces of A can be written as polynomials in A of degree at most n - l. 

Proof If A is diagonalizable, with set of eigenvalues A, then it is root of the 
separable polynomial fh EA ( X - >.). Conversely, if the minimal polynomial 
of A is separable and splits into linear factors, then the eigenspaces Vi, of A, 
being the null spaces of matrices A - >. that are associated with the strongly 
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relatively prime linear factors X - >. of the minimal polynomial of A, are direct 
summands such that I.:>. Vi. = kn. 

Suppose A is diagonalizable, and write f = (X - >.)g>.(X) for each root 
>. of the minimal polynomial f. As f(A) = 0, the matrix 9>.(A) maps into 
V>,. Ifµ i- >. are eigenvalues, then X - µ divides 9>.(X), so 9>.(A)Vµ = 0. 
The polynomial 1 - I.:>.EA 9>.(X)/g>.(>-) has a degree less than the cardinality 
of A, but has all the eigenvalues as roots; so it is identical to 0. Thus 
I.:>.EA 9>.(A)/g>.(>-) is the identity, and 9>.(A)/g>.(>-) is the projection onto Vi,. 

2.5 Theorem Let A and B be commuting diagonalizable n x n matrices over 
a discrete field k. Then kn admits a basis relative to which A and B diagonalize 
simultaneously. 

Proof Let V/ and Vt be the >.-eigenspaces of A and B, respectively. Since 
B commutes with A - >., for all >., the eigenspaces of A are invariant under 
B, hence also under the projections onto the eigenspaces V:, which are 
polynomials in B. Therefore, V/ = I,:µ V/ n v:. So kn = I.:>.,µ V/ n VJ. 

The class of discrete fields admits linear elimination: Let k be a discrete 
field, and v1 , ... , vn, w be vectors in kn. Then w is a linear combination of the 
vectors Vi with coefficients in some discrete field extension of k if and only if the 
rank of the matrix ( v1, ... , Vn, w) is equal to the rank of the matrix ( v1, ... , Vn ). 

So if w is a linear combination of the Vi over some discrete extension field, then 
it is already a linear combination with coefficients in k. 

2.6 Theorem If A and B are commuting separable n x n matrices over a 
discrete field k of cardinality greater than n(n - 1)/2, then there exists c such 
that k[A, B] = k[A + cB]. 

Proof Let K be a countable discrete subfield that includes the coefficients of 
the matrices A and B, and contains at least 1 + n(n - 1)/2 elements from k. 
By Theorem 1. 7 we can construct a countable discrete field L ;;;? K over which 
the minimal polynomials of A and B split into linear factors. So A and B 
are-simultaneously-diagonalizable over L with diagonal elements a 1 , ... , an 
and b1, ... , bn. Choose c E K distinct from ( aj - ai) / ( bi - bi), for all pairs 
i, j with bi f:. bj. Then ai + cbi f:. aj + cbj whenever ( ai, aj) f:. (bi, bi). By 
Theorem 2.4, A and B can be written as polynomials of degree at most n - l 
in A+ cB. So A and B, as vectors in n 2 variables, are linear combinations 
of the vectors I, A+ cB, ... , (A+ cBt- 1 with coefficients in L. By linear 
elimination, A and B are polynomials in A+ cB over K, hence over k. 

The proofs of Theorems 2.4, 2.5, and 2.6 are based on [Ri]. For further 
improvements and strengthenings, see [M, pp. 158:ff] and [Ri]. 

2. 7 Lemma Let R be a commutative ring containing a discrete field k, and 
let a, /3 E R and polynomials f, g over k be such that f (a) = g(/3) = 0. Then 
there are commuting square matrices A, B of the same size over k such that 
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f(A) = g(B) = 0, and a ring map from k[A, B] onto k[a,,6] that is the identity 
on k, sends A to a, and sends B to ,6. 

Proof The ring k[x, y] = k[X, Y]/(f(X), g(Y)) is a finite-dimensional vector 
space over k. Multiplication by x and y are linear transformations on 
this vector space. With respect to some basis, these transformations are 
represented by commuting matrices A and B satisfying f(A) = g(B) = 0, 
and k[A, B] '== k[x, y]. So we can construct the ring map from k[A, B] onto 
k[a,,6] that is the identity on k, sending A and B to a and ,6, respectively. 

2.8 Corollary (Primitive Element) Let R be a commutative ring containing 
an infinite discrete field k, and let a and ,6 be elements of R that are separable 
over k. Then there exists 8 such that k [a, ,6] = k [ 8]. 

Proof There are separable polynomials f, g E k[X] such that f(a) = g(,6) = 0, 
so there is a commutative matrix ring with surjective ring map er: k [ A, B] -+ 

k[a,,6], and such that f(A) = g(B) = 0. By Theorem 2.6 there is CE k[A, B] 
such that k[C] = k[A, B]. Choose 8 = cr(C). 

Let K ;;;,> k be discrete fields such that K is finite-dimensional as a vector 
space over k. We shall write [K : k] for the dimension. If Lis a discrete field 
extension of K that is finite-dimensional, then so is L over k, and we have 
[L: k] = [L: Kl[K: k]. If two of the three dimensions are finite, then so is the 
third and the equation holds. 

2.9 Theorem Let k k[a] be discrete fields of characteristic 0 such that k is 
factorial. Then k[a] is factorial too. 

Proof Let f be a polynomial over k[a] of degree n > 0. It suffices to give an 
irreducible factor. We complete the proof by induction on n. We may assume 
that f is separable; otherwise, the greatest common divisor of f and f' is a 
proper factor, and we are done by induction. Let k[a,,6] = k[a][X]/(f(X)); 
k[a, ,6] is a finite-dimensional vector space over k. Then k[a, ,6] = k[8], with 
g(8) = 0 for some polynomial g over k of degree [k[8] : k]. If g is irreducible, 
then so is f. Otherwise, let p be a proper factor of g. Then k[0] maps onto 
k[X]/(p) with nonzero kernel p(8) · k[8]. Hence h(,6) = p(8) is mapped to 
0, for some h(X) E k[a][X]. Then the greatest common divisor of f and h 
is a proper factor of f. 

Recall that there exist countable discrete fields whose characteristic we 
cannot determine. Theorem 2.9 can be generalized to some of such discrete 
fields, and to some discrete fields of finite characteristic, by replacing the char-
acteristic O condition by Seidenberg's 'Condition P' [M, p. 188]. 

2.10 Theorem (Rich Man's Algebraic Closure) Each countable factorial field 
k of characteristic O has a countable discrete algebraic closure fl such that 
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for each finitely generated subfield K ;2 k, each element of n is root of an 
irreducible polynomial over K. 

Proof The construction of h is identical to that in the proof of Theorem 
1.8. By Corollary 2.8, each finitely generated intermediate field is of the form 
K = k[a]. Let /3 E n. Then K[/3] = k[0] for some 0 E n. Both 0 and a are 
roots of irreducible polynomials over k, so k[0] and k[a] are finite-dimensional 
vector spaces over k. Then K[/3] is a finite-dimensional vector space over K of 
degree 

[K[/3] : K] = [k[0] : k]/[k[a]: k]. 

So 0 is root of an irreducible polynomial over K of degree [K[/3] : K]. 

2.11 Corollary The field of rational numbers Q has a countable discrete 
algebraic closure C such that for each finitely generated subfield k ;2 Q, each 
element of C is root of an irreducible polynomial over k. 

Without additional choice principles we cannot show that all algebraic 
closures of a countable factorial field of characteristic O are countable. But the 
countable algebraic closures are all isomorphic. 

Let k, K be discrete fields, and a-: k -+ K a morphism. Let k[a] be a 
discrete field extension of k, and a a root of an irreducible polynomial f over 
k. If /3 E K is a root of a-(f), then a- extends to a morphism from k[a] into K 
that takes a to /3. 
2.12 Theorem All countable discrete algebraic closures of a countable facto-
rial field of characteristic O are isomorphic. 

Proof Let K = { ao, a1, ... } and L = {b0 , b1, ... } be countable discrete 
algebraic closures of the countable factorial field k. By induction we construct 
embeddings CTn: kn = k[ao, ... , an-1] -+ L. Naturally, ko = k embeds into 
L. Suppose O"n exists. Then an is root of an irreducible polynomial f over 
kn, and there is a smallest, hence unique, i such that bi is root of o-n(f). 
Extend O"n to O"n+l by setting O"n+1(an) = bi. The union of the O"i is an 
isomorphism from K to L. 

3. The Fundamental Theorem of Algebra 

There are several ways to define the set of real numbers, hence at least 
as many ways to define the set of complex numbers. Some of these cannot 
be shown to be equivalent in constructive mathematics. Each choice yields 
another field of complex numbers for which one may try to prove some form of 
the Fundamental Theorem of Algebra. Below we restrict ourselves to the ones 
that seem most relevant to constructivists. 

A (rational) Cauchy sequence is a sequence ofrational numbers {rn}n such 
that for all integers m > 0 there exists M such that jrp-rql < 1/m for all p, q 2'. 
M. A Cauchy sequence is modulated if M = M(m) is a function from N to N 
[TvD, pp. 253ff]. [BB, pp. 18ff] uses a 'fixed' modulus function M(m). This 
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further restriction will be inessential in what follows below. Define a binary 
relation~ on the collection of Cauchy sequences by {rn}n ~ {sn}n if and only 
if for all m > 0 there exists M such that lrp - sq I < 1/m for all p, q 2: M. One 
easily verifies ~ to be an equivalence relation. A similar modulated equivalence 
relation exists where M = M(m) is a function N --+ N. A Cauchy real is an 
equivalence class. A modulated Cauchy real is a 'modulated' equivalence class 
of modulated Cauchy sequences. Both kinds of Cauchy reals with the canonical 
operations form commutative rings. A (modulated) Cauchy real is invertible 
exactly when it has a (modulated) Cauchy sequence {rn}n for which there exist 
m > 0 and M according to the definition above, and lrMI > 2/m. 
A subset Q Q of the rationals is a left Dedekind cut if it satisfies 

p < q E Q implies p E Q. 
For all p E Q there exists q such that p < q E Q. 
For all integers m > 0 there exist p < q such that IP - qi < 1/m, p E Q, 
and q (/. Q, that is, q is not an element of Q. 

Left Dedekind cuts form the set of Dedekind reals R. We easily verify that R, 
with the canonical operations, is a commutative ring. We write Q > 0, Q is 
positive, when p E Q for some p > 0, and Q < 0, Q is negative, when q (f_ Q 
for some q < 0. A Dedekind real Q is invertible, written Q -::J: 0, exactly when 
Q > 0 or Q < 0. Note that this makes -::J: on R different from denial of equality. 
If Q -::J: 0 is false, then Q = 0. Analogous to (modulated) Cauchy reals and 
Dedekind reals we have (modulated) Cauchy complex numbers and Dedekind 
complex numbers, the last ones forming the set C = R + iR, with a + ib -::J: 0 
exactly when a+ ibis invertible. Then a+ ib -::J: 0 exactly when a -::J: 0 or b -::J: 0, 
for all a, b E R. The relation -::J: is an apartness [Ru]. 

We may consider Q a subring of the modulated Cauchy reals by identi-
fying each rational with the equivalence class that contains the corresponding 
constant Cauchy sequence. The modulated Cauchy reals may be considered a 
subring of the Cauchy reals. The Cauchy reals may be considered a subring 
of R by identifying each Cauchy sequence {rn}n with the Dedekind cut Q de-
fined by p E Q if and only if for some m > 0 and M satisfying the definition of 
Cauchy sequence, p+2/m < TAf. 

If c is a (modulated) Cauchy complex number, then the absolute value lei 
exists and is a (modulated) Cauchy real. Similarly, if c E C, then lei E R. A 
Cauchy sequence is a sequence { cn}n of elements of C such that for all m > 0 
there exists M such that lcp - cql < 1/m for all p, q 2: M. The sequence is 
modulated if M = M(m) is a function. A (modulated) Cauchy sequence of 
modulated Cauchy sequences is a (modulated) Cauchy sequence, and a Cauchy 
sequence of Dedekind reals is a Dedekind real. But a Cauchy sequence of 
modulated Cauchy sequences is only a Cauchy sequence, and a modulated 
Cauchy sequence of Cauchy sequences is only a Dedekind real. With Countable 
Choice one can show that each Dedekind real is a modulated Cauchy real, and 
thus the Cauchy reals are closed under taking Cauchy sequences. Therefore, 
in the presence of Countable Choice, modulated Cauchy sequences are the 
common way by which to define reals; without choice it is the (left) Dedekind 
cuts [G, pp. 415ff]. 
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A set U R is open if for all u E U there exist rational numbers p, q 
such that p < u < q, and v E U whenever p < v < q. Open sets on Rn are 
defined by the product topology. If c, d E Rn are such that Ci f. di (ci - di 
is a unit) for some i, then there exist open sets U, V Rn such that c E U, 
d E V, and Un V = 0. Functions f are continuous if J- 1 (U) is open for all 
open U. Constant functions, the identity, and the basic ring theoretic functions 
are continuous. Compositions of continuous functions are continuous. So all 
polynomial functions are continuous. 

A commutative ring is impotent if it satisfies the axioms 

a2 = 0 implies a = 0, and 

a2 = a implies a= 0 or a= l. 

One easily verifies that Rand C are impotent rings. 
If R is impotent and a, b E R are such that a + b = l and ab = 0, then 

a = l or a = 0 and, therefore, b = 0 or b = l. For if we multiply the first 
equation by a, and apply the second equation, we get a2 = a2 +ab= a. 

3.1 Lemma Let R S be impotent commutative rings, and a E S. If 
f, g E R[X] are strongly relatively prime, and f(a)g(a) = 0, then f(a) is a 
unit or g(a) is a unit. So g(a) = 0 or f(a) = 0. 

Proof sf+ tg = l for some s, t E R[X]. So s(a)f(a) = 1 or t(a)g(a) = 1. 

3.2 Theorem Let R be an impotent commutative ring with discrete subfield 
k. If a E R is algebraic over k, then k[a] is a discrete field. The set of elements 
in R algebraic over k is a discrete subfield. 

Proof It suffices to prove the first claim. By Proposition 1.2 each /3 E k[a] 
is algebraic over k, hence root of a monic polynomial g E k[X]. We can 
write g = X'"' h with h( 0) f. 0. Then xm and h are strongly relatively 
prime, so 13m is a unit or h(/3) is a unit. So /3 is a unit or /3 = 0. 

Let ca be the set of algebraic numbers, that is, the set of complex numbers 
that are algebraic over Q, and Ra= ca nR be the set of algebraic reals. Then 
ca and Ra are discrete. 

3.3 Lemma Let f E Ra[X], and a, b E R such that f(a) < 0 < f(b). Then 
there exists a modulated Cauchy real c E Ra with f(c) = 0. If a < b, then 
a < c < b; otherwise, a > c > b. 

Proof We may assume that a < b. By continuity there are a1 , b1 E Q such 
that a< a1 < b' <band f(a1 ) < 0 < f(b1). For each r E Ra we have f(r) < 0, 
f(r) = 0, or f(r) > 0, so we can construct sequences {an}n, {bn}n, and {cn}n, 
where Cn = (an+ bn)/2, by: 

ao = a1 and b0 = b1• 

an+l = bn+l = Cn if f(cn) = 0. 
an+l = Cn and bn+l = bn if f(cn) < 0. 
an+l = an and bn+l = Cn if f(cn) > 0. 
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Then an :S an+l :S bn+l :S bn and Ian - bn I :S (b' - a')(l/2r, for all 
n. So { cn}n is a modulated Cauchy sequence with limit c E R. By the 
Remainder Theorem, applied to Q[Y][X], there is g E Q[X, Y] such that 
f(X) = (X - Y)g(X, Y) + f(Y). There is an M such that lg(:c, y)I :S M 
whenever a :S x,y :Sb. So lf(x)-f(y)I :S Mlx-yl whenever a :S x,y :Sb; thus 
{f(cn)- f(an)}n and {f(cn)- f(bn)}n converge to 0, with f(an) :SO :S f(bn)• 
By continuity, f(c) = O; and c E Ra by Proposition 1.4. 

3.4 Corollary All nonzero polynomials f E Ra[X] have a finite set of roots 
in Ra. If f is of odd degree, then it has at least one root. 

Proof Suppose f is of odd degree. We may assume f to be monic. Let b be 
1 plus the sum of the absolute values of the coefficients off, and let a = -b. 
Then f(a) < 0 < f(b). 

Let f be nonzero and of degree n > 1. We complete the proof by induction 
on n. We may assume f to be separable. By induction, f' has a finite set of 
roots T 1 < · · · < Tm, If f' has no roots, then f has one. Otherwise, f has 
one root in the interval (T3, Tj+1) exactly when f(Tj )f(T3+1) < 0, one root 
less than T1 exactly when f(T1 - l)f'(T1 - 1) > 0, and one root bigger than 
Tm exactly when f(Tm + l)j'(Tm + 1) < 0. D 

Obviously, the element i = A is algebraic. Let a, b E R be such that 
a+ ib is an algebraic number. Then a+ ib is root of a polynomial with rational 
coefficients, so, by conjugation, a - ib is root of the same polynomial. So a and 
b are algebraic numbers too. Thus ca = Ra+ iR a. If c E ca, then the absolute 
value lei E Ra. The order relation < with restriction to Ra is decidable: If 
a E Ra is nonzero, then a is invertible, so a > 0 or a < 0. Obviously we can 
enumerate the monic polynomials over Q, and for each such polynomial we can 
enumerate its roots in Ra in a unique manner 'from left to right.' So Ra is 
countable, hence ca is countable. Combining this with Theorem 3.2 we get: 

3.5 Corollary The set of algebraic numbers ca is a countable discrete field. 

3.6 Corollary All algebraic numbers are modulated Cauchy. 

Proof Let c E Ra. Then c is the unique root of the polynomial f(X) = X -c 
satisfying f(c - 1) < 0 < f(c + 1). 

Let {an+ ibn}n be a (modulated) C~uchy sequence of algebraic numbers. 
Construct the (modulated) rational sequence {cn/n + idn/n}n by setting Cn 
equal to the largest integer less than or equal to nan, and dn equal to the 
largest integer less than or equal to nbn. Then the rational sequence has the 
same limit as the sequence over ca. So each (modulated) Cauchy sequence of 
algebraic numbers has as limit a (modulated) Cauchy number. 

3. 7 Lemma Let a, b E Ra. Then there exist c, d E Ra such that (c + id) 2 = 
a+ ib. 

Proof First suppose that b = 0. As ca is discrete, either a > 0 or a = 0, 
or a < 0. If a > 0, then va E Ra is a root of X 2 - a, by Lemma 3.3. If 
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a < 0, then we get iFa. In the general case we choose c and d from the 
roots of X 2 - (a+ + b2 )/2 and X 2 - (-a+ + b2)/2, respectively. 

The theory of finite groups is essentially completely constructive. One 
easily sees that most proofs of the class equation for finite groups are easily 
constructivized. So Sylow's theorem is constructive: If G is a finite group and 
pis a prime number such that pn divides the order of G, then G has a finite 
subgroup of order pn. A subgroup of order pn with n maximal is called a 
p-Sylow subgroup. 

Let R be a commutative ring. A polynomial / E R[X1, ... , X,.] is sym-
metric in the variables X1, .. . ,Xn if /(X1, ... ,X,.) = /(X-,,1, ... ,X,m), for all 
permutations 1r. Clearly, the coefficients a, of the polynomial 

are symmetric. They are the elementary symmetric polynomials. Each sym-
metric polynomial is element of the ring R[a1, ... , a,.] [M, pp. 73ff]. 

Let K 2 k be discrete fields. An element o: E K splits over k if it is root 
of a polynomial over k that factors into linear factors over K. The field K is 
normal over k if each o: E K splits over k. 

Let K 2 k be discrete fields such that K = k[8]. Then 8 splits over k if 
and only if K is normal over k. For if 8 splits, then there is a monic polynomial 
f over k that splits with roots 8 = 81 , •.• , 8,.. The elementary symmetric 
polynomials in the 8; are coefficients of/, hence elements of k. Let o: E K. 
We can write o: = p(8), for some p E k[X]. Then o: is root of the polynomial 
g = I];(X - p(8;)), whose coefficients are symmetric in the 8;. So g E k[X]. 

Let K = k[8] and 8 = 81 , .•. , 8,. be as above, and suppose, additionally, 
that f is irreducible and the characteristic of k equals 0. Then all 8; are 
distinct, and for each j we have a unique automorphism of K that is the 
identity on k and maps 8 to 8;. These automorphisms form the Galois group 
G of the extension K 2 k. If H is a finite subgroup of G, then 8 is root of 
the polynomial h = I1ueH(X - a(8)) over the field L 2 k generated by the 
coefficients of h. The field L is called the fixed field of H, since its elements 
are exactly the ones that are fixed by the automorphisms of H. Obviously, h 
is irreducible over L. So [K: L] = IHI, the cardinality of H. 

3.8 Lemma Each polynomial over Q has a root in ca. 

Proof Let f be a monic polynomial over Q, and let K be a splitting field 
off over Q which, by Corollary 2.8, has a finite Galois group G. It suffices 
to embed K in ca. Let H be the 2-Sylow subgroup of G with fixed field k. 
Then [k : Q] = IGI/IHI is odd. By Corollary 2.8 there exists o: such that 
k = Q[o:], and o: is root of an irreducible polynomial of odd degree over Q. So 
by Corollary 3.4 there exists an embedding of k into ca. The group H contains 
a chain of subgroups Ho · · · H,. = H of order IH; I = 2i, with fixed fields 
K = Ko 2 · · · 2 K,. = k. So [K; : K;+1I = 2 for all j. By the quadratic 
formula, if M 2 L are discrete fields of characteristic greater than 2 such that 
[M: L] = 2, then M = L[,6], with {32 EL. So by Lemma 3.7 we can extend an 
embedding from k;+1 into ca to one from k;, for all j. So K embeds into ca. 
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3.9 Theorem (Discrete Fundamental Theorem) ca is algebraically closed. 

Proof Let f be a nonconstant polynomial over ca. By Theorem 1. 7 there 
exists a countable discrete splitting field off. Let g E Q[X] have all roots off 
as roots, including multiplicities; so f I g. By Corollary 2.8 there is a splitting 
field Q[o:] of g. Let h E Q[X] be the minimal polynomial of a:. Then h(/3) = 0 
for some /3 E ca. So g, and thus f, splits into linear factors over Q [/3] ca. 

The Discrete Fundamental Theorem enables us to study the roots of poly-
nomials over C more generally through approximation by polynomials over 
ca. To make this work we must show that if two polynomials are close to each 
other, then their roots are close too. 

Let f = I:j an-jXj be a polynomial over C. Define IJI = I:j lajl• 
Let f = xn + a1xn-l +···+an be a monic polynomial over C, and let 

e EC. Then IJ(e)l 2 lcln-la1en-l+· · •+anl 2 lcln-max(l, lcln-l)(IJl-1). So 
if lei 2 lfl, then lf(c)I 2 leln-l(lcl - lfl + 1) 2 lfln-1; and if lf(c)I < lfln-l, 
then lcl < lfl- If g is a monic factor of f, then for all £ > 0 there exists a 
polynomial g* = IJj(X -ej) over ca with lcjl < Ill for all cj, and lg-g*I < £. 
So IYI::; £ + IY*I < £ + (1 + 111r. So IYI::; (1 + IJl)n. 

If f = (X - c1) · · · (X - en),£> 0, and care such that IJ(c)I < c:n, then 
rrj le - ej I < £n. Thus le - ej I < c: for some j. Let, additionally, R 2 Ill, and 
g = (X -di)··· (X -dn)- Suppose that lf-gl < (c:/Rt for some£> 0. Then 
lg( ej) I < c:n for all j. So for all j there exists k such that lcj - dk I < £. 

By the Remainder Theorem, there exists for all polynomials f(X) a poly-
nomial G1(X, Y) such that f(X)- f(Y) = (X -Y)G1(X, Y). The coefficients 
of G1 are polynomials in the coefficients off. So given R > 0 and an integer 
n > 0, there exists M such that for all monic f of degree n and z, w E C, if 
Ill< R, lzl < R, and lwl < R, then IG1(z, w)I < M. 

3.10 Lemma Let n > 0 be an integer, and R, £ E R be such that c: > 0. 
Then there exists fl > 0 such that for all f = (X - e1) · · · (X - en) and g = 
(X - di)··· (X - dn) over C, if Ill < R, IYI < R, and If - YI < fl, then there 
is a permutation 1r such that lcj - d1rj I <£for all j. 

Proof We may assume that £ < 1. Let S = (l + R)n. Choose M 2 1 such 
that for all monic f of degree at most n and all z, w, if IJI < S, lzl < S, and 
lwl < S, then lf(z) - f(w)I ::; lz - wlM. Choose 0 < £2n < · · · < £1 =£such 
that £2j < c{j-1 and £2j-l < £~j-2/(lO0M2sn+1), for all j. Set {J = £2n/sn- 1. 
Let f = IJj ( X - cj) and g = IJj ( X - dj) be monic polynomials of degree n such 
that Ill < R, IYI < R, and If - YI < b. Then lf(z) - g(z)I ::; If - glsn-l < £2n 
for all z satisfying lzl < S. We complete the proof by induction on n. Suppose 
n > l. Then there exists dk such that lcn - dkl < £2n-l• We may assume 
that k = n. Let f*(z) = f(z)/(z - en) and g*(z) = g(z)/(z - dn)• For all z 
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satisfying lzl < S, lz - cnl > c2n-2/5M, and lz - dnl > c2n-2/5M, we have 

1/*(z) _ g*(z)I = I /(z)(z - en)+ /(z)(cn - dn) - g(z)(z - en) I 
(z - Cn){z - dn) 

:::; 1/(z) - g(z)l5M/c2n-2 + l/(z)lc2n-1(6M/c2n-2)2 
2 2 < c2n6M/c2n-2 + Rsnc2n-125M /c2n_ 2 

< 50M2sn+1c2n-i/c~n-2 < c2n-2/2. 

Let lwl < S. Then there exists z as above such that lw - zl < c2n-2/4M. 
So 1/*(w) - g•(w)I :::; 1/*(w) - /*(z)I + 1/*(z) - g*(z)I + lg*(z) - g*(w)I < 
c2n-2/4+c2n-2/2 +c2n-2/4 = c2n-2• By induction there exists a permutation 
1r such that for all j < n there is 1rj < n such that le; -d1r; I < c. Set 1rn = n. 

We cannot show that all nonzero polynomials over C have an invertible 
leading coefficient, so we need to consider polynomials that are 'almost-monic.' 

3.11 Lemma Let f and g be polynomials over ca such that f is manic and 
of degree n, and g is of degree at most m. Let O < c < 1/2 be such that 
lgl < (c/(21/l)r+n+l. If C is a root of g(X)xn+l + /(X), then exactly one of 
the following holds: 

lei > 1/l/c, and 11/c - 1/dl < c/l/1 for some root d of g(X)X + 1. 
lei < I/I, and le - di < c for some root d of /(X). 

Proof Let c be a root of g(X)xn+l + /(X). Then lcl 2: 21/1 or lei < 21/1. 
Suppose lcl 2: 21/1. Then lg(c)c + 11 :::; (I/I - 1)/lcl < 1/2. So lclm+1lgl 2: 
lg(c)cl > 1/2. Thus 1c1m+l > (l/l/cr+1, hence lei > 1/l/c. Also, l(g(c)c + 
1)/cm+ll < (c/ltlr+1. So 11/c-'el < c/l/1 for some root e = 1/d of the monic 
polynomial (g(l/X)/X + l)xm+i. 

Suppose lcl < 21/1. Then 

So there is a root d of /(X) such that le - di < c. 

3.12 Lemma Let F = anXn + · · · + a0 be a polynomial over C such that a; is 
a unit. Then there exists k 2: j such that ak is a unit, and a manic polynomial 
F* over C of degree k, such that F* divides F. If the coefficients of F are 
(modulated) Cauchy numbers, then so are the coefficients of F*. 

Proof By induction on n - j. Write F = a;(bnXn + · · · + b0 ), let r 
1xi+b;-1Xi-1+. ·+bol, ands= lbnXn+. ·+b;+1Xi+l1. Thens> 1/(2(6r)n) 
or s < 1/(6rt. Ifs > 1/(2(6r)n), then ak is a unit for some k > j: Apply 
induction. Suppose s < 1/(6rt. By continuity there exists 'Y > 0 such that 
s + (n - fry < 1/(6(r - j-y))n. Let 8 = la;l'Y/4. If his a polynomial over 
ca of degree at most n such that lh - Fl < 8, then it has exactly j roots 
c1, ... ,c;, counting multiplicities, satisfying lcil < lhl, Define h* = Tii(X-ci). 
Then h* is a monic polynomial of degree j that divides h. By Lemmas 3.10 
and 3.11, for all c > 0 and for all G over C of degree at most n such that 
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IG..:... Fl < 6 there exists 61 > 0 such that if hi, h2 are polynomials over ca 
of degree at most n satisfying jhi - GI < 61, then lhi - h21 < c. So the 
maps h 1---+ h* and h 1---+ h/h* can be continuously extended to all G over C 
of degree at most n that satisfy IG - Fl < 6. In particular, F* divides F. 

The continuity of the map h 1---+ h* cannot be strengthened to a continuous 
map to some linear factor of h*, since in general the permutation 1r in Lemma 
3.10 need not be uniquely determined. 

3.13 Theorem (Fundamental Theorem for (modulated) Cauchy complex 
numbers) Each polynomial f(X) over the (modulated) Cauchy complex num-
bers having an invertible coefficient for some positive power of X has a (mod-
ulated) Cauchy root. 

Proof We may assume f to be a monic polynomial xn + a1xn- i + · · · + an, 
where each a; is the limit ofa (modulated) rational Cauchy sequence {a;,m}m· 
We construct a sequence {cm}m of roots Cm E ca of fm = xn + a1,mxn-l + 
· · · + an,m as follows: Choose for co one of the roots of fo. From Cm-1 we 
select for Cm from among the roots of fm the one that is closest to Cm-1, 
that is, icm-1 - cml ::; icm-1 - di for all roots d of fm• If there is no 
unique choice, then select the one with largest real part. If there are still 
two choices left, select the one with largest imaginary part. Then { cm}m is 
a (modulated) Cauchy sequence whose limit is a root off. 

The uniqueness of the choice of Cm in the proof of Theorem 3.13 implies 
that the sequence {cm}m is uniquely determined by a finite description, and 
no choice principles are needed. 

Theorem 3.13 does not extend to all of C: We cannot find a continuous 
solution X(c) to the equation X 2 + c = 0 when c E C is near 0. 

3.14 Theorem Let n > I, and Jet F = xn +a1xn-1+· · +an be a polynomial 
over C such that there exists j satisfying ni a; f. (;') a{, that is, ni a; - (;) a{ 
is a unit. Then F has a proper manic factor F* such that F* and F / F* are 
strongly relatively prime. 

Proof Given F, there exists 'Y > 0 such that l(X + c)n - F(X)I > -y, for 
all c. So there exist i, µ such that for all monic polynomials g over ca of 
degree n, if jg - Fl < µ, then jgj < 2IFI = R and g has roots e, d with 
le - di > 2ni. For n, i, R, there exists 6 <µsatisfying Lemma 3.10. Choose a 
monic polynomial g = Il;(X - e;) of degree n over ca such that jg - FI < 6 /3. 
The equivalence relation on the roots of g generated by the binary relation 
le; - c,. j < 2c contains at least two distinct equivalence classes, and can be 
extended to a decidable equivalence relation ~ that divides the collection of 
roots into exactly two equivalence classes C and D. For all monic polynomials 
h = TI;(X - d;) of degree n over ca such that jh - gj < 6/2, there is a 
permutation 1r such that lc.i - d1r; I < i. The equivalence relation on the roots 
of g induces an equivalence relation on the roots of h, dividing them into two 
equivalence classes as well, say C' and D'. These classes are independent of 1r. 

Define h* = ndED'(X - d). The map h I--+ h* can be continuously extended 
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to all monic Gover C of degree n that satisfy IG - YI < 6/2. Let h0 = h/h*. 
There are unique polynomials h. and h0 with h. of degree less than deg h0 

and h0 of degree less than deg h*, such that h* h. + h0 h0 = l. The maps 
h 1---+ h0 , h 1---+ h., and h 1---+ h0 ·are continuous wherever h* is. So F* is a proper 
monic factor of F, and F* and F 0 = F / F* are strongly relatively prime. 

A polynomial f over Chas a simple root a: if f(o:) = 0 and f'(o:) is invert-
ible. The existence of a simple root for a monic polynomial can be expressed in 
terms ofits coefficients. The following approach is from [W]. Let R be a commu-
tative ring, and let f = (Y +X1)(Y +X2) · · · (Y +Xn) = yn+a1yn- 1+· · •+an 
be the polynomial over R[X1, ... , Xn] with as coefficients the elementary sym-
metric polynomials a; = a i ( X 1 , ... , Xn ). To express that - X; is a simple root 
off, we need that E; = Tik;tj(X; - Xk) # 0, where :i: # y stands for :i: - y 
is a unit. So for f to have a simple root we need at least one E; # 0. So 
(Y + E1)(Y + E2) · · ·(Y + En) f; yn, that is, a;(E1, .. . , En) f; 0 for some 
j. These polynomials are symmetric, so there exist polynomials d;(Y1, ... , Yn) 
such that d;(a1, ... , an) = a;(E1, ... , En)• Define f to be unramifiable, if 
d;(a1, ... , an)# 0 for some j. 

3.15 Theorem Each unramifiable monic polynomial over C has a simple root. 

Proof By Theorem 3.14, an unramifiable monic polynomial f of degree n > 1 
has a proper factorization f = gh, for monic g, h. Then g or his unramifiable 
again. By induction on n, g or h has a simple root, which is a simple root off. 

3.16 Theorem Let r ER, and Jet a 1(Y), ... , an(Y) be rational functions over 
ca such that a;(r) exists, for all j. Then f(X, r) = xn+a1(r)xn- 1+ • •+an(r) 
splits in C. 

Proof We may assume that n > l. We proceed by induction on n. There 
are rational numbers fp and q such that p < r < q, and a; ( s) exists for all 
p s q and all j. If the inequality gcd(f(X, Y), U(X, Y)) # 1 over 
ca(Y) has infinitely many solutions Y = s E Ra with p s q, then, 
by Theorem 2.1, f(X, Y) and U(X, Y) share a nonconstant factor g(X, Y) 
over ca(Y) that is monic in X. So g(X, r) is a proper factor of f(X, r): 
Apply induction. Otherwise, let p d1 < · · · < dm q be the finite set 
of solutions of the inequality. Set p = d0 and q = dm+l· By Lemma 3.10 
we can find roots c1(t), ... , cn(t) of f(X, t) that are continuous in t E R 
on each interval (d;, d;+ 1). Continuous roots of neighboring intervals can 
be pairwise connected to make a continuous solution on the whole interval 
(p, q), because the roots of f(X, d;) are discrete sets. 

The constructions of the continuous solutions ck(t) in the proof above 
essentially use that the intervals ( d;, d;+i) are simply connected. Theorem 
3.16 does not apply to the polynomial X 2 + c with c E C, since a complex 
number depends on two real values rather than one: its real and its imaginary 
part. 
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On the computation of normal forms 
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The Netherlands 

0. Introduction 

A classic problem in differential equations is to compute the normal form 
of a given equation 

:i: = v(a:) 
at an equilibrium point, which we assume is 0. In other words, we suppose that 
v(O) = 0. We give a brief description of how to theoretically compute a normal 
form of v. The normalizing process is entirely algebraic; thus, we shall assume 
that v is a formal power series 

where A is a nonzero n x n real matrix and Vt E :Ft = :Ft(W) is an n-vector 
of homogeneous polynomials of degree I. on W = Rn. To simplify v we use a 
succession of near identity coordinate changes. Let us try to bring the quadratic 
terms v2 of v into normal form using the coordinate change 

a:= <p(y) = Y+ <p2(Y) 

where <p2 E :F2. In the new coordinates v becomes 

In other words, with the usual notation D for derivative, 

y =i,o.v(y) 
=(I+ D<p2(y))- 1v(y + <p2(y)). 
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Up to quadratic terms, the formal power series for w = <p.v is 

w(y) = (I - D<p2(Y) + · · ·)(A(y + <p2(Y)) + v2(Y + <p2(Y)) + · · ·) 
= Ay + A<p2(Y) .:._ D<p2(y)Ay + vz(Y) + · · · 
= Ay + (v2(Y) - [A, <pz](y)) + · · · 
= Ay + wz(y) + · · · 

where [A, <p2] is the Lie bracket of the vectorfields A and <pz. Recall that for 
vectorfields f, g on Rn 

[f, g](x) = Dg(x)f(x) - Df(x)g(x). 

Clearly [ , ] is defined for formal power series vectorfields as well. Since A is a 
linear vectorfield we have the adjoint map 

To remove all the quadratic terms in v we need to solve the linear equation 

for <p2 E :F2 , which is not always possible. To see this, consider the vectorfield 
on R 2 given by 

Let the near identity coordinate change <p be defined by 

Then carrying out the calculation gives 

To make w2 zero we must solve the linear equations 

0 -2 0 0 0 0 A1 a1 
0 0 -1 0 0 0 B1 /31 
0 0 0 0 0 0 C1 ,1 (2) 1 0 0 0 -2 0 A2 a2 
0 1 0 0 0 -1 B2 /32 
0 0 1 0 0 0 C2 ,2 

This is not always possible, because the matrix on the left hand side of (2) is 
not invertible. In fact, it is nilpotent. 
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To remove as many terms as possible from v2 , using the coordinate change 
tp, we decompose :F2 as the direct sum of the image ofadA and a complementary 
subspace C2, Then we can write 

where v; E im adA and v~ E C2. Now choose tp2 so that adA tp2 = v;. Then 

Thus we have brought V into the normal form w 

(3) 

up through quadratic terms. We can bring the cubic terms in v into normal 
form in the same way using the near identity coordinate change tp = id + tp3 
where tp3 E :F3 (Rn ). Because tp is the identity up through quadratic terms, it 
leaves unchanged the normal form (3). Repeating this process gives a normal 
form 

where Vt belongs to a complement Ct of im adA in :Ft, Obviously, what is 
meant by a normal form depends on the choice of complement Ct, 

There is a "natural" choice of complement for im adA l:Ft using represen-
tation theory of sl2 , which we now explain. Suppose that 

is the unique semisimple-nilpotent decomposition of A into a commuting sum of 
a semisimple linear map Sand a nilpotent linear map N. Then by the theorem 
of Jacobson-Morozov [Hel] (Chapter IX, Theorem 7.4), there are linear maps 
Mand Hof Rn into itself such that 

[H,M] = 2M 
[H,N] = -2N 
[M,N] = H and 
[S,M] = [S,N] =:== [S,H] = 0. 

(4) 

In other words {M, N, H} span a Lie subalgebra of gln(R) which is isomorphic 
to sl2(R). Moreover, S lies in the center of this subalgebra. Therefore adM, 
adN, adH define a representation of sl2 (R) on :Ft, Note that ads commutes 
with adM, adN, adH, It follows from the representation theory of sl2 (R) that 

Since S is semisimple, ads is semisimple. Therefore 

:Ft= keradsl:Ft EB imadsl:Ft, 
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But ads commutes with both adM and adN. Hence 

:Ft = (im ads EB (im adN n ker ads)) l:Ft EB (ker ads n ker adM) l:Ft 
= im adA !:Ft EB (ker ads n ker adM) !:Ft, 

that is, (ker ads n ker adM) !:Ft is a natural complement to im ad A !:Ft in :Ft. 
The main contribution of this paper is finding an algorithm suitable for a 

computer, to solve the equation 

(5) 

for w E :Ft and v0 E ker ads l:Ft given v E :Ft, and also the equation 

(6) 

for w E ker ads l:Ft and v00 E ker ads l:Ft n ker adM !:Ft given v0 E ker ads l:Ft 
without first bringing A into real Jordan canonical form. This is not such 
a big advantage in the general linear case, but it has its advantages in the 
Hamiltonian case, where the computation of the Jordan normal form is highly 
nontrivial. The appropriate setting is that of graded Lie algebras. Under 
appropriate technical conditions on the linear problem, our approach can be 
easily translated to this context. 

1. The Jacobson-Morozov theorem 

In this section we describe a method which implements the Jacobson-
Morozov theorem. In other words, given the linear mapping A, we show how 
to find the linear mappings M, N, H and S. 

We begin with finding the linear maps Sand N which give the semisimple-
nilpotent decomposition of A. We use the algorithm of [BC] to compute poly-
nomials Ti of degree less than the degree of the minimal polynomial p of A so 
that 

m-1 

S = A+ L ri(A)p(A)i. 
i=l 

Here m is the maximum of the degrees of the irreducible factors of the charac-
teristic polynomial x of A. This algorithm does not need a factorization of x 
and is straightforward to program in Maple. 

To implement the Jacobson-Morozov theorem for gln(R) we first solve the 
linear equations 

[S,Z] = 0 
[[Z, N], N] = -2N 

for Z E gln(R). Put H = [Z, N]. To find M we solve the linear equations 

[S,K] =0 
[N,K]=O 

[H, K] - 2K = [H, Z] - 2Z 
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for KE gfn(R). Then put M = Z - K. It is easy to check that M, N, Hand 
S so obtained satisfy the bracket relations (4). 

2. The semisimple case 

In this section, until further notice, we suppose that A = S is a nonzero 
semisimple linear mapping. We will show how to solve 

ads w = v -v0 (7) 

for w E :Ft, v0 E keradsl:Ft given v E :Ft, 
To motivate our approach, we first treat the special case where S is a com-

plex diagonal matrix with respect to the standard basis of en, with eigenvalues 
) 1 , ... , An, Let (z1 , ... , Zn) be coordinates on en. Then the linear vectorfield 
S, written as a differential operator, is 

A basis for :Ft (en) is given by the vectorfields 

a. {) z J_ 

OZj 
(j = l, ... ,n) 

where z°'i = zf' ... z;:", CX.j = (aj1, .. ,,ajn) E z;0 and lajl = I::=iCX.ji = f. 
Then from the definition of Lie bracket ( 1) it follows that 

ads(z°'i ~)=((a·, .X) - .X ·)z°'i oz· J J {)z. 
J J 

where (aj, .X) = I:;=1 CX.jiAi- Given the vectorfield 

;:...... '°' a· {) V = L L...J Ca;Z 3 -0 , 
z· j=l la;l=t 1 

it follows from (8) that 

_ ,2--.. '°' Ca; 0 . 0 
w = L...J L...J (a· .X) - A· z 3 -{)z-· 

j=l (a;,>.);,!>.; J• J J 

and 
n 

Vo= L L Ca.z°'i {){) . 
J Zj 

j=l (a;,>-)=>.; 
la;l=t 

(8) 
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solve (7). 
This method of solving (7) is too dependent on the choice of basis which 

diagonalizes S to be of much practical use. We use a different approach. Look 
at the one parameter group 

t 1--> t5 = diag(t~ 1 , ••• , t~") where t EC*. (9) 

This c•-action induces a c•-action on Ft(Cn) given by 

(10) 

Thus c• acts on homogeneous polynomial vectorfi.elds by rescaling each mono-
mial vectorfi.eld according to (10). This does not look like too much help. But 
it is because we can operate on the scaling factors rather than on the mono-
mial vectorfi.elds. For instance, for t E c• , consider the linear operator Tt on 
Ft (en) defined by 

rn ( a · {) ) _ It tads ( a • {) ) d t .Lt z J_ - z J_ -
{)zj {)zj t (11) 

Then 

(12) 

If we put 
w = Tiv and 
v0 = coefficient of r 1 in tads v, 

then w and v0 solve (7). 
The only trouble with the above approach is that S was assumed to be 

diagonal so that we could compute t 5 . This difficulty can be circumvented as 
follows (see also (LR]). Let 

T 

p(.\) = IJ(,\ - Aj) 
j=l 

be the minimal polynomial of S. Thus Aj -f:- Ak if j -f:- k. For j = 1, ... , r set 
Pi(.\) = p( .\)/(,\ - Aj ). 

2.1 Lemma For j = 1, .. . ,r, the mapping 7rj = Pi(S)/p1(Aj) is a projection 
ofCn onto ker(S - Aj)-

Proof Because 
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we have 1r;(C") ker(S - A;). Since the polynomials {p;(A)/p'(A;)}J=l 
are pairwise relatively prime, C" = ei=11r;(C"). It follows that 1r;(C") = 
ker (S - A;). 

It remains to be shown that 1r; is a projection. Suppose that 

(13) 

holds. Then multiplying both sides of{13) by P;(A)/p'(A;) gives, with Pk;(A) = 
p(A)/((A - A;)(A - Ak)), 

1r;(A) = L Pk(A)P;(A) + (1r;(A))2 
k-ti p'(Ak)p'(A;) 

= L Pk;(A)(A - A;)P;(A) + ( ·(A))2 
k#j p'(Ak)p'(A;) 1r, 

= p(A) ft; p'(f:)~~lA;) + (1r;(A))2. 

Substituting S into (14) and using p(S) = 0 gives ( 1r; )2 = 1r; as desired. 
To prove ( 13) consider the partial fraction decomposition of p( A )- 1 

l r Ak 
p(A) = A - Ak. 

(14) 

(15) 

Multiplying both sides of (15) by A - Aj and taking the limit as A --+ Aj gives 
A;= (p'(A;))- 1 . Note that p'(A;) # 0, since Aj is a simple zero ofp. Therefore 

r l r Pk(A) r 
l = p(A) L (A - A )p'(A ) = L p'(A ) = L 11"k(A), 

k=l k k k=l k k=l 

which proves (13) and the lemma. D 
Using the functional calculus for holomorphic functions of a matrix and 

the above lemma, we find that 
r 

ts= Le-i1r; (16) 
j=l 

for an arbitrary complex semisimple linear map S with distinct eigenvalues 
{A;}j=l· 
2.2 ExBIIlple By way of example, we now apply the above theory to compute 
a normal form of the vectorfield 

(17) 
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up through cubic terms. The linear vectorfield Sis semisimple with minimal 
polynomial p(A) = A2 + 1 = (A - i)(A + i). Applying the lemma with A1 = i 
and A2 = -i, we get for the projection onto ker (S - i) 

and for the projection of onto ker (S + i) 

Now (16) yields 

where r = t• 

Consequently, by ( 11), 

(18) 

Observe that T1 v E .r3 (R 2), although the intermediate steps were over C. 
Evaluating the right hand side of (18) is straightforward, but is better left to 
a computer. We obtain 

This agrees with the general theory [CS], which says that the normal form of 
(17) is 

S (:z:i) + (H1:z:1 - H2:z:2) 1 :z:2 H1:z:2 + H2:z:1 

where H1, H2 E R[[:z:~ + :z:~]]. 
We end this section by treating (5) for general (not necessarily semisimple) 

A = S + N. Using the above method for solving 

adsw's = v-v0 (19) 
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for w"s E Ft(Rn) and v0 E keradslFt given v E :Ft, we show how to solve 

(20) 

for w E Ft(Rn) and v0 E ker adslFt given v E :Ft, Put 

m 

w = ~)-ltadt Tf Ws (21) 
k=O 

where ad~+l = 0 (such m exists since adN is nilpotent). It follows from (12) 
that T1 equals ads" 1 on imadslFt and O on keradslFt, Therefore 

(22) 

The following calculation, which uses (22), shows that w given by (21) solves 
(20) 

m 

adA w = ~)-lt(ads + adN )adt Tf iiis 
m m 

adsw"s + l)-1tadtTf-1iiis + l)-1tadt+1Tfiiis 
k=l k=O 

adsw"s = v - v0 • 

3. The general case 

In this section we will show how to solve the basic normal form equation 

(23) 

for w E ker ads l:Ft and v00 E ker ads I Ft n ker adM IFt given v0 E ker ads IFt, 
Using the results of §2, we may assume that v0 has been computed starting 
from a given v E Ft. 

The treatment of this problem will be purely representation theoretic. To 
be explicit, we start with the triple { M, N, H} providing a representation p of 
s£2(R) on a real vector space U. Then [Hum] 

U = ker M EB im N. (24) 

Our problem is: given w EU, find w' E ker Mand w 11 E im N so that 

w = w' + w". 

In other words, split w along the decomposition (24). Below we give a method 
for obtaining this splitting which is fast and suitable for a computer. For more 
on the splitting algorithm, see [CS2]. 
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Let u E U. We can write 

A(h) 
u= LLaivf, 

h i=O 

where for fixed h E N the vf span an irreducible subspace with highest weight 
A(h) and obey the relations 

Hvf = (A(h) - 2i)vf, 
Nvf = (i + l)vf+ 1 , 

Mvf = (A(h) - i + l)vf- 1 

(with the convention that v~(h)+l = v~ 1 = 0). 
There is a natural imbedding L: U-+ U ® R[X, Y] given by 

A(h) 
LU = L Lai vf ® xiyA(h)-i' 

h i=O 

(25) 

with a corresponding projection p: U ® R[X, Y] -+ U. We remark that when 
u E ker M, we can give an explicit formula for Lu: 

LU= L aiv~ ® YA(h) = L ai(YH).v~ = (YH).u. (26) 
h h 

Suppose now that we have y E U and we want to compute Ly. Assume we have 
computed the effect of Lon My, i.e., 

A(h)-1 
LMy= L L aivf ®XiyA(h)-i_ 

h i=O 

We define an R-linear map a : U ® R[X, Y] -+ U ® R[X, Y] by 

1 /Y 1 /x a(u®f(X,Y)) = Nu® y ry f((,17)d(d17. (27) 

Then 
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Projecting down onto U and applying M we obtain 

=My. 

In other words, y - p<nM y E ker M. Thus we have 

1,y = <nMy + YH(y- p<nMy). (28) 

This describes how we can take one step. The splitting algorithm now works as 
follows: Take y EU. Compute y0 = y and yi+l = Myi. Stop when ym+l = 0. 
Let Y; = 1,yi for each j E {O, ... , m + 1}. Applying (28) repeatedly, we obtain 

H . . 
Y; = O'Y;+1 + Y (y1 - fJO'Y;+i) for J = m, ... , 0. Then y = (y - fJO'Yd + fJO'Y1, 
where the first component is the projection on ker M and the second ·on im N 
by construction of 0' 1 see (27). 

3.1 The splitting algorithm 

Input v0 E .r,(Rn) n kerads. 

1. For i = 0, . . . compute vi+1 = adMv'. Stop when vm+l = 0. 
Set Vm+1(X, Y) = 0, and j = m. 

2;. Compute 

3. Decrease j by 1 and repeat step 2;. Stop when j = -1. 
Output v00 = v0 (0, 1) and w = wo(l, 1). · 

As a result of the reasoning above we have 

3.2 Theorem For v0 E .r,(Rn) n kerads, the v00 E keradsl.r, n imadNi.r, 
and w E ker ads i.r, as determined by the above condensed splitting algorithm 
solve 

(29) 

3.3 Remarks In the above algorithm, w;(X, Y), u;(X, Y), v;(X, Y) are vec-
torfields with scaling parameters X and Y. The exponent of the parameter 
Y gives the adH-eigenvalue of the monomial vectorfield, whereas the exponent 
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of the parameter X gives the position of the monomial vectorfield inside an 
irreducible. The restriction to ker ads is not essential. 

3.4 Example We illustrate the above algorithm with the vectorfield 

0 1 2 1 20 1 2 1 20 
V = ( 20'.1:Z:1 + /31:z:1:z:2 + rr1:i:2) 8:z:1 + ( 20'.2:Z:1 + /32:z:1:z:2 + iY2:V2) 8:z:2 

on R2 and take as a representation of sl2 (R) the ad of: 

First we compute 

v1 = adM v0 

( 1 2 ( (1 2 a - -20'.2:Z:1 + /32 - 01):z:1:z:2 + --r2 - /3i):z:2)~ 
2 u:Z:1 

+ (02:Z:1:Z:2 + /32:vn / u:Z:2 
v2 = adM v1 

- (2a2:i:1:i:2 + (2(/32 - a1):v~) !la + a2:v~ / 
u:Z:1 u:z:2 

v4 = 0. 

Then from step 23 of the algorithm we find that 

w3(X, Y) = 0 
u3(X, Y) = 0 

(
y-1 

since yH -- 0 ; ) . Now, for j = 2 in step 21 we obtain, 
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We repeat this process twice more. First to compute w1, u1, v1 and subse-
quently to compute w0 , u0 , v0 . We give the latter: 

Hence 

and 

w= 

solve 
adN w = v0 - v00 • 

The resulting normal form v00 agrees with the general theory (CSl] which states 
that the normal form of a general formal power series vectorfield on R 2 with 
linear term x 2 -88 is .,, 

where H1, H2 E R[[x2]]. 
To summarize what we have done: given v E :Ft we can find w E :Ft and 

v0 E ker ads l:Ft so that 
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see (20). Moreover, given v0 E keradslFt we can find w E keradslFt and 
v00 E (ker adM n ker ads) I.rt so that 

see (29). Adding the above two equations gives the decomposition of v 

along the subspaces im adA I.rt and (ker adM n ker ads )Iker Ft, as desired. 

Acknowledgement The author gratefully acknowledges the work of the ref-
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